1
|
Duque-Ossa LC, Reyes-Retana JA. Energies Exploration for the Troponine Molecule Supported on Carbon Nanomaterials: DFT Study. ACS OMEGA 2023; 8:12334-12338. [PMID: 37033851 PMCID: PMC10077556 DOI: 10.1021/acsomega.3c00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 06/04/2023]
Abstract
Density functional theory calculations have been used to elucidate structural parameters of pristine cardiac Troponin I and its interaction with carbon nanomaterials. In this case, zigzag single-walled carbon nanotubes and graphene sheets were selected. Troponin I interacted horizontally (leusine terminal) and vertically (lysine terminal) with the nanomaterials. Cohesion and binding energies, band gaps, and charge transfer for the systems were obtained. Cohesion for troponin I supported on graphene and single-walled carbon nanotube in the horizontal position was found to be the most viable system. Binding for the interaction between troponin I and a nanotube in the horizontal position was found to be the most stable with a value of 0.002 eV that increases to 0.004 eV with a van der Waals correction. Furthermore, the density of states exhibits an improvement in band gap for graphene sheets, and finally, a higher charge transfer was reported for troponin I in its horizontal form supported on a zigzag single-walled carbon nanotube.
Collapse
|
2
|
Han X, Dang M, Gao H, Lu W, Tao J, Wu J, Chen D, Zhao J, Su X, Teng Z. Hierarchically organized gold nanoparticles by lecithin-directed mineralization approach. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Calvo V, González‐Domínguez JM, Benito AM, Maser WK. Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Víctor Calvo
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - José M. González‐Domínguez
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Ana M. Benito
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Wolfgang K. Maser
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| |
Collapse
|
4
|
Pina AS, Morgado L, Duncan KL, Carvalho S, Carvalho HF, Barbosa AJM, de P. Mariz B, Moreira IP, Kalafatovic D, Morais Faustino BM, Narang V, Wang T, Pappas CG, Ferreira I, Roque ACA, Ulijn RV. Discovery of phosphotyrosine-binding oligopeptides with supramolecular target selectivity. Chem Sci 2022; 13:210-217. [PMID: 35059169 PMCID: PMC8694286 DOI: 10.1039/d1sc04420f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/05/2021] [Indexed: 12/16/2022] Open
Abstract
Phage-display screening on self-assembled tyrosine-phosphate ligands enables the identification of oligopeptides selective to dynamic supramolecular targets, with the lead peptide showing a preferred hairpin-like conformation and catalytic activity.
Collapse
Affiliation(s)
- Ana S. Pina
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Krystyna L. Duncan
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Sara Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Henrique F. Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Arménio J. M. Barbosa
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Beatriz de P. Mariz
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Inês P. Moreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Daniela Kalafatovic
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
| | - Bruno M. Morais Faustino
- CENIMAT/I3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Vishal Narang
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
| | - Tong Wang
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Imaging Facility of CUNY ASRC, 85 St Nicholas Terrace, New York 10031, USA
| | - Charalampos G. Pappas
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Isabel Ferreira
- CENIMAT/I3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - A. Cecília A. Roque
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Rein V. Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), NY 10031, USA
- Hunter College of CUNY, Department of Chemistry and Biochemistry, 695 Park Avenue, New York 10065, USA
- PhD Programs in Chemistry and Biochemistry, The Graduate Center of CUNY, New York 10016, USA
| |
Collapse
|
5
|
Calvo V, González-Domínguez JM, Benito AM, Maser WK. Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angew Chem Int Ed Engl 2021; 61:e202113286. [PMID: 34730273 PMCID: PMC9300077 DOI: 10.1002/anie.202113286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/23/2022]
Abstract
Nanomaterials offer exciting properties and functionalities. However, their production and processing frequently involve complex methods, cumbersome equipment, harsh conditions, and hazardous media. The capability of organisms to accomplish this using mild conditions offers a sustainable, biocompatible, and environmentally friendly alternative. Different nanomaterials such as metal nanoparticles, quantum dots, silica nanostructures, and nanocellulose are being synthesized increasingly through living entities. In addition, the bionanofabrication potential enables also the in situ processing of nanomaterials inside biomatrices with unprecedented outcomes. In this Minireview we present a critical state‐of‐the‐art vision of current nanofabrication approaches mediated by living entities (ranging from unicellular to higher organisms), in order to expand this knowledge and scrutinize future prospects. An efficient interfacial interaction at the nanoscale by green means is within reach through this approach.
