1
|
Ma X, Lv J, Ma X, Zhu D, Long Q, Xing J. Isolation optimization and screening of halophilic enzymes and antimicrobial activities of halophilic archaea from the high-altitude, hypersaline Da Qaidam Salt Lake, China. J Appl Microbiol 2025; 136:lxaf002. [PMID: 39756384 DOI: 10.1093/jambio/lxaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
AIM The aim of this study is to increase the diversity of culturable halophilic archaea by comparing various isolation conditions and to explore the application of halophilic archaea for enzyme-producing activities and antimicrobial properties. METHODS AND RESULTS We systematically compared the isolation performance of various archaeal and bacterial media by isolating halophilic archaea from the Da Qaidam Salt Lake, a magnesium sulfate subtype hypersaline lake on the Qinghai-Tibet Plateau, China, using multiple enrichment culture and gradient dilution conditions. A total of 490 strains of halophilic archaea were isolated, which belonged to five families and 11 genera within the order Halobacteriales of the class Halobacteria of the phylum Euryarchaeota. The 11 genera consisted of nine known genera and two potentially new genera, the former including Halorubrum, Natranaeroarchaeum, Haloplanus, Haloarcula, Halorhabdus, Halomicrobium, Halobacterium, Natrinema, and Haloterrigene. Halorubrum was the dominant genus with a relative abundance of 78.98%. By comparing different culture conditions, we found that bacterial media 2216E and R2A showed much better isolation performance than all archaeal media, and enrichment culture after 60 d and dilution gradients of 10-1 and 10-2 were best fitted for halophilic archaea cultivation. The screening of 40 halophilic archaeal strains of different species indicated that these halophilic archaea had great extracellular enzyme activities, including amylase (62.5%), esterase (50.0%), protease (27.5%), and cellulase (15.0%), and possessed great antimicrobial activities against human pathogens. A total of 34 strains exhibited antimicrobial activity against four or more pathogens, and 19 strains exhibited antimicrobial activity against all six pathogens. CONCLUSIONS The diversity of culturable halophilic archaea was significantly increased by enrichment culture and selection of bacterial media, and screening of representative strains showed that halophilic archaea have multiple extracellular enzyme activities and broad-spectrum antimicrobial activity against human pathogens.
Collapse
Affiliation(s)
- Xin Ma
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining 810016, China
| | - Jiaxuan Lv
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining 810016, China
| | - Xiangrong Ma
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining 810016, China
| | - Derui Zhu
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining 810016, China
| | - Qifu Long
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining 810016, China
| | - Jiangwa Xing
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining 810016, China
| |
Collapse
|
2
|
Guo X, Li Y, Song G, Zhao L, Wang J. Adaptation of Archaeal Communities to Summer Hypoxia in the Sediment of Bohai Sea. Ecol Evol 2025; 15:e70768. [PMID: 39781248 PMCID: PMC11707553 DOI: 10.1002/ece3.70768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Understanding the adaptation of archaea to hypoxia is essential for deciphering the functions and mechanisms of microbes when suffering environmental changes. However, the dynamics and responses of archaea to the sedimentary hypoxia in Bohai Sea are still unclear. In this study, the diversity, composition, and distribution of archaeal community in sediment along an inshore-offshore transect across the oxygen-depleted area in the Bohai Sea were investigated in June, July, and August of 2021 by employing high-throughput sequencing of 16S rRNA gene. Results indicated that the archaeal communities were dominated by Thermoproteota (80.61%), Asgardarchaeota (8.70%), and Thermoplasmatota (5.27%). Dissolved oxygen (DO) and NO3 - were the two key factors shaping the distribution of archaeal communities, accounting for 49.5% and 38.3% of the total variabilities (p < 0.05), respectively. With the intensity of oxygen depletion, the diversity of archaeal communities increased significantly. Microbial networks revealed that Bathyarchaeia played a key role in interacting with both bacteria and other archaeal groups. Furthermore, adaptions to hypoxia of archaea were also displayed by variation in relative abundance of the predicted ecological functions and the metabolic pathways. The enrichment of specific nitrogen transformation enzymes showed the potential for nitrogen fixation and removal, which might contribute to the balance of N budget and thus facilitate the ecological restoration under eutrophication in Bohai Sea. Our results provided a new picture on ecological and metabolic adaptions to hypoxia by archaea, which will be beneficial to further investigations in extreme environments both theoretically and practically.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| | - Yanying Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| | - Guisheng Song
- School of Marine Science and TechnologyTianjin UniversityTianjinChina
| | - Liang Zhao
- College of Marine and Environmental SciencesTianjin University of Science and TechnologyTianjinChina
| | - Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| |
Collapse
|
3
|
Mao YL, Dong XY, Tao CQ, Wu ZP, Shi XW, Hou J, Cui HL. Natronorarus salvus gen. nov., sp. nov., Halalkalicoccus ordinarius sp. nov., and Halalkalicoccus salilacus sp. nov., halophilic archaea from a soda lake and two saline lakes, and proposal to classify the genera Halalkalicoccus and Natronorarus into Halalkalicoccaceae fam. nov. in the order Halobacteriales within the class Halobacteria. Syst Appl Microbiol 2025; 48:126577. [PMID: 39700724 DOI: 10.1016/j.syapm.2024.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Four novel halophilic archaeal strains CGA53T, CG83T, FCH27T, and SEDH24 were isolated from a soda lake and two saline lakes in China, respectively. Strain CGA53T showed the highest 16S rRNA gene similarity (92.6%) to Salinilacihabitans rarus AD-4T, and the other three strains were found to be related to Halalkalicoccus species with similarities of 97.6-98.3%. Metagenomic studies indicated that these four strains are low abundant inhabitants detected in these hypersaline environments, and only one MAG of Chagannuoer Soda Lake (CG) could be assigned to the genus Halalkalicoccus. Their growth occurred at 20-60 °C (optima, 42, 37, 37-42, and 35 °C), 0.9-5.1 M NaCl (optima, 3.9, 2.6, 3.5, and 3 M), and 0-1.0 M MgCl2 (optima, 0.5, 0.7, and 0.1) and pH 5.5-10.5 (optima, 9.0, 7.5, 7.0, and 7.0), respectively. Phylogenetic and phylogenomic analyses revealed that strains CG83T, FCH27T, and SEDH24 cluster with the current species of the genus Halalkalicoccus, and strain CGA53T forms an independent branch separated from this genus. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) values among strains CGA53T, CG83T, FCH27T, SEDH24, and the type species of the current genera within the class Halobacteria were 67.4-81.6%, 16.5-28.6% and 49.7-74.1%, respectively, clearly lower than the cutoff values for species demarcation. Strain CGA53T may represent a novel species of a new genus according to the cutoff value for genus demarcation of 65% AAI. Diverse differential phenotypic characteristics, such as nutrition, biochemical activities, antibiotic sensitivity, and H2S formation, were found among these four strains and Halalkalicoccus species. Genome-based classification supported that strains CGA53T, CG83T, FCH27T, SEDH24, and the current species of Halalkalicoccus represent a novel family of the order Halobacteriales within the class Halobacteria.
Collapse
Affiliation(s)
- Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Yue Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cong-Qi Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhang-Ping Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiao-Wei Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
4
|
Lee MW, Baek JH, Kim JM, Bayburt H, Choi BJ, Jia B, Jeon CO. Roseovarius phycicola sp. nov. and Roseovarius rhodophyticola sp. nov., isolated from marine red algae. Int J Syst Evol Microbiol 2024; 74:006574. [PMID: 39527472 PMCID: PMC11554077 DOI: 10.1099/ijsem.0.006574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Two Gram-stain-negative, strictly aerobic, non-motile, rod-shaped bacteria, designated as strains S88T and W115T, exhibiting catalase- and oxidase-positive reactions, were isolated from marine red algae in South Korea. Strain S88T exhibited growth at 20-30 °C, pH 6.0-9.0 and 2.0-5.0% (w/v) NaCl, while strain W115T grew at 20-30 °C, pH 7.0-9.0 and 2.0-5.0% (w/v) NaCl. Strain S88T contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C16 : 0 2-OH as major fatty acids (>5%), with major polar lipids being phosphatidylglycerol, phosphatidylcholine, an unidentified phospholipid, an unidentified aminolipid and two unidentified lipids. Strain W115T contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0 as major fatty acids (>5%), with major polar lipids including phosphatidylglycerol, phosphatidylcholine, an unidentified phospholipid, an unidentified aminolipid and unidentified lipids. Ubiquinone-10 was the sole respiratory quinone in both strains, and the genomic DNA G+C contents were 57.0% for strain S88T and 56.5% for strain W115T. Despite 99.86% 16S rRNA gene sequence similarity, strains S88T and W115T shared 88.8% average nucleotide identity (ANI) and 36.8% digital DNA-DNA hybridization (dDDH) value, indicating different species. Phylogenetic and phylogenomic analyses based on 16S rRNA gene and genome sequences, respectively, revealed that strains S88T and W115T formed a phylogenetic lineage within the genus Roseovarius. ANI and dDDH values of both strains with other type strains were less than 73.7 and 20.3%, respectively, confirming that they represent novel species. Based on phenotypic, chemotaxonomic and molecular characteristics, strains S88T and W115T represent two novel species of the genus Roseovarius, for which the names Roseovarius phycicola sp. nov. (S88T =KACC 23423T =JCM 36647T) and Roseovarius rhodophyticola sp. nov. (W115T =KACC 23690T =JCM 36651T) are proposed, respectively.
