1
|
Szabó A, De Vlieghere E, Costa PF, Geurs I, Dewettinck K, Maes L, Laukens D, Van Vlierberghe S. Effect of Porosity on the Colonization of Digital Light-Processed 3D Hydrogel Constructs toward the Development of a Functional Intestinal Model. Biomacromolecules 2024; 25:2863-2874. [PMID: 38564884 DOI: 10.1021/acs.biomac.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With the rapid increase of the number of patients with gastrointestinal diseases in modern society, the need for the development of physiologically relevant in vitro intestinal models is key to improve the understanding of intestinal dysfunctions. This involves the development of a scaffold material exhibiting physiological stiffness and anatomical mimicry of the intestinal architecture. The current work focuses on evaluating the scaffold micromorphology of gelatin-methacryloyl-aminoethyl-methacrylate-based nonporous and porous intestinal 3D, intestine-like constructs, fabricated via digital light processing, on the cellular response. To this end, Caco-2 intestinal cells were utilized in combination with the constructs. Both porous and nonporous constructs promoted cell growth and differentiation toward enterocyte-like cells (VIL1, ALPI, SI, and OCLD expression showed via qPCR, ZO-1 via immunostaining). The porous constructs outperformed the nonporous ones regarding cell seeding efficiency and growth rate, confirmed by MTS assay, live/dead staining, and TEER measurements, due to the presence of surface roughness.
Collapse
Affiliation(s)
- Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Elly De Vlieghere
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | | | - Indi Geurs
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Gent 9000, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Gent 9000, Belgium
| | - Laure Maes
- IBD Research Unit, Ghent Gut Inflammation Group (GGIG), Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Debby Laukens
- IBD Research Unit, Ghent Gut Inflammation Group (GGIG), Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Szabó A, Pasquariello R, Costa PF, Pavlovic R, Geurs I, Dewettinck K, Vervaet C, Brevini TAL, Gandolfi F, Van Vlierberghe S. Light-Based 3D Printing of Gelatin-Based Biomaterial Inks to Create a Physiologically Relevant In Vitro Fish Intestinal Model. Macromol Biosci 2023; 23:e2300016. [PMID: 37243584 DOI: 10.1002/mabi.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Indexed: 05/29/2023]
Abstract
To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol-1 ). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.
Collapse
Affiliation(s)
- Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Via Domenico Trentacoste, Milan, 2-20134, Italy
| | - Pedro F Costa
- Biofabics Lda, Rua do Campo Lindo 168, Porto, 4200-143, Portugal
| | - Radmila Pavlovic
- Protemoics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Indi Geurs
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Chris Vervaet
- Department of Pharmaceutics, Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Tiziana A L Brevini
- Department of Veterinary Medicine and Animal Sciences, Laboratory of Biomedical Embryology, Università degli Studi di Milano, Via Dell'Università 6, Lodi, 26900, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Via Domenico Trentacoste, Milan, 2-20134, Italy
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
| |
Collapse
|
4
|
Chen Y, Liu Y, Chen S, Zhang L, Rao J, Lu X, Ma Y. Liver organoids: a promising three-dimensional model for insights and innovations in tumor progression and precision medicine of liver cancer. Front Immunol 2023; 14:1180184. [PMID: 37334366 PMCID: PMC10272526 DOI: 10.3389/fimmu.2023.1180184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Primary liver cancer (PLC) is one type of cancer with high incidence rate and high mortality rate in the worldwide. Systemic therapy is the major treatment for PLC, including surgical resection, immunotherapy and targeted therapy. However, mainly due to the heterogeneity of tumors, responses to the above drug therapy differ from person to person, indicating the urgent needs for personalized treatment for PLC. Organoids are 3D models derived from adult liver tissues or pluripotent stem cells. Based on the ability to recapitulate the genetic and functional features of in vivo tissues, organoids have assisted biomedical research to make tremendous progress in understanding disease origin, progression and treatment strategies since their invention and application. In liver cancer research, liver organoids contribute greatly to reflecting the heterogeneity of liver cancer and restoring tumor microenvironment (TME) by co-organizing tumor vasculature and stromal components in vitro. Therefore, they provide a promising platform for further investigation into the biology of liver cancer, drug screening and precision medicine for PLC. In this review, we discuss the recent advances of liver organoids in liver cancer, in terms of generation methods, application in precision medicine and TME modeling.