Collapse
Affiliation(s)
- Víctor Calvo
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - José M González-Domínguez
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - Ana M Benito
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - Wolfgang K Maser
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| |
Collapse
|
6
|
Janković P, Šantek I, Pina AS, Kalafatovic D. Exploiting Peptide Self-Assembly for the Development of Minimalistic Viral Mimetics. Front Chem 2021; 9:723473. [PMID: 34395387 PMCID: PMC8355586 DOI: 10.3389/fchem.2021.723473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Viruses are natural supramolecular nanostructures that form spontaneously by molecular self-assembly of complex biomolecules. Peptide self-assembly is a versatile tool that allows mimicking viruses by creating their simplified versions through the design of functional, supramolecular materials with modularity, tunability, and responsiveness to chemical and physical stimuli. The main challenge in the design and fabrication of peptide materials is related to the precise control between the peptide sequence and its resulting supramolecular morphology. We provide an overview of existing sequence patterns employed for the development of spherical and fibrillar peptide assemblies that can act as viral mimetics, offering the opportunity to tackle the challenges of viral infections.
Collapse
Affiliation(s)
| | - Iva Šantek
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ana Sofia Pina
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | | |
Collapse
|
7
|
Wang Y, Xia K, Wang L, Wu M, Sang X, Wan K, Zhang X, Liu X, Wei G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005578. [PMID: 33448113 DOI: 10.1002/smll.202005578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Fluorescent nanomaterials have exhibited promising applications in biomedical and tissue engineering fields. To improve the properties and expand bioapplications of fluorescent nanomaterials, various functionalization and biomodification strategies have been utilized to engineer the structure and function of fluorescent nanomaterials. Due to their high biocompatibility, satisfied bioactivity, unique biomimetic function, easy structural tailoring, and controlled self-assembly ability, supramolecular peptides are widely used as versatile modification agents and nanoscale building blocks for engineering fluorescent nanomaterials. In this work, recent advance in the synthesis, structure, function, and biomedical applications of peptide-engineered fluorescent nanomaterials is presented. Firstly, the types of different fluorescent nanomaterials are introduced. Then, potential strategies for the preparation of peptide-engineered fluorescent nanomaterials via templated synthesis, bioinspired conjugation, and peptide assembly-assisted synthesis are discussed. After that, the unique structure and functions through the peptide conjugation with fluorescent nanomaterials are demonstrated. Finally, the biomedical applications of peptide-engineered fluorescent nanomaterials in bioimaging, disease diagnostics and therapy, drug delivery, tissue engineering, antimicrobial test, and biosensing are presented and discussed in detail. It is helpful for readers to understand the peptide-based conjugation and bioinspired synthesis of fluorescent nanomaterials, and to design and synthesize novel hybrid bionanomaterials with special structures and improved functions for advanced applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kai Xia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Luchen Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiujie Sang
- Department of Food and Medicine, Weifang Vocational College, Weifang, 262737, P. R. China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Faculty of Production Engineering, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
8
|
Jing Y, Ning S, Guan Y, Cao M, Li J, Zhu L, Zhang Q, Cheng C, Deng Y. Electrochemical Determination of Nicotine in Tobacco Products Based on Biosynthesized Gold Nanoparticles. Front Chem 2020; 8:593070. [PMID: 33195097 PMCID: PMC7606926 DOI: 10.3389/fchem.2020.593070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/04/2020] [Indexed: 12/04/2022] Open
Abstract
In this work, gold nanoparticles were biosynthesized via Plectranthus amboinicus leaf extract as the reducing agent. A series of techniques were used for sample analysis. The biosynthesized gold nanoparticles (bAuNPs) are a uniform size with a spherical shape. The FTIR analysis reveals the presence of many oxygen-containing functional groups on the bAuNP surface. The cyclic voltammetry and electrochemical impedance spectroscopic characterizations reveal that while the bAuNPs have a slightly lower conductivity than chemically synthesized AuNPs (cAuNPs). However, the bAuNPs have a superior electrocatalytic performance toward nicotine reduction. After optimization, the bAuNP-modified SPE could detect nicotine linearly from 10 to 2,000 μM with a low detection limit of 2.33 μM. In addition, the bAuNPs/SPE have been successfully used for nicotine-containing-product analysis.