Collapse
Affiliation(s)
- Min Woo Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hülya Bayburt
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byeong Jun Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Baolei Jia
- Xianghu Laboratory, Hangzhou 311231, PR China
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Gómez-Villegas P, Pérez-Rodríguez M, Porres JM, Prados JC, Melguizo C, Vigara J, Moreno-Garrido I, León R. Metataxonomy and pigments analyses unravel microbial diversity and the relevance of retinal-based photoheterotrophy at different salinities in the Odiel Salterns (SW, Spain). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113043. [PMID: 39442447 DOI: 10.1016/j.jphotobiol.2024.113043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Salinity has a strong influence on microorganisms distribution patterns and consequently on the relevance of photoheterotrophic metabolism, which since the discovery of proteorhodopsins is considered the main contributor to solar energy capture on the surface of the oceans. Solar salterns constitute an exceptional system for the simultaneous study of several salt concentrations, ranging from seawater, the most abundant environment on Earth, to saturated brine, one of the most extreme, which has been scarcely studied. In this study, pigment composition across the salinity gradient has been analyzed by spectrophotometry and RP-HPLC, and the influence of salinity on microbial diversity of the three domains of life has been evaluated by a metataxonomic study targeting hypervariable regions of 16S and 18S rRNA genes. Furthermore, based on the chlorophyll a and retinal content, we have estimated the relative abundance of rhodopsins and photosynthetic reaction centers, concluding that there is a strong correlation between the retinal/chlorophyll a ratio and salinity. Retinal-based photoheterotrophy is particularly important for prokaryotic survival in hypersaline environments, surpassing the sunlight energy captured by photosynthesis, and being more relevant as salinity increases. This fact has implications for understanding the survival of microorganisms in extreme conditions and the energy dynamics in solar salter ponds.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, 21071 Huelva, Spain
| | - Miguel Pérez-Rodríguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Jesús M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - José C Prados
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, 21071 Huelva, Spain
| | - Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (CSIC), Campus Univ. Río San Pedro, Puerto Real, 11519 Cádiz, Spain
| | - Rosa León
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, 21071 Huelva, Spain.
| |
Collapse
|
6
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
7
|
Sujitha JWR, Senthilkumar D, Nandhagopal M. Antimicrobial Potential of Secondary Metabolites Produced by Bacillus sp. and Their Gas Chromatography (GC)-Mass Spectrometry (MS) Analysis. Cureus 2024; 16:e70472. [PMID: 39479095 PMCID: PMC11522383 DOI: 10.7759/cureus.70472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Aim This study aims to determine the biological activity and explore the antimicrobial compounds produced by a halophilic bacterium, as well as the hemolytic, antioxidant, and antimicrobial properties of extracellular metabolites from Bacillus sp. Methodology The bacterial strain was obtained from the Department of Microbiology at Saveetha Medical College and Hospital, Chennai, India, specifically from the bio-control and microbial product laboratory (BCMPL). The genotype and phenotype of the isolate were characterized while the cultures were maintained in a nutrient broth medium supplemented with 8% sodium chloride (NaCl). The secondary metabolites were extracted using ethyl acetate and concentrated through open evaporation techniques after nine days of growth in the culture medium. Biological compatibility studies were conducted concurrently with the screening of the antimicrobial and antioxidant properties of the secondary metabolites. The chemical composition of the crude metabolites was analyzed using the gas chromatography (GC)-mass spectrometry (MS) technique. Results After phenotypic and genotypic analysis, the obtained potential halophilic bacterium from BCMPL was determined to be Bacillus sp. After the dark brown crude metabolites were extracted, the extracellular metabolites' antimicrobial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Candida albicans (C. albicans) extracellular metabolites was moderately inhibited. Furthermore, the metabolites exhibited a moderate level of hemolytic and antioxidant activity. The GC-MS method depicted the presence of 12 distinct metabolites, each with a distinct retention time. Conclusion To sum up, the halophilic bacteria that were obtained and identified as Bacillus species and their crude metabolites demonstrated noteworthy antioxidant and antimicrobial properties. Further investigation may be helpful in identifying possible compounds that Bacillus sp. produces.
Collapse
Affiliation(s)
- Jesu Willson Ravi Sujitha
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Dhivyashri Senthilkumar
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Manivannan Nandhagopal
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Nagar DN, Mani K, Braganca JM. Genomic insights on carotenoid synthesis by extremely halophilic archaea Haloarcula rubripromontorii BS2, Haloferax lucentense BBK2 and Halogeometricum borinquense E3 isolated from the solar salterns of India. Sci Rep 2024; 14:20214. [PMID: 39215047 PMCID: PMC11364659 DOI: 10.1038/s41598-024-70149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Haloarchaeal cultures were isolated from solar salterns of Goa and Tamil Nadu and designated as BS2, BBK2 and E3. These isolates grew with a characteristic bright orange to pink pigmentation and were capable of growing in media containing upto 25% (w/vol) NaCl. Whole genome sequencing (WGS) of the three haloarchaeal strains BS2, BBK2 and E3 indicated an assembled genomic size of 4.1 Mb, 3.8 Mb and 4 Mb with G + C content of 61.8, 65.6 and 59.8% respectively. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the archaeal isolates belong to Haloarcula, Haloferax and Halogeometricum genera. Haloarcula rubripromontorii BS2 was predicted to have 4292 genes with 4242 CDS regions, 46 tRNAs, 6 rRNAs and 3 misc_RNAs. In case of Haloferax lucentense BBK2,, 3840 genes with 3780 CDS regions were detected along with 52 tRNAs, 5 rRNAs and 3 misc_RNAs. Halogeometricum borinquense E3 contained 4101 genes, 4043 CDS regions, 52 tRNAs, 4 rRNAs, and 2 misc_RNAs. The functional annotation and curation of the haloarchaeal genome, revealed C50 carotenoid biosynthetic genes like phytoene desaturase/carotenoid 3' -4' desaturase (crtI), lycopene elongase (ubiA/lyeJ) and carotenoid biosynthesis membrane protein (cruF) in the three isolates. Whereas crtD (C-3',4' desaturase), crtY (lycopene cyclase) and brp/blh (β-carotene dioxygenase) genes were identified only in BS2.
Collapse
Affiliation(s)
- Devika N Nagar
- Dept of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH 17B Zuarinagar, Goa, 403 726, India
| | - Kabilan Mani
- Center for Molecular Medicine & Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Judith M Braganca
- Dept of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH 17B Zuarinagar, Goa, 403 726, India.
| |
Collapse
|
9
|
Han JR, Li S, Li WJ, Dong L. Mining microbial and metabolic dark matter in extreme environments: a roadmap for harnessing the power of multi-omics data. ADVANCED BIOTECHNOLOGY 2024; 2:26. [PMID: 39883228 PMCID: PMC11740847 DOI: 10.1007/s44307-024-00034-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 01/31/2025]
Abstract
Extreme environments such as hyperarid, hypersaline, hyperthermal environments, and the deep sea harbor diverse microbial communities, which are specially adapted to extreme conditions and are known as extremophiles. These extremophilic organisms have developed unique survival strategies, making them ideal models for studying microbial diversity, evolution, and adaptation to adversity. They also play critical roles in biogeochemical cycles. Additionally, extremophiles often produce novel bioactive compounds in response to corresponding challenging environments. Recent advances in technologies, including genomic sequencing and untargeted metabolomic analysis, have significantly enhanced our understanding of microbial diversity, ecology, evolution, and the genetic and physiological characteristics in extremophiles. The integration of advanced multi-omics technologies into culture-dependent research has notably improved the efficiency, providing valuable insights into the physiological functions and biosynthetic capacities of extremophiles. The vast untapped microbial resources in extreme environments present substantial opportunities for discovering novel natural products and advancing our knowledge of microbial ecology and evolution. This review highlights the current research status on extremophilic microbiomes, focusing on microbial diversity, ecological roles, isolation and cultivation strategies, and the exploration of their biosynthetic potential. Moreover, we emphasize the importance and potential of discovering more strain resources and metabolites, which would be boosted greatly by harnessing the power of multi-omics data.
Collapse
Affiliation(s)
- Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
10
|
Wang M, Zheng Z, Hu Z, Fan B, Liu J, Xu Q. Three nona-2,7-dienoic acid derivatives from saltern derived Micromonospora sp. FXY415. Nat Prod Res 2024; 38:2681-2687. [PMID: 37132421 DOI: 10.1080/14786419.2023.2200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Three new compounds, apocimycin A-C, were identified from a saltern-derived Micromonospora sp. strain FXY415, isolated from Dongshi saltern, Fujian, China. Their planar structures and relative configuration were confirmed mainly by analysis of 1D- and 2D- NMR spectra. Three compounds belong to 4,6,8-trimythyl nona-2,7-dienoic acid derivatives, apocimycin A also has a phenoxazine nucleus. Apocimycin A-C exhibited weak cytotoxic and antimicrobial activities. Our research showed again that microbial communities in extreme environments are a potential resource in looking for new and bioactive led compounds.
Collapse
Affiliation(s)
- Meiling Wang
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhonghui Zheng
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhiyu Hu
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Binbin Fan
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiexi Liu
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingyan Xu
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Guerra-Camacho MÁ, Magaña-Tzuc MC, Vargas-Díaz AA, Silva-Rojas HV, Gamboa-Angulo M. [Identification and antifungal activity of halophilic bacteria isolated from saline soils in Campeche, México]. Rev Argent Microbiol 2024; 56:298-311. [PMID: 38614909 DOI: 10.1016/j.ram.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/05/2023] [Accepted: 02/03/2024] [Indexed: 04/15/2024] Open
Abstract
Phytopathogenic fungi Alternaria alternata and Colletotrichum gloeosporioides cause diseases in plant tissues as well as significant postharvest losses. The use of chemical fungicides for their control has negative effects on health and the environment. Secondary metabolites from halophilic bacteria are a promising alternative for new antifungal compounds. In the present study, halophilic bacteria were isolated and characterized from two sites with saline soils called branquizales in Campeche, Mexico. A total of 64 bacteria were isolated. Agrobacterium, Bacillus, Inquilinus, Gracilibacillus, Metabacillus, Neobacillus, Paenibacillus, Priestia, Staphylococcus, Streptomyces and Virgibacillus were among the identified genera. The antifungal potential of the culture supernatant (CS) of 39 halophilic bacteria was investigated against C. gloeosporioides and A. alternata. The bacteria showing the greatest inhibition of mycelial growth corresponded to Bacillus subtilis CPO 4292, Metabacillus sp. CPO 4266, Bacillus sp. CPO 4295 and Bacillus sp. CPO 4279. The CS of Bacillus sp. CPO 4279 exhibited the highest activity and its ethyl acetate extract (AcOEt) inhibited the germination of C. gloeosporioides, with IC50 values of 8,630μg/ml and IC90 of 10,720μg/ml. The organic partition of the AcOEt extract led to three fractions, with acetonitrile (FAcB9) showing the highest antifungal activity, with values exceeding 66%. Halophilic bacteria from 'blanquizales' soils of the genus Bacillus sp. produce metabolites with antifungal properties that inhibit the phytopathogenic fungus C. gloeosporioides.
Collapse
Affiliation(s)
| | | | - Arely A Vargas-Díaz
- CONAHCYT-Colegio de Postgraduados, Champotón, Campus Campeche, Campeche, México.
| | - Hilda V Silva-Rojas
- Colegio de Postgraduados, Posgrado en Producción de Semillas, Campus Montecillo, Texcoco, Estado de México, México
| | - Marcela Gamboa-Angulo
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| |
Collapse
|
12
|
Rosso A, Vione D. Pollutant Photodegradation Affected by Evaporative Water Concentration in a Climate Change Scenario. Molecules 2024; 29:2655. [PMID: 38893529 PMCID: PMC11173932 DOI: 10.3390/molecules29112655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Evaporative water concentration takes place in arid or semi-arid environments when stationary water bodies, such as lakes or ponds, prevalently lose water by evaporation, which prevails over outflow or seepage into aquifers. Absence or near-absence of precipitation and elevated temperatures are important prerequisites for the process, which has the potential to deeply affect the photochemical attenuation of pollutants, including contaminants of emerging concern (CECs). Here we show that water evaporation would enhance the phototransformation of many CECs, especially those undergoing degradation mainly through direct photolysis and triplet-sensitized reactions. In contrast, processes induced by hydroxyl and carbonate radicals would be inhibited. Our model results suggest that the photochemical impact of water evaporation might increase in the future in several regions of the world, with no continent likely being unaffected, due to the effects of local precipitation decrease combined with an increase in temperature that facilitates evaporation.
Collapse
Affiliation(s)
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy;
| |
Collapse
|
13
|
Giani M, Pire C, Martínez-Espinosa RM. Bacterioruberin: Biosynthesis, Antioxidant Activity, and Therapeutic Applications in Cancer and Immune Pathologies. Mar Drugs 2024; 22:167. [PMID: 38667784 PMCID: PMC11051356 DOI: 10.3390/md22040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.
Collapse
Affiliation(s)
- Micaela Giani
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
| | - Carmen Pire
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
14
|
Balcha ES, Macey MC, Gemeda MT, Cavalazzi B, Woldesemayat AA. Mining the microbiome of Lake Afdera to gain insights into microbial diversity and biosynthetic potential. FEMS MICROBES 2024; 5:xtae008. [PMID: 38560625 PMCID: PMC10979467 DOI: 10.1093/femsmc/xtae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Microorganisms inhabiting hypersaline environments have received significant attention due to their ability to thrive under poly-extreme conditions, including high salinity, elevated temperatures and heavy metal stress. They are believed to possess biosynthetic gene clusters (BGCs) that encode secondary metabolites as survival strategy and offer potential biotechnological applications. In this study, we mined BGCs in shotgun metagenomic sequences generated from Lake Afdera, a hypersaline lake in the Afar Depression, Ethiopia. The microbiome of Lake Afdera is predominantly bacterial, with Acinetobacter (18.6%) and Pseudomonas (11.8%) being ubiquitously detected. A total of 94 distinct BGCs were identified in the metagenomic data. These BGCs are found to encode secondary metabolites with two main categories of functions: (i) potential pharmaceutical applications (nonribosomal peptide synthase NRPs, polyketide synthase, others) and (ii) miscellaneous roles conferring adaptation to extreme environment (bacteriocins, ectoine, others). Notably, NRPs (20.6%) and bacteriocins (10.6%) were the most abundant. Furthermore, our metagenomic analysis predicted gene clusters that enable microbes to defend against a wide range of toxic metals, oxidative stress and osmotic stress. These findings suggest that Lake Afdera is a rich biological reservoir, with the predicted BGCs playing critical role in the survival and adaptation of extremophiles.
Collapse
Affiliation(s)
- Ermias Sissay Balcha
- School of Medical Laboratory Science, College of Health Sciences, Hawassa University, 16417, Hawassa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Michael C Macey
- Astrobiology OU, School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Mesfin Tafesse Gemeda
- Biotechnology and Bioprocess Center of Excellence, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Adugna Abdi Woldesemayat
- Biotechnology and Bioprocess Center of Excellence, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Thweatt JL, Harman CE, Araújo MN, Marlow JJ, Oliver GC, Sabuda MC, Sevgen S, Wilpiszeki RL. Chapter 6: The Breadth and Limits of Life on Earth. ASTROBIOLOGY 2024; 24:S124-S142. [PMID: 38498824 DOI: 10.1089/ast.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.
Collapse
Affiliation(s)
- Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - C E Harman
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Serhat Sevgen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | |
Collapse
|
16
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
17
|
Kim JM, Baek W, Choi BJ, Bayburt H, Baek JH, Han DM, Lee SC, Jeon CO. Devosia rhodophyticola sp. nov. and Devosia algicola sp. nov., isolated from a marine red alga. Int J Syst Evol Microbiol 2024; 74. [PMID: 38189362 DOI: 10.1099/ijsem.0.006223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Two Gram-stain-negative, obligately aerobic, motile rod bacteria, designated as G2-5T and G20-9T, exhibiting catalase- and oxidase-positive activities, were isolated from the phycosphere of a Chondrus species, a marine red alga. Strain G2-5T exhibited optimal growth at 30 °C and pH 5.0-6.0 and in the presence of 0.5-1.0% NaCl. In contrast, strain G20-9T demonstrated optimal growth at 25 °C and pH 6.0 and in the presence of 0.5-1.5% NaCl. Both strains contained ubiquinone-10, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C18 : 0 and 11-methyl-C18 : 1 ω7c, and diphosphatidylglycerol and phosphatidylglycerol as the major respiratory isoprenoid quinone, cellular fatty acids and polar lipids, respectively. The genomic DNA G+C contents were 57.2 mol% for strain G2-5T and 57.5 mol% for strain G20-9T. Strains G2-5T and G20-9T exhibited 98.2 % 16S rRNA gene sequence similarity, along with 82.3 % average nucleotide identity (ANI) and 25.0 % digital DNA-DNA hybridization (dDDH) values, indicating that they represent different species. Phylogenetic analyses based on both 16S rRNA gene and genome sequences revealed that strains G2-5T and G20-9T formed distinct phylogenic lineages within the genus Devosia. Strains G2-5T and G20-9T were most closely related to Devosia limi DSM 17137T and Devosia beringensis S02T with 97.7 and 96.9 % 16S rRNA gene sequence similarities, respectively. The ANI and dDDH values between strains G2-5T and G20-9T and other Devosia species were lower than 73.9 and 19.2 %, respectively, suggesting that they constitute novel species within the genus Devosia. Based on their distinct phenotypic, chemotaxonomic, and molecular characteristics, strains G2-5T and G20-9T represent two novel species of the genus Devosia, for which the names Devosia rhodophyticola sp. nov. (G2-5T=KACC 22601T=JCM 35404T) and Devosia algicola sp. nov. (G20-9T=KACC 22650T=JCM 35405T) are proposed, respectively.
Collapse
Affiliation(s)
- Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Woonhee Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byeong Jun Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hülya Bayburt
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Guan X, Zhao Z, Jiang J, Fu L, Liu J, Pan Y, Gao S, Wang B, Chen Z, Wang X, Sun H, Jiang B, Dong Y, Zhou Z. Succession and assembly mechanisms of seawater prokaryotic communities along an extremely wide salinity gradient. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:545-556. [PMID: 37537784 PMCID: PMC10667648 DOI: 10.1111/1758-2229.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Salinity is an important environmental factor in microbial ecology for affecting the microbial communities in diverse environments. Understanding the salinity adaptation mechanisms of a microbial community is a significant issue, while most previous studies only covered a narrow salinity range. Here, variations in seawater prokaryotic communities during the whole salt drying progression (salinity from 3% to 25%) were investigated. According to high-throughput sequencing results, the diversity, composition, and function of seawater prokaryotic communities varied significantly along the salinity gradient, expressing as decreased diversity, enrichment of some halophilic archaea, and powerful nitrate reduction in samples with high salt concentrations. More importantly, a sudden and dramatic alteration of prokaryotic communities was observed when salinity reached 16%, which was recognized as the change point. Combined with the results of network analysis, we found the increasing of complexity but decreasing of stability in prokaryotic communities when salinity exceeded the change point. Moreover, prokaryotic communities became more deterministic when salinity exceeded the change point due to the niche adaptation of halophilic species. Our study showed that substantial variations in seawater prokaryotic communities along an extremely wide salinity gradient, and also explored the underlying mechanisms regulating these changes.