Collapse
Affiliation(s)
- Yanqiu Jing
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Shanghui Ning
- Changde Branch of Hunan Tobacco Corporation, Changde, China
| | - Yu Guan
- Sichuan of China National Tobacco Corporation, Chengdu, China
| | - Mingfeng Cao
- Changde Branch of Hunan Tobacco Corporation, Changde, China
| | - Junju Li
- Sichuan of China National Tobacco Corporation, Chengdu, China
| | - Li Zhu
- Changde Branch of Hunan Tobacco Corporation, Changde, China
| | - Qili Zhang
- Sichuan of China National Tobacco Corporation, Chengdu, China
| | - Chuance Cheng
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yong Deng
- Changde Branch of Hunan Tobacco Corporation, Changde, China
| |
Collapse
|
9
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
10
|
Ross-Naylor JA, Mijajlovic M, Biggs MJ. Energy Landscapes of a Pair of Adsorbed Peptides. J Phys Chem B 2020; 124:2401-2409. [PMID: 32125854 DOI: 10.1021/acs.jpcb.0c00859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The wide relevance of peptide adsorption in natural and synthetic contexts means it has attracted much attention. Molecular dynamics (MD) simulation has been widely used in these endeavors. Much of this has focused on single peptides due to the computational effort required to capture the rare events that characterize their adsorption. This focus is, however, of limited practical relevance as in reality, most systems of interest operate in the nondilute regime where peptides will interact with other adsorbed peptides. As an alternative to MD simulation, we have used energy landscape mapping (ELM) to investigate two met-enkephalin molecules adsorbed at a gas/graphite interface. Major conformations of the adsorbed peptides and the connecting transition states are elucidated along with the associated energy barriers and rates of exchange. The last of these makes clear that MD simulations are currently of limited use in probing the co-adsorption of two peptides, let alone more. The constant volume heat capacity as a function of temperature is also presented. Overall, this study represents a significant step toward characterizing peptide adsorption beyond the dilute limit.
Collapse
Affiliation(s)
- James A Ross-Naylor
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Milan Mijajlovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mark J Biggs
- College of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
11
|
Ross-Naylor JA, Mijajlovic M, Biggs MJ. Energy Landscape Mapping and Replica Exchange Molecular Dynamics of an Adsorbed Peptide. J Phys Chem B 2020; 124:2527-2538. [DOI: 10.1021/acs.jpcb.9b10568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- James A. Ross-Naylor
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Milan Mijajlovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mark J. Biggs
- College of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
12
|
Slocik JM, Dennis PB, Govorov AO, Bedford NM, Ren Y, Naik RR. Chiral Restructuring of Peptide Enantiomers on Gold Nanomaterials. ACS Biomater Sci Eng 2019; 6:2612-2620. [PMID: 33463283 DOI: 10.1021/acsbiomaterials.9b00933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of biomolecules has been invaluable at generating and controlling optical chirality in nanomaterials; however, the structure and properties of the chiral biotemplate are not well understood due to the complexity of peptide-nanoparticle interactions. In this study, we show that the complex interactions between d-peptides and gold nanomaterials led to a chiral restructuring of peptides as demonstrated by circular dichroism and proteolytic cleavage of d-peptides via gold-mediated inversion of peptide chirality. The gold nanoparticles synthesized using d-peptide produce a highly ordered atomic surface and restructured peptide bonds for enzyme cleavage. Differences in gold nanoparticle catalyzed reduction of 4-nitrophenol were observed on the basis of the chiral peptide used in nanoparticle synthesis. Notably, the proteolytic cleavage of d-peptides on gold provides an opportunity for designing nanoparticle based therapeutics to treat peptide venoms, access new chemistries, or modulate the catalytic activity of nanomaterials.