Collapse
Affiliation(s)
- Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Lei Fu
- Dalian Salt Chemical Group Co., LtdDalianLiaoningPeople's Republic of China
| | - Jiaojiao Liu
- Dalian Salt Chemical Group Co., LtdDalianLiaoningPeople's Republic of China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Hongjuan Sun
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Bing Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| |
Collapse
|
19
|
Hernández-Soto LM, Martínez-Abarca F, Ramírez-Saad H, López-Pérez M, Aguirre-Garrido JF. Genome analysis of haloalkaline isolates from the soda saline crater lake of Isabel Island; comparative genomics and potential metabolic analysis within the genus Halomonas. BMC Genomics 2023; 24:696. [PMID: 37986038 PMCID: PMC10662389 DOI: 10.1186/s12864-023-09800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Isabel Island is a Mexican volcanic island primarily composed of basaltic stones. It features a maar known as Laguna Fragatas, which is classified as a meromictic thalassohaline lake. The constant deposition of guano in this maar results in increased levels of phosphorus, nitrogen, and carbon. The aim of this study was to utilize high-quality genomes from the genus Halomonas found in specialized databases as a reference for genome mining of moderately halophilic bacteria isolated from Laguna Fragatas. This research involved genomic comparisons employing phylogenetic, pangenomic, and metabolic-inference approaches. RESULTS The Halomonas genus exhibited a large open pangenome, but several genes associated with salt metabolism and homeostatic regulation (ectABC and betABC), nitrogen intake through nitrate and nitrite transporters (nasA, and narGI), and phosphorus uptake (pstABCS) were shared among the Halomonas isolates. CONCLUSIONS The isolated bacteria demonstrate consistent adaptation to high salt concentrations, and their nitrogen and phosphorus uptake mechanisms are highly optimized. This optimization is expected in an extremophile environment characterized by minimal disturbances or abrupt seasonal variations. The primary significance of this study lies in the dearth of genomic information available for this saline and low-disturbance environment. This makes it important for ecosystem conservation and enabling an exploration of its biotechnological potential. Additionally, the study presents the first two draft genomes of H. janggokensis.
Collapse
Affiliation(s)
- Luis Mario Hernández-Soto
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Francisco Martínez-Abarca
- Estructura, Dinámica y Función de Genomas de Rizobacterias, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - Hugo Ramírez-Saad
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de Mexico, México
| | - Marcos López-Pérez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Estado de México, Lerma, México
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Estado de México, Lerma, México.
| |
Collapse
|
20
|
Wang L, Lian C, Wan W, Qiu Z, Luo X, Huang Q, Deng Y, Zhang T, Yu K. Salinity-triggered homogeneous selection constrains the microbial function and stability in lakes. Appl Microbiol Biotechnol 2023; 107:6591-6605. [PMID: 37688597 DOI: 10.1007/s00253-023-12696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 09/11/2023]
Abstract
Climate change and anthropogenic exploitation have led to the gradual salinization of inland waters worldwide. However, the impacts of this process on the prokaryotic plankton communities and their role in biogeochemical cycles in the inland lake are poorly known. Here, we take a space-for-time substitution approach, using 16S rRNA gene amplicon sequencing and metagenomic sequencing. We analyzed the prokaryotic plankton communities of 11 lakes in northwest China, with average water salinities ranging from 0.002 to 14.370%. The results demonstrated that, among the various environmental parameters, salinity was the most important driver of prokaryotic plankton β-diversity (Mantel test, r = 0.53, P < 0.001). (1) Under low salinity, prokaryotic planktons were assembled by stochastic processes and employed diverse halotolerant strategies, including the synthesis and uptake of compatible solutes and extrusion of Na+ or Li+ in exchange for H+. Under elevated salinity pressure, strong homogeneous selection meant that only planktonic prokaryotes showing an energetically favorable halotolerant strategy employing an Mnh-type Na+/H+ antiporter remained. (2) The decreasing taxonomic diversity caused by intense environmental filtering in high-salinity lakes impaired functional diversity related to substance metabolism. The prokaryotes enhanced the TCA cycle, carbon fixation, and low-energy-consumption amino acid biosynthesis in high-salinity lakes. (3) Elevated salinity pressure decreased the negative:positive cohesion and the modularity of the molecular ecology networks for the planktonic prokaryotes, indicating a precarious microbial network. Our findings provide new insights into plankton ecology and are helpful for the protecting of the biodiversity and function of inland lakes against the background of salinization. KEY POINTS: • Increased salinity enhances homogeneous selection in the microbial assembly. • Elevated salinity decreases the microbial co-occurrence networks stability. • High salinity damages the microbial function diversity.
Collapse
Affiliation(s)
- Li Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of ·Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of ·Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Li D, Qiu H, Tian G, Zhao Y, Zhou X, He S. Soil salinity is the main factor influencing the soil bacterial community assembly process under long-term drip irrigation in Xinjiang, China. Front Microbiol 2023; 14:1291962. [PMID: 38029139 PMCID: PMC10644797 DOI: 10.3389/fmicb.2023.1291962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Identifying the potential factors associated with the impact of long-term drip irrigation (DI) on soil ecosystems is essential for responding to the environmental changes induced by extensive application of DI technology in arid regions. Herein, we examined the effects of the length of time that DI lasts in years (NDI) on soil bacterial diversity as well as the soil bacterial community assembly process and the factors influencing it. The results showed that long-term DI substantially reduced soil salinity and increased soil bacterial diversity while affecting the soil bacterial community structure distinctly. Null model results showed that the soil bacterial community assembly transitioned from stochastic processes to deterministic processes, as NDI increased. Homogeneous selection, a deterministic process, emerged as the dominant process when NDI exceeded 15 years. Both random forest and structural equation models showed that soil salinity was the primary factor affecting the bacterial community assembly process. In summary, this study suggested that soil bacteria respond differently to long-term DI and depends on the NDI, influencing the soil bacterial community assembly process under long-term DI.
Collapse
Affiliation(s)
- Dongwei Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Husen Qiu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, China
| | - Guangli Tian
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Yulong Zhao
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Xinguo Zhou
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Shuai He
- Northwest Oasis Water-saving Agriculture Key Laboratory, Ministry of Agriculture and Rural Affairs, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, China
| |
Collapse
|
22
|
Kusebauch U, Lorenzetti APR, Campbell DS, Pan M, Shteynberg D, Kapil C, Midha MK, López García de Lomana A, Baliga NS, Moritz RL. A comprehensive spectral assay library to quantify the Halobacterium salinarum NRC-1 proteome by DIA/SWATH-MS. Sci Data 2023; 10:697. [PMID: 37833331 PMCID: PMC10575869 DOI: 10.1038/s41597-023-02590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Data-Independent Acquisition (DIA) is a mass spectrometry-based method to reliably identify and reproducibly quantify large fractions of a target proteome. The peptide-centric data analysis strategy employed in DIA requires a priori generated spectral assay libraries. Such assay libraries allow to extract quantitative data in a targeted approach and have been generated for human, mouse, zebrafish, E. coli and few other organisms. However, a spectral assay library for the extreme halophilic archaeon Halobacterium salinarum NRC-1, a model organism that contributed to several notable discoveries, is not publicly available yet. Here, we report a comprehensive spectral assay library to measure 2,563 of 2,646 annotated H. salinarum NRC-1 proteins. We demonstrate the utility of this library by measuring global protein abundances over time under standard growth conditions. The H. salinarum NRC-1 library includes 21,074 distinct peptides representing 97% of the predicted proteome and provides a new, valuable resource to confidently measure and quantify any protein of this archaeon. Data and spectral assay libraries are available via ProteomeXchange (PXD042770, PXD042774) and SWATHAtlas (SAL00312-SAL00319).
Collapse
Affiliation(s)
- Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | | | - David S Campbell
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Min Pan
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - David Shteynberg
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Charu Kapil
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Mukul K Midha
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Adrián López García de Lomana
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Nitin S Baliga
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
23
|
Kim Y, Kim S, Kwon SW, Weon HY, Naito H, Asano T, Hamada M, Heo J. Halobacillus salinarum sp. nov., Halobacillus shinanisalinarum sp. nov. and Halobacillus amylolyticus sp. nov., isolated from saltern soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37882660 DOI: 10.1099/ijsem.0.006098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Three bacterial strains, designated SSBR10-3T, SSTM10-2T and SSHM10-5T, were isolated from saltern soil sampled in Jeollanam-do, Republic of Korea. Cells were aerobic, Gram-stain-positive, flagellated and rod-shaped. The strains grew optimally at 28°C and at pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains SSBR10-3T, SSTM10-2T and SSHM10-5T were placed within the genus Halobacillus, showing the highest similarity to Halobacillus alkaliphilus FP5T (98.6 %), 'Halobacillus ihumii' Marseille-Q1234T (98.5 %) and Halobacillus locisalis MSS-155T (98.6 %), respectively. The genomic similarity values between strains SSBR10-3T, SSTM10-2T and SSHM10-5T and their related species were 17.6-22.6 % for digital DNA-DNA hybridization (dDDH) and 69.6-78.5 % for orthologous average nucleotide identity (OrthoANI), which were lower than the thresholds recommended for species delineation. The dDDH and OrthoANI values among the three strains were below 38.3 and 89.4 %, respectively. Besides the differences in genomic features, strains SSBR10-3T, SSTM10-2T and SSHM10-5T were distinct from each other and from members of the genus in terms of phenotypic traits related to substrate assimilation. The cell-wall peptidoglycan contained meso-diaminopimelic acid, the major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, and the predominant menaquinone was MK-7 for all three strains. Diphosphatidylglycerol, phosphatidylglycerol and an unidentified phospholipid were present in their polar lipid profiles. Based on a polyphasic approach incorporating genomic data, strains SSBR10-3T, SSTM10-2T and SSHM10-5T represent novel species, for which the names Halobacillus salinarum sp. nov. (SSBR10-3T=DSM 114353T=KACC 21935T=NBRC 115504T), Halobacillus shinanisalinarum sp. nov. (SSTM10-2T=DSM 114354T=KACC 21936T=NBRC 115505T) and Halobacillus amylolyticus sp. nov. (SSHM10-5T=DSM 114355T= KACC 21937T=NBRC 115506T) are proposed.