Collapse
Affiliation(s)
- Joseph M Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| | - Patrick B Dennis
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Nicholas M Bedford
- School of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Ren
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| |
Collapse
|
13
|
Anisotropic Gold Nanoparticle-Cell Interactions Mediated by Collagen. MATERIALS 2019; 12:ma12071131. [PMID: 30959932 PMCID: PMC6480049 DOI: 10.3390/ma12071131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022]
Abstract
Gold nanoparticles (AuNPs) are the groundwork of a large variety of applications in the biomedical field. Further development and a better understanding of this versatile platform will lead to an expansion of potential applications. In this study, we propose a facile synthesis of AuNPs using hydrogen peroxide as a reducing agent and collagen as a stabilizing agent. Our synthetic approach results in "raspberry"-like AuNPs with a mean diameter of 60 nm, as revealed by electron microscopy. The optical properties of the AuNPs were assessed by UV-Vis and surface-enhanced Raman scattering (SERS), and their stability and in vitro cytotoxicity were evaluated as well. HeLa cell viability values were only modestly affected compared to control, with the highest concentration tested displaying a 20% decrease in cellular viability. The dose-dependent cellular internalization in the 20⁻60 nM range indicate the highest internalization rate at 60 nM and uptake values as high as 35%. This result correlated well with the viability results. These type of anisotropic AuNPs are proposed for biomedical applications such as hyperthermia, contrast agents or imaging. Therefore, our findings offer a platform for potential biological applications such as sensing and imaging, due to their unique physico-chemical features.
Collapse
|
14
|
Lee J, Ju M, Cho OH, Kim Y, Nam KT. Tyrosine-Rich Peptides as a Platform for Assembly and Material Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801255. [PMID: 30828522 PMCID: PMC6382316 DOI: 10.1002/advs.201801255] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/27/2018] [Indexed: 05/27/2023]
Abstract
The self-assembly of biomolecules can provide a new approach for the design of functional systems with a diverse range of hierarchical nanoarchitectures and atomically defined structures. In this regard, peptides, particularly short peptides, are attractive building blocks because of their ease of establishing structure-property relationships, their productive synthesis, and the possibility of their hybridization with other motifs. Several assembling peptides, such as ionic-complementary peptides, cyclic peptides, peptide amphiphiles, the Fmoc-peptide, and aromatic dipeptides, are widely studied. Recently, studies on material synthesis and the application of tyrosine-rich short peptide-based systems have demonstrated that tyrosine units serve as not only excellent assembly motifs but also multifunctional templates. Tyrosine has a phenolic functional group that contributes to π-π interactions for conformation control and efficient charge transport by proton-coupled electron-transfer reactions in natural systems. Here, the critical roles of the tyrosine motif with respect to its electrochemical, chemical, and structural properties are discussed and recent discoveries and advances made in tyrosine-rich short peptide systems from self-assembled structures to peptide/inorganic hybrid materials are highlighted. A brief account of the opportunities in design optimization and the applications of tyrosine peptide-based biomimetic materials is included.
Collapse
Affiliation(s)
- Jaehun Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Misong Ju
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Ouk Hyun Cho
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Younghye Kim
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
15
|
Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev 2018; 118:11118-11193. [PMID: 30362737 DOI: 10.1021/acs.chemrev.7b00660] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.