Collapse
Affiliation(s)
- Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea
| | - Seunghwan Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea
| | - Hanako Naito
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tomomi Asano
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Moriyuki Hamada
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
24
|
Kim KH, Kim JM, Jin HM, Hao L, Jeon CO. Alishewanella maricola sp. nov., isolated from seawater of the Yellow Sea. Int J Syst Evol Microbiol 2023; 73. [PMID: 37877986 DOI: 10.1099/ijsem.0.005807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
A Gram-stain-negative and facultative aerobic bacterium, strain 16-MAT, was isolated from seawater of Yellow Sea in South Korea. Cells were catalase- and oxidase-positive and non-motile rods. Growth occurred at 4-37 °C (optimum, 30 °C) and pH 6.0-11.0 (optimum, 8.0), and in the presence of 0-7.0% NaCl (optimum, 3 %). Strain 16-MAT contained ubiquinone-8 as the sole isoprenoid quinone, C16 : 0 and summed feature three as the major fatty acids (>10 %), and phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, an unidentified aminophospholipid, and an unidentified polar lipid as the major polar lipids. The genome size and DNA G+C content of strain 16-MAT were 3.69 Mb and 46.0 mol%, respectively. Strain 16-MAT was most closely related to Alishewanella alkalitolerans LNK-7.1T with a 97.9 % 16S rRNA gene sequence similarity. A phylogenomic tree based on whole genome sequences showed that strain 16-MAT formed a phylogenetic lineage within the genus Alishewanella. Based on the phenotypic, chemotaxonomic, and molecular analyses, strain 16-MAT represents a novel species of the genus Alishewanella, for which the name Alishewanella maricola is proposed. The type strain is 16-MAT (=KACC 22238T =JCM 34596T).
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Mi Jin
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do 37242, Republic of Korea
| | - Lujiang Hao
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
25
|
Yang Z, Lian Z, Liu L, Fang B, Li W, Jiao J. Cultivation strategies for prokaryotes from extreme environments. IMETA 2023; 2:e123. [PMID: 38867929 PMCID: PMC10989778 DOI: 10.1002/imt2.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2024]
Abstract
The great majority of microorganisms are as-yet-uncultivated, mostly found in extreme environments. High-throughput sequencing provides data-rich genomes from single-cell and metagenomic techniques, which has enabled researchers to obtain a glimpse of the unexpected genetic diversity of "microbial dark matter." However, cultivating microorganisms from extreme environments remains essential for dissecting and utilizing the functions of extremophiles. Here, we provide a straightforward protocol for efficiently isolating prokaryotic microorganisms from different extreme habitats (thermal, xeric, saline, alkaline, acidic, and cryogenic environments), which was established through previous successful work and our long-term experience in extremophile resource mining. We propose common processes for extremophile isolation at first and then summarize multiple cultivation strategies for recovering prokaryotic microorganisms from extreme environments and meanwhile provide specific isolation tips that are always overlooked but important. Furthermore, we propose the use of multi-omics-guided microbial cultivation approaches for culturing these as-yet-uncultivated microorganisms and two examples are provided to introduce how these approaches work. In summary, the protocol allows researchers to significantly improve the isolation efficiency of pure cultures and novel taxa, which therefore paves the way for the protection and utilization of microbial resources from extreme environments.
Collapse
Affiliation(s)
- Zi‐Wen Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Zheng‐Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Bao‐Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Wen‐Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Jian‐Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
26
|
Couto-Rodríguez RL, Koh J, Chen S, Maupin-Furlow JA. Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics. Antioxidants (Basel) 2023; 12:1203. [PMID: 37371933 PMCID: PMC10294847 DOI: 10.3390/antiox12061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress adaptation strategies are important to cell function and are linked to cardiac, neurodegenerative disease, and cancer. Representatives of the Archaea domain are used as model organisms based on their extreme tolerance to oxidants and close evolutionary relationship with eukaryotes. A study of the halophilic archaeon Haloferax volcanii reveals lysine acetylation to be associated with oxidative stress responses. The strong oxidant hypochlorite: (i) stimulates an increase in lysine acetyltransferase HvPat2 to HvPat1 abundance ratios and (ii) selects for lysine deacetylase sir2 mutants. Here we report the dynamic occupancy of the lysine acetylome of glycerol-grown H. volcanii as it shifts in profile in response to hypochlorite. These findings are revealed by the: (1) quantitative multiplex proteomics of the SILAC-compatible parent and Δsir2 mutant strains and (2) label-free proteomics of H26 'wild type' cells. The results show that lysine acetylation is associated with key biological processes including DNA topology, central metabolism, cobalamin biosynthesis, and translation. Lysine acetylation targets are found conserved across species. Moreover, lysine residues modified by acetylation and ubiquitin-like sampylation are identified suggesting post-translational modification (PTM) crosstalk. Overall, the results of this study expand the current knowledge of lysine acetylation in Archaea, with the long-term goal to provide a balanced evolutionary perspective of PTM systems in living organisms.
Collapse
Affiliation(s)
- Ricardo L. Couto-Rodríguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
27
|
Ibrahim IM, Fedonenko YP, Sigida EN, Kokoulin MS, Grinev VS, Mokrushin IG, Burygin GL, Zakharevich AM, Shirokov AA, Konnova SA. Structural characterization and physicochemical properties of the exopolysaccharide produced by the moderately halophilic bacterium Chromohalobacter salexigens, strain 3EQS1. Extremophiles 2023; 27:4. [PMID: 36715826 DOI: 10.1007/s00792-023-01289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L-1) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9 × 106 Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear β-D-(2 → 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 µg mL-1. The EPS had high emulsifying activity (E24, %) against kerosene (31.2 ± 0.4%), sunflower oil (76.9 ± 1.3%), and crude oil (98.9 ± 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of C. salexigens 3EQS1 may be useful in various biotechnological processes.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.,Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia
| | - Yuliya P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia.
| | - Elena N Sigida
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Vyacheslav S Grinev
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | | | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Andrey M Zakharevich
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia
| | - Alexander A Shirokov
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Svetlana A Konnova
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| |
Collapse
|
28
|
Trichotorquatus salinus sp. nov. (Oculatellaceae, Cyanobacteria) from a Saltern of Gomso, Republic of Korea. DIVERSITY 2023. [DOI: 10.3390/d15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Six strains of subaerial cyanobacteria were isolated from a Gomso saltern in the Republic of Korea, all of which were studied using morphological and molecular traits. Trichotorquatus salinus sp. nov. was studied using a light microscope (LM), transmission electron microscope (TEM), 16S rRNA, 16S–23S ITS region, and ecological data. T. salinus is a thin and simple filament with a false branch and a firm collar sheath. The phylogenetic analyses of 16S rRNA revealed that Trichotorquatus formed a monophyletic lineage and the strains of T. salinus formed a distinct clade among the species in the genus Trichotorquatus. In the statistical analysis, the inter-species genetic distance of the five species of Trichotorquatus, including T. salinus, is shown to be greater than the distance of the previously reported species of Trichotorquatus. Additionally, 16S–23S ITS gene sequences between T. salinus and four species of Trichotorquatus showed dissimilarities of 55.3–59.4%. In the secondary structure of 16S–23S ITS region (type 2 operon), D1–D1′, Box-B, and V3 helix of T. salinus were different from the other taxa in the genus Trichotorquatus. These results demonstrate that T. salinus sp. nov. has unique morphological, ecological, and molecular traits. Therefore, we propose that T. salinus sp. nov. is a novel species belonging to the genus Trichotorquatus.
Collapse
|
29
|
Sorokin DY, Elcheninov AG, Khijniak TV, Kolganova TV, Kublanov IV. Selective enrichment on a wide polysaccharide spectrum allowed isolation of novel metabolic and taxonomic groups of haloarchaea from hypersaline lakes. Front Microbiol 2022; 13:1059347. [PMID: 36504804 PMCID: PMC9726719 DOI: 10.3389/fmicb.2022.1059347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Extremely halophilic archaea (haloarchaea) of the class Halobacteria is a dominant group of aerobic heterotrophic prokaryotic communities in salt-saturated habitats, such as salt lakes and solar salterns. Most of the pure cultures of haloarchaea were enriched, isolated, and cultivated on rich soluble substrates such as amino acids, peptides or simple sugars. So far, the evidences on the capability of haloarchaea to use different polysaccharides as growth substrates remained scarce. However, it is becoming increasingly obvious that these archaea can also actively participate in mineralization of complex biopolymers, in particular cellulose and chitin-two dominant biomass polysaccharides on the planet. Here we used an array of commercially available homo- and heteropolysaccharides to enrich hydrolytic haloarchaea from hypersaline salt lakes with neutral pH and from alkaline soda lakes. This resulted in isolation of a range of halo- and natrono-archaea, respectively, belonging to already described taxa as well as several new genus-level lineages. In some cases, the isolates enriched with different polysaccharides happened to be closely related, thus representing generalistic ecotype, while the others were narrow specialists. In general, soda lakes yielded a broader range of polysaccharide-utilizing specialists in comparison to neutral salt lakes. The results demonstrated a significant diversity of halo(natrono)archaea with a previously unrecognized potential for utilization of a broad range of natural polysaccharides in hypersaline habitats.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Alexander G. Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Khijniak
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Kolganova
- Institute of Bioengineering, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Giani M, Gervasi L, Loizzo MR, Martínez-Espinosa RM. Carbon Source Influences Antioxidant, Antiglycemic, and Antilipidemic Activities of Haloferax mediterranei Carotenoid Extracts. Mar Drugs 2022; 20:659. [PMID: 36354982 PMCID: PMC9697119 DOI: 10.3390/md20110659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Haloarchaeal carotenoids have attracted attention lately due to their potential antioxidant activity. This work studies the effect of different concentrations of carbon sources on cell growth and carotenoid production. Carotenoid extract composition was characterized by HPLC-MS. Antioxidant activity of carotenoid extracts obtained from cell cultures grown under different nutritional conditions was determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Ability Power (FRAP) and β-carotene bleaching assays. The ability of these carotenoid extracts to inhibit α-glucosidase, α-amylase, and lipase enzymes was also assessed to determine if they could be used to reduce blood glucose and lipid absorption. The maximum production of carotenoids (92.2 µg/mL) was observed combining 12.5% inorganic salts and 2.5% of glucose/starch. Antioxidant, hypoglycemic, and antilipidemic studies showed that higher carbon availability in the culture media leads to changes in the extract composition, resulting in more active haloarchaeal carotenoid extracts. Carotenoid extracts obtained from high-carbon-availability cell cultures presented higher proportions of all-trans-bacterioruberin, 5-cis-bacterioruberin, and a double isomeric bacterioruberin, whereas the presence 9-cis-bacterioruberin and 13-cis-bacterioruberin decreased. The production of haloarchaeal carotenoids can be successfully optimized by changing nutritional conditions. Furthermore, carotenoid composition can be altered by modifying carbon source concentration. These natural compounds are very promising in food and nutraceutical industries.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Luigia Gervasi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, I-87036 Arcavacata Rende, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, I-87036 Arcavacata Rende, Italy
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
31
|
Nagar DN, Ghosh NN, Braganca JM. Green synthesis of selenium nanospheres and nanoneedles by halophilic archaea. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Cooper ZS, Rapp JZ, Shoemaker AMD, Anderson RE, Zhong ZP, Deming JW. Evolutionary Divergence of Marinobacter Strains in Cryopeg Brines as Revealed by Pangenomics. Front Microbiol 2022; 13:879116. [PMID: 35733954 PMCID: PMC9207381 DOI: 10.3389/fmicb.2022.879116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Marinobacter spp. are cosmopolitan in saline environments, displaying a diverse set of metabolisms that allow them to competitively occupy these environments, some of which can be extreme in both salinity and temperature. Here, we introduce a distinct cluster of Marinobacter genomes, composed of novel isolates and in silico assembled genomes obtained from subzero, hypersaline cryopeg brines, relic seawater-derived liquid habitats within permafrost sampled near Utqiaġvik, Alaska. Using these new genomes and 45 representative publicly available genomes of Marinobacter spp. from other settings, we assembled a pangenome to examine how the new extremophile members fit evolutionarily and ecologically, based on genetic potential and environmental source. This first genus-wide genomic analysis revealed that Marinobacter spp. in general encode metabolic pathways that are thermodynamically favored at low temperature, cover a broad range of organic compounds, and optimize protein usage, e.g., the Entner–Doudoroff pathway, the glyoxylate shunt, and amino acid metabolism. The new isolates contributed to a distinct clade of subzero brine-dwelling Marinobacter spp. that diverged genotypically and phylogenetically from all other Marinobacter members. The subzero brine clade displays genomic characteristics that may explain competitive adaptations to the extreme environments they inhabit, including more abundant membrane transport systems (e.g., for organic substrates, compatible solutes, and ions) and stress-induced transcriptional regulatory mechanisms (e.g., for cold and salt stress) than in the other Marinobacter clades. We also identified more abundant signatures of potential horizontal transfer of genes involved in transcription, the mobilome, and a variety of metabolite exchange systems, which led to considering the importance of this evolutionary mechanism in an extreme environment where adaptation via vertical evolution is physiologically rate limited. Assessing these new extremophile genomes in a pangenomic context has provided a unique view into the ecological and evolutionary history of the genus Marinobacter, particularly with regard to its remarkable diversity and its opportunism in extremely cold and saline environments.
Collapse
Affiliation(s)
- Zachary S. Cooper
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
- *Correspondence: Zachary S. Cooper, , orcid.org/0000-0001-6515-7971
| | - Josephine Z. Rapp
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
- Institute of Integrative Biology and Systems (IBIS), Université Laval, Québec, QC, Canada
| | - Anna M. D. Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, United States
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, MN, United States
| | - Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States
- Department of Microbiology, Ohio State University, Columbus, OH, United States
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Sorokin DY, Elcheninov AG, Khizhniak TV, Koenen M, Bale NJ, Damsté JSS, Kublanov IV. Natronocalculus amylovorans gen. nov., sp. nov., and Natranaeroarchaeum aerophilus sp. nov., dominant culturable amylolytic natronoarchaea from hypersaline soda lakes in southwestern siberia. Syst Appl Microbiol 2022; 45:126336. [DOI: 10.1016/j.syapm.2022.126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
34
|
Wei YL, Long ZJ, Ren MX. Microbial community and functional prediction during the processing of salt production in a 1000-year-old marine solar saltern of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152014. [PMID: 34852250 DOI: 10.1016/j.scitotenv.2021.152014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
In Hainan Island, South China, a 1000-year-old marine saltern has been identified as an intangible cultural heritage due to its historical complicated salt-making techniques, whereas the knowledge about this saltern is extremely limited. Herein, DNA sequencing and biochemical technologies were applied to determine bacterial and fungal communities of this saltern and their possible functions during four stages of salt-making, i.e. seawater storage, mud solarization, brine concentrating, and solar crystallization. The results showed that both of bacterial and fungal communities were suffered from significant changes during processing of salt-making in Danzhou Ancient Saltern, whereas the richness and diversity of bacterial community dominated by Proteobacteria, Bacteroidota and Cyanobacteria was considerably greater than that of fungal community dominated by Ascomycota, Basidiomycota and Mortierellomycota. Additionally, the succession of bacterial community was closely associated with both of salt physicochemical properties (Na+, Cl-, total phosphorus, total nitrogen, Ca2+ and Mg2+) and bacteria themselves, whereas fungal community was more closely associated with physicochemical properties than fungi themselves. Importantly, Cyanobium_PCC-6307, Synechococcus_CC9902, Marinobacter, Prevotella and Halomonas as dominant bacterial genera respectively related to the metabolisms of amino acid, carbohydrate, terpenoids/polyketides, lipid and nucleotide were correlated with salt flavors. Saprophytic and saprotroph-symbiotroph fungi dominated by Aspergillus, Mortierella, Amanita, Neocucurbitaria and Tausonia also played core roles in the formation of salt flavors including umami and sweet smells. These findings revealed the highly specified microbiome community in this 1000-year-old saltern that mainly selected by brine solarization on basalt platforms, which is helpful to explore the underlying mechanisms of traditional salt-making techniques and to explore the useful microbes for nowadays food, medicine and chemical industries.
Collapse
Affiliation(s)
- Ya-Li Wei
- Ministry of Education Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Hainan University, Haikou 570228, PR China; Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou 570228, PR China
| | - Zi-Jie Long
- Ministry of Education Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Hainan University, Haikou 570228, PR China; Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou 570228, PR China
| | - Ming-Xun Ren
- Ministry of Education Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Hainan University, Haikou 570228, PR China; Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
35
|
Kim KH, Kristyanto S, Kim HM, Kim KR, Jeon CO. Nitratireductor rhodophyticola sp. nov., isolated from marine red algae. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, strictly aerobic bacteria, strains L1-7-SET and R6, isolated from marine red algae, were characterized. They shared 99.9 % 16S rRNA gene sequence similarity and a 100 % digital DNA–DNA hybridization (DDH) value, representing members of a single species. Cells of strains L1-7-SET and R6 were catalase- and oxidase-positive motile rods with a single polar flagellum. Strains L1-7-SET and R6 optimally grew at 30–35 °C, pH 7.0–8.0 and with 1.0–2.0 % (w/v) NaCl. Ubiquinone-10 was the sole isoprenoid quinone and C19 : 0 cyclo ω8c and summed feature 8 (comprising C18 : 1
ω7c and/or C18 : 1
ω6c) were detected as the major cellular fatty acids. The DNA G+C contents of strains L1-7-SET and R6 were both 61.62 mol%. The polar lipids of strain L1-7-SET consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, an unidentified phospholipid and two unidentified polar lipids. Phylogenetic analyses based on 16S rRNA gene and 120 protein marker sequences revealed that strains L1-7-SET and R6 formed a phyletic lineage within the genus
Nitratireductor
and they were most closely related to
Nitratireductor aquibiodomus
NL21T and
Nitratireductor kimnyeongensis
KY 101T with both 98.8 % 16S rRNA gene sequence similarities. Digital DDH values between strain L1-7-SET and the type strains of
N. aquibiodomus
and
N. kimnyeongensis
were 60.3 and 29.5 %, respectively. The phenotypic, chemotaxonomic and molecular features support that strains L1-7-SET and R6 represents a novel species of the genus
Nitratireductor
, for which the name Nitratireductor rhodophyticola sp. nov. is proposed. The type strain is L1-7-SET (=KACC 19076T=KCTC 92231T=JCM 31802T).
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sylvia Kristyanto
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyeong Ryeol Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
36
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
37
|
Biomineralization by Extremely Halophilic and Metal-Tolerant Community Members from a Sulfate-Dominated Metal-Rich Environment. Microorganisms 2021; 10:microorganisms10010079. [PMID: 35056528 PMCID: PMC8780871 DOI: 10.3390/microorganisms10010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
The adaptation to adverse environmental conditions can lead to adapted microbial communities that may be screened for mechanisms involved in halophily and, in this case, metal tolerance. At a former uranium mining and milling site in Seelingstädt, Germany, microbial communities from surface waters and sediment soils were screened for isolates surviving high salt and metal concentrations. The high salt contents consisted mainly of chloride and sulfate, both in soil and riverbed sediment samples, accompanied by high metal loads with presence of cesium and strontium. The community structure was dominated by Chloroflexi, Proteobacteria and Acidobacteriota, while only at the highest contaminations did Firmicutes and Desulfobacterota reach appreciable percentages in the DNA-based community analysis. The extreme conditions providing high stress were mirrored by low numbers of cultivable strains. Thirty-four extremely halotolerant bacteria (23 Bacillus sp. and another 4 Bacillales, 5 Actinobacteria, and 1 Gamma-Proteobacterium) surviving 25 to 100 mM SrCl2, CsCl, and Cs2SO4 were further analyzed. Mineral formation of strontium- or cesium-struvite could be observed, reducing bioavailability and thereby constituting the dominant metal and salt resistance strategy in this environment.