Collapse
Affiliation(s)
- Marion J Limo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Interface and Surface Analysis Centre, School of Pharmacy , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna Sola-Rabada
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Estefania Boix
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | - Veeranjaneyulu Thota
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Zayd C Westcott
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Valeria Puddu
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
16
|
Controlled synthesis of highly-branched plasmonic gold nanoparticles through peptoid engineering. Nat Commun 2018; 9:2327. [PMID: 29899378 PMCID: PMC5998043 DOI: 10.1038/s41467-018-04789-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
In nature, specific biomolecules interacting with mineral precursors are responsible for the precise production of nanostructured inorganic materials that exhibit complex morphologies and superior performance. Despite advances in developing biomimetic approaches, the design rules for creating sequence-defined molecules that lead to the synthesis of inorganic nanomaterials with predictable complex morphologies are unknown. Herein we report the design of sequence-defined peptoids for controlled synthesis of highly branched plasmonic gold particles. By engineering peptoid sequences and investigating the resulting particle formation mechanisms, we develop a rule of thumb for designing peptoids that predictively enabled the morphological evolution from spherical to coral-shaped nanoparticles. Through a combination of hyperspectral UV-Vis extinction microscopy and three-photon photoemission electron microscopy, we demonstrate that the individual coral-shaped gold nanoparticles exhibit a plasmonic enhancement as high as 105-fold. This research significantly advances our ultimate vision of predictive bio-inspired materials synthesis using sequence-defined synthetic molecules that mimic proteins and peptides. Peptoids are promising crystallization agents, as they offer the molecular recognition capabilities of proteins and peptides but with higher stability and synthetic tunability. Here, the authors show that sequence-defined peptoids can controllably template the formation and shape evolution of gold nanostructures with defined morphologies.
Collapse
|
17
|
Egan JG, Drossis N, Ebralidze II, Fruehwald HM, Laschuk NO, Poisson J, de Haan HW, Zenkina OV. Hemoglobin-driven iron-directed assembly of gold nanoparticles. RSC Adv 2018; 8:15675-15686. [PMID: 35539477 PMCID: PMC9080194 DOI: 10.1039/c8ra01996g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
The ability to form complex 3D architectures using nanoparticles (NPs) as the building blocks and complex macromolecules that direct these assemblies remains a challenging objective for nanotechnology. Here we report results in which the partial substitution of classical Turkevich citrate-capped gold NPs by a novel, heteroaromatic ligand (L) results in NPs able to form coordination-driven assemblies mediated by free or protein-bound iron ions. The morphology of these assemblies can be tuned depending on the source of iron. To prove the concept, classical citrate and novel NPs were reacted with iron-containing protein hemoglobin (Hb). To diminish the influence of possible electrostatic interactions of native Hb and gold NPs, the reaction was performed at the isoelectric point of Hb. Moreover, thiol groups of Hb were protected with p-quinone to exclude thiol–gold bond formation. As expected, citrate-capped gold NPs are well dispersed in functionalized Hb, while L-functionalized NPs form assemblies. The blue shift of the Soret band of the functionalized Hb, when reacted with novel NPs, unambiguously confirms the coordination of a NP-anchored heteroaromatic ligand with the heme moiety of Hb. Coarse-grained molecular dynamics of this system were performed to gain information about aggregation dynamics and kinetics of iron- and hemoglobin-templated assemblies of L–NPs. A multi-scale simulation approach was employed to extend this model to longer time scales. The application of this model towards novel coordination-based assemblies can become a powerful tool for the development of new nanomaterials. The ability to form complex 3D architectures using nanoparticles as the building blocks and complex macromolecules that direct these assemblies remains a challenging objective for nanotechnology.![]()
Collapse
Affiliation(s)
- Jacquelyn G. Egan
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | - Nicole Drossis
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | | | - Holly M. Fruehwald
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | - Nadia O. Laschuk
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | - Jade Poisson
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | | | - Olena V. Zenkina
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| |
Collapse
|
18
|
Davis BG, Serpell CJ. Editorial Overview: Nanotechnology and biotechnology: Two way traffic. Curr Opin Biotechnol 2017; 46:vi-viii. [PMID: 28666567 DOI: 10.1016/j.copbio.2017.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Benjamin G Davis
- Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Serpell
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|