Collapse
|
38
|
Durán-Viseras A, Sánchez-Porro C, Ventosa A. Genomic Insights Into New Species of the Genus Halomicroarcula Reveals Potential for New Osmoadaptative Strategies in Halophilic Archaea. Front Microbiol 2021; 12:751746. [PMID: 34803972 PMCID: PMC8600319 DOI: 10.3389/fmicb.2021.751746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Metagenomic studies on prokaryotic diversity of hypersaline soils from the Odiel saltmarshes, South-west Spain, revealed a high proportion of genomic sequences not related to previously cultivated taxa, that might be related to haloarchaea with a high environmental and nutritional flexibility. In this study, we used a culturomics approach in order to isolate new haloarchaeal microorganisms from these hypersaline soils. Four haloarchaeal strains, designated strains F24AT, F28, F27T, and F13T, phylogenetically related to the genus Halomicroarcula, were isolated and characterized in detail. The phylogenomic tree based on the 100 orthologous single-copy genes present in the genomes of these four strains as well as those of the type strains of the species Halomicroarcula pellucida CECT 7537T, Halomicroarcula salina JCM 18369T and Halomicroarcula limicola JCM 18640T, that were determined in this study, revealed that these four new isolates clustered on three groups, with strains F24AT and F28 within a single cluster, and altogether with the species of Halomicroarcula. Additionally, Orthologous Average Nucleotide Identity (OrthoANI), digital DNA-DNA hybridization (dDDH) and Average Amino-acid Identity (AAI) values, likewise phenotypic characteristics, including their polar lipids profiles, permitted to determine that they represent three new species, for which we propose the names Halomicroarcula rubra sp. nov. (type strain F13T), Halomicroarcula nitratireducens sp. nov. (type strain F27T) and Halomicroarcula salinisoli sp. nov. (type strain F24AT). An in deep comparative genomic analysis of species of the genus Halomicroarcula, including their metabolism, their capability to biosynthesize secondary metabolites and their osmoregulatory adaptation mechanisms was carried out. Although they use a salt-in strategy, the identification of the complete pathways for the biosynthesis of the compatible solutes trehalose and glycine betaine, not identified before in any other haloarchaea, might suggest alternative osmoadaptation strategies for this group. This alternative osmoregulatory mechanism would allow this group of haloarchaea to be versatile and eco-physiologically successful in hypersaline environments and would justify the capability of the species of this genus to grow not only on environments with high salt concentrations [up to 30% (w/v) salts], but also under intermediate to low salinities.
Collapse
Affiliation(s)
- Ana Durán-Viseras
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
39
|
Satari L, Guillén A, Latorre-Pérez A, Porcar M. Beyond Archaea: The Table Salt Bacteriome. Front Microbiol 2021; 12:714110. [PMID: 34777272 PMCID: PMC8586464 DOI: 10.3389/fmicb.2021.714110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
Commercial table salt is a condiment with food preservative properties by decreasing water activity and increasing osmotic pressure. Salt is also a source of halophilic bacteria and archaea. In the present research, the diversity of halotolerant and halophilic microorganisms was studied in six commercial table salts by culture-dependent and culture-independent techniques. Three table salts were obtained from marine origins: Atlantic Ocean, Mediterranean (Ibiza Island), and Odiel marshes (supermarket marine salt). Other salts supplemented with mineral and nutritional ingredients were also used: Himalayan pink, Hawaiian black, and one with dried vegetables known as Viking salt. The results of 16S rRNA gene sequencing reveal that the salts from marine origins display a similar archaeal taxonomy, but with significant variations among genera. Archaeal taxa Halorubrum, Halobacterium, Hallobellus, Natronomonas, Haloplanus, Halonotius, Halomarina, and Haloarcula were prevalent in those three marine salts. Furthermore, the most abundant archaeal genera present in all salts were Natronomonas, Halolamina, Halonotius, Halapricum, Halobacterium, Haloarcula, and uncultured Halobacterales. Sulfitobacter sp. was the most frequent bacteria, represented almost in all salts. Other genera such as Bacillus, Enterococcus, and Flavobacterium were the most frequent taxa in the Viking, Himalayan pink, and black salts, respectively. Interestingly, the genus Salinibacter was detected only in marine-originated salts. A collection of 76 halotolerant and halophilic bacterial and haloarchaeal species was set by culturing on different media with a broad range of salinity and nutrient composition. Comparing the results of 16S rRNA gene metataxonomic and culturomics revealed that culturable bacteria Acinetobacter, Aquibacillus, Bacillus, Brevundimonas, Fictibacillus, Gracilibacillus, Halobacillus, Micrococcus, Oceanobacillus, Salibacterium, Salinibacter, Terribacillus, Thalassobacillus, and also Archaea Haloarcula, Halobacterium, and Halorubrum were identified at least in one sample by both methods. Our results show that salts from marine origins are dominated by Archaea, whereas salts from other sources or salt supplemented with ingredients are dominated by bacteria.
Collapse
Affiliation(s)
- Leila Satari
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Alba Guillén
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Adriel Latorre-Pérez
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| |
Collapse
|
40
|
Menéndez-Serra M, Triadó-Margarit X, Casamayor EO. Ecological and Metabolic Thresholds in the Bacterial, Protist, and Fungal Microbiome of Ephemeral Saline Lakes (Monegros Desert, Spain). MICROBIAL ECOLOGY 2021; 82:885-896. [PMID: 33725151 DOI: 10.1007/s00248-021-01732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 05/20/2023]
Abstract
We studied the 16S and 18S rRNA genes of the bacterial, protist, and fungal microbiomes of 131 samples collected in 14 ephemeral small inland lakes located in the endorheic area of the Monegros Desert (NE Spain). The sampling covered different temporal flooding/desiccation cycles that created natural salinity gradients between 0.1% (w/v) and salt saturation. We aimed to test the hypothesis of a lack of competitive advantage for microorganisms using the "salt-in" strategy in highly fluctuating hypersaline environments where temperature and salinity transitions widely vary within short time periods, as in ephemeral inland lakes. Overall, 5653 bacterial zOTUs and 2658 eukaryal zOTUs were detected heterogeneously distributed with significant variations on taxonomy and general energy-yielding metabolisms and trophic strategies along the gradient. We observed a more diverse bacterial assembly than initially expected at extreme salinities and a lack of dominance of a few "salt-in" organisms. Microbial thresholds were unveiled for these highly fluctuating hypersaline environments with high selective pressures. We conclude that the extremely high dynamism observed in the ephemeral lakes of Monegros may have given a competitive advantage for more versatile ("salt-out") organisms compared to those better adapted to stable high salinities usually more common in solar salterns. Ephemeral inland saline lakes offered a well-suited natural framework for highly detailed evolutionary and ecological studies.
Collapse
Affiliation(s)
- Mateu Menéndez-Serra
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain
| | - Xavier Triadó-Margarit
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, 17300, Blanes, Spain.
| |
Collapse
|
41
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
42
|
Sigida EN, Ibrahim IM, Kokoulin MS, Abulreesh HH, Elbanna K, Konnova SA, Fedonenko YP. Structure of the 4-O-[1-Carboxyethyl]-d-Mannose-Containing O-Specific Polysaccharide of a Halophilic Bacterium Salinivibrio sp. EG9S8QL. Mar Drugs 2021; 19:md19090508. [PMID: 34564170 PMCID: PMC8466920 DOI: 10.3390/md19090508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023] Open
Abstract
The moderately halophilic strain Salinivibrio sp. EG9S8QL was isolated among 11 halophilic strains from saline mud (Emisal Salt Company, Lake Qarun, Fayoum, Egypt). The lipopolysaccharide was extracted from dried cells of Salinivibrio sp. EG9S8QL by the phenol–water procedure. The OPS was obtained by mild acid hydrolysis of the lipopolysaccharide and was studied by sugar analysis along with 1H and 13C NMR spectroscopy, including 1H,1H COSY, TOCSY, ROESY, 1H,13C HSQC, and HMBC experiments. The OPS was found to be composed of linear tetrasaccharide repeating units of the following structure: →2)-β-Manp4Lac-(1→3)-α-ManpNAc-(1→3)-β-Rhap-(1→4)-α-GlcpNAc-(1→, where Manp4Lac is 4-O-[1-carboxyethyl]mannose.
Collapse
Affiliation(s)
- Elena N. Sigida
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (S.A.K.); (Y.P.F.)
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-8452-970044
| | - Ibrahim M. Ibrahim
- N. G. Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, 410012 Saratov, Russia;
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Maxim S. Kokoulin
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 let Vladivostoku, 690022 Vladivostok, Russia;
| | - Hussein H. Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khaled Elbanna
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Svetlana A. Konnova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (S.A.K.); (Y.P.F.)
- N. G. Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, 410012 Saratov, Russia;
| | - Yulia P. Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (S.A.K.); (Y.P.F.)
- N. G. Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, 410012 Saratov, Russia;
| |
Collapse
|
43
|
Ubiquitousness of Haloferax and Carotenoid Producing Genes in Arabian Sea Coastal Biosystems of India. Mar Drugs 2021; 19:md19080442. [PMID: 34436281 PMCID: PMC8400781 DOI: 10.3390/md19080442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
This study presents a comparative analysis of halophiles from the global open sea and coastal biosystems through shotgun metagenomes (n = 209) retrieved from public repositories. The open sea was significantly enriched with Prochlorococcus and Candidatus pelagibacter. Meanwhile, coastal biosystems were dominated by Marinobacter and Alcanivorax. Halophilic archaea Haloarcula and Haloquandratum, predominant in the coastal biosystem, were significantly (p < 0.05) enriched in coastal biosystems compared to the open sea. Analysis of whole genomes (n = 23,540), retrieved from EzBioCloud, detected crtI in 64.66% of genomes, while cruF was observed in 1.69% Bacteria and 40.75% Archaea. We further confirmed the viability and carotenoid pigment production by pure culture isolation (n = 1351) of extreme halophiles from sediments (n = 410 × 3) sampling at the Arabian coastline of India. All red-pigmented isolates were represented exclusively by Haloferax, resistant to saturated NaCl (6 M), and had >60% G + C content. Multidrug resistance to tetracycline, gentamicin, ampicillin, and chloramphenicol were also observed. Our study showed that coastal biosystems could be more suited for bioprospection of halophiles rather than the open sea.
Collapse
|
44
|
Bernabeu E, Miralles-Robledillo JM, Giani M, Valdés E, Martínez-Espinosa RM, Pire C. In Silico Analysis of the Enzymes Involved in Haloarchaeal Denitrification. Biomolecules 2021; 11:biom11071043. [PMID: 34356667 PMCID: PMC8301774 DOI: 10.3390/biom11071043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.
Collapse
Affiliation(s)
- Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Elena Valdés
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence: ; Tel.: +34-965903400 (ext. 2064)
| |
Collapse
|
45
|
Cui HL, Dyall-Smith ML. Cultivation of halophilic archaea (class Halobacteria) from thalassohaline and athalassohaline environments. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:243-251. [PMID: 37073340 PMCID: PMC10077297 DOI: 10.1007/s42995-020-00087-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
As a group, the halophilic archaea (class Halobacteria) are the most salt-requiring and salt-resistant microorganisms within the domain Archaea. Halophilic archaea flourish in thalassohaline and athalassohaline environments and require over 100-150 g/L NaCl for growth and structural stability. Natural hypersaline environments vary in salt concentration, chemical composition and pH, and occur in climates ranging from tropical to polar and even under-sea. Accordingly, their resident haloarchaeal species vary enormously, as do their individual population compositions and community structures. These diverse halophilic archaeal strains are precious resources for theoretical and applied research but assessing their taxonomic and metabolic novelty and diversity in natural environments has been technically difficult up until recently. Environmental DNA-based high-throughput sequencing technology has now matured sufficiently to allow inexpensive recovery of massive amounts of sequence data, revealing the distribution and community composition of halophilic archaea in different hypersaline environments. While cultivation of haloarchaea is slow and tedious, and only recovers a fraction of the natural diversity, it is the conventional means of describing new species, and provides strains for detailed study. As of the end of May 2020, the class Halobacteria contains 71 genera and 275 species, 49.8% of which were first isolated from the marine salt environment and 50.2% from the inland salt environment, indicating that both thalassohaline and athalassohaline environments contain diverse halophilic archaea. However, there remain taxa that have not yet been isolated in pure culture, such as the nanohaloarchaea, which are widespread in the salt environment and may be one of the hot spots in the field of halophilic archaea research in the future. In this review, we focus on the cultivation strategies that have been used to isolate extremely halophilic archaea and point out some of the pitfalls and challenges. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00087-3.
Collapse
Affiliation(s)
- Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Mike L. Dyall-Smith
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010 Australia
- Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
46
|
Mukhtar S, Mehnaz S, Malik KA. Comparative Study of the Rhizosphere and Root Endosphere Microbiomes of Cholistan Desert Plants. Front Microbiol 2021; 12:618742. [PMID: 33841349 PMCID: PMC8032897 DOI: 10.3389/fmicb.2021.618742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Microbial communities associated with the rhizosphere and roots of desert halophytes play an important role in plants’ growth and development. Very limited information has been available on the microbial diversity of arid environments of Pakistan. Hence in the current study, the microbial diversity of rhizosphere and root endosphere of desert halophytes, Zygophyllum simplex, Haloxylon salicoricum, Aerva javanica, and Capparis decidua was evaluated. The rhizosphere and root endosphere samples of desert halophytes collected from the three geographic sites of Cholistan desert, Punjab, Pakistan were analyzed by using 16S rRNA based Illumina sequencing. The results showed that Proteobacteria were more abundant in the rhizospheric soils while Actinobacteria were more dominant in the root endosphere of halophytes. Bacteroidetes, Firmicutes, and Deinococcus-Thermus were identified from all rhizospheric soils and roots across the three sites, with variable percentage. Bacillus, Kocuria, Pseudomonas, Halomonas, and Flavobacterium were commonly identified from the rhizosphere and root endosphere of halophytes across all the three sites. At the genus level, microbial diversity from Haloxylon showed the greatest variations between the rhizosphere and root endosphere from the site 2. This study revealed that microbial diversity analysis can be used to study how changes in abiotic factors such as soil moisture content and salinity affect the microbial communities associated with the rhizospheric soils and root endosphere of halophytes across the three sites. This study will also help in the discovery of potential inoculants for crops growing in arid and semi-arid regions of Pakistan.
Collapse
Affiliation(s)
- Salma Mukhtar
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Samina Mehnaz
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Kauser Abdulla Malik
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
47
|
Nawaz A, Chaudhary R, Shah Z, Dufossé L, Fouillaud M, Mukhtar H, ul Haq I. An Overview on Industrial and Medical Applications of Bio-Pigments Synthesized by Marine Bacteria. Microorganisms 2020; 9:microorganisms9010011. [PMID: 33375136 PMCID: PMC7822155 DOI: 10.3390/microorganisms9010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes, including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. This review sheds light on marine bacterial sources of pigmented compounds along with their industrial applicability and therapeutic insights based on the data available in the literature. It also encompasses the need for introducing bacterial bio-pigments in global pigment industry, highlighting their future potential, aiming to contribute to the worldwide economy.
Collapse
Affiliation(s)
- Ali Nawaz
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Rida Chaudhary
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Zinnia Shah
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Laurent Dufossé
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
- Correspondence: ; Tel.: +33-668-731-906
| | - Mireille Fouillaud
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| |
Collapse
|
48
|
Osman JR, Wang Y, Jaubert C, Nguyen TN, Fernandes GR, DuBow MS. The bacterial communities of surface soils from desert sites in the eastern Utah (USA) portion of the Colorado Plateau. Microbiol Res 2020; 244:126664. [PMID: 33359841 DOI: 10.1016/j.micres.2020.126664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023]
Abstract
Desert-like areas located in the eastern portion of the state of Utah (USA) have geographic features that can resemble the surface of the planet Mars, characterized by red-colored hills, soils and sandstones. We examined the bacterial biodiversity of surface soil samples from several sites from the Colorado Plateau Desert in eastern Utah using pyrosequencing of PCR amplified bacterial 16S rRNA genes from total extracted soil DNA. The sample sites cover the Great Basin, Goblin Valley State Park and nearby regions on the Colorado Plateau. We also examined several physicochemical parameters of the soil samples to investigate any possible correlations between bacterial community structure and environmental drivers. The predominant bacterial phyla present in the samples were found to belong to members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. The most abundant genera in our samples were found to belong to the Cesiribacter, Lysobacter, Adhaeribacter, Microvirga and Pontibacter genera. We found that the relative abundance of Proteobacteria and Gemmatimonadetes were significantly correlated with soil pH and a low concentration of organic matter, suggesting that, in these relatively high-altitude desert soils, these two parameters may be of primary importance to influence bacterial community composition.
Collapse
Affiliation(s)
- Jorge R Osman
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Univ Paris-Sud, Bâtiment 409, 91405, Orsay, France
| | - Yang Wang
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Univ Paris-Sud, Bâtiment 409, 91405, Orsay, France
| | - Chloé Jaubert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Univ Paris-Sud, Bâtiment 409, 91405, Orsay, France
| | - Tuyet-Nga Nguyen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Univ Paris-Sud, Bâtiment 409, 91405, Orsay, France
| | - Gustavo R Fernandes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Univ Paris-Sud, Bâtiment 409, 91405, Orsay, France
| | - Michael S DuBow
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Univ Paris-Sud, Bâtiment 409, 91405, Orsay, France.
| |
Collapse
|
49
|
Çınar S, Mutlu MB. Prokaryotic Community Compositions of the Hypersaline Sediments of Tuz Lake Demonstrated by Cloning and High-Throughput Sequencing. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Ruginescu R, Gomoiu I, Popescu O, Cojoc R, Neagu S, Lucaci I, Batrinescu-Moteau C, Enache M. Bioprospecting for Novel Halophilic and Halotolerant Sources of Hydrolytic Enzymes in Brackish, Saline and Hypersaline Lakes of Romania. Microorganisms 2020; 8:microorganisms8121903. [PMID: 33266166 PMCID: PMC7760675 DOI: 10.3390/microorganisms8121903] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Halophilic and halotolerant microorganisms represent promising sources of salt-tolerant enzymes that could be used in various biotechnological processes where high salt concentrations would otherwise inhibit enzymatic transformations. Considering the current need for more efficient biocatalysts, the present study aimed to explore the microbial diversity of five under- or uninvestigated salty lakes in Romania for novel sources of hydrolytic enzymes. Bacteria, archaea and fungi were obtained by culture-based approaches and screened for the production of six hydrolases (protease, lipase, amylase, cellulase, xylanase and pectinase) using agar plate-based assays. Moreover, the phylogeny of bacterial and archaeal isolates was studied through molecular methods. From a total of 244 microbial isolates, 182 (74.6%) were represented by bacteria, 22 (9%) by archaea, and 40 (16.4%) by fungi. While most bacteria synthesized protease and lipase, the most frequent hydrolase produced by fungi was pectinase. The archaeal isolates had limited hydrolytic activity, being able to produce only amylase and cellulase. Among the taxonomically identified isolates, the best hydrolytic activities were observed in halotolerant bacteria belonging to the genus Bacillus and in extremely halophilic archaea of the genera Haloterrigena and Halostagnicola. Therefore, the present study highlights that the investigated lakes harbor various promising species of microorganisms able to produce industrially valuable enzymes.
Collapse
Affiliation(s)
- Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
- Correspondence:
| | - Ioana Gomoiu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Octavian Popescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
- Molecular Biology Center, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai-University, 42 Treboniu Laurian St., 400271 Cluj-Napoca, Romania
| | - Roxana Cojoc
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Simona Neagu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Ioana Lucaci
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Costin Batrinescu-Moteau
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Madalin Enache
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| |
Collapse
|