Collapse
Affiliation(s)
- Yukun Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yujun Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Long Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Rao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Abstract
Oral and maxillofacial organoids, as three-dimensional study models of organs, have attracted increasing attention in tissue regeneration and disease modeling. However, traditional strategies for organoid construction still fail to precisely recapitulate the key characteristics of real organs, due to the difficulty in controlling the self-organization of cells in vitro. This review aims to summarize the recent progress of novel approaches to engineering oral and maxillofacial organoids. First, we introduced the necessary components and their roles in forming oral and maxillofacial organoids. Besides, we discussed cutting-edge technology in advancing the architecture and function of organoids, especially focusing on oral and maxillofacial tissue regeneration via novel strategy with designed cell-signal scaffold compounds. Finally, current limitations and future prospects of oral and maxillofacial organoids were represented to provide guidance for further disciplinary progression and clinical application to achieve organ regeneration.
Collapse
Affiliation(s)
- Yu Wang
- Department of Implantology, School & Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200040, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200040, China
| |
Collapse
|
6
|
Kopper JJ, Iennarella-Servantez C, Jergens AE, Sahoo DK, Guillot E, Bourgois-Mochel A, Martinez MN, Allenspach K, Mochel JP. Harnessing the Biology of Canine Intestinal Organoids to Heighten Understanding of Inflammatory Bowel Disease Pathogenesis and Accelerate Drug Discovery: A One Health Approach. FRONTIERS IN TOXICOLOGY 2022; 3:773953. [PMID: 35295115 PMCID: PMC8915821 DOI: 10.3389/ftox.2021.773953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
In a recent issue of the Lancet, the prevalence of Inflammatory Bowel Disease (IBD) was estimated at 7 million worldwide. Overall, the burden of IBD is rising globally, with direct and indirect healthcare costs ranging between $14.6 and $31.6 billion in the U.S. alone in 2014. There is currently no cure for IBD, and up to 40% of patients do not respond to medical therapy. Although the exact determinants of the disease pathophysiology remain unknown, the prevailing hypothesis involves complex interplay among host genetics, the intestinal microenvironment (primarily bacteria and dietary constituents), and the mucosal immune system. Importantly, multiple chronic diseases leading to high morbidity and mortality in modern western societies, including type II diabetes, IBD and colorectal cancer, have epidemiologically been linked to the consumption of high-calorie, low-fiber, high monosaccharide, and high-fat diets (HFD). More specifically, data from our laboratory and others have shown that repeated consumption of HFD triggers dysbiotic changes of the gut microbiome concomitant with a state of chronic intestinal inflammation and increased intestinal permeability. However, progress in our understanding of the effect of dietary interventions on IBD pathogenesis has been hampered by a lack of relevant animal models. Additionally, current in vitro cell culture systems are unable to emulate the in vivo interplay between the gut microbiome and the intestinal epithelium in a realistic and translatable way. There remains, therefore, a critical need to develop translatable in vitro and in vivo models that faithfully recapitulate human gut-specific physiological functions to facilitate detailed mechanistic studies on the impact of dietary interventions on gut homeostasis. While the study of murine models has been pivotal in advancing genetic and cellular discoveries, these animal systems often lack key clinical signs and temporal pathological changes representative of IBD. Specifically, some limitations of the mouse model are associated with the use of genetic knockouts to induce immune deficiency and disease. This is vastly different from the natural course of IBD developing in immunologically competent hosts, as is the case in humans and dogs. Noteworthily, abundant literature suggests that canine and human IBD share common clinical and molecular features, such that preclinical studies in dogs with naturally occurring IBD present an opportunity to further our understanding on disease pathogenesis and streamline the development of new therapeutic strategies. Using a stepwise approach, in vitro mechanistic studies investigating the contribution of dietary interventions to chronic intestinal inflammation and "gut leakiness" could be performed in intestinal organoids and organoid derived monolayers. The biologic potential of organoids stems from the method's ability to harness hard-wired cellular programming such that the complexity of the disease background can be reflected more accurately. Likewise, the effect of therapeutic drug candidates could be evaluated in organoids prior to longitudinal studies in dog and human patients with IBD. In this review, we will discuss the value (and limitations) of intestinal organoids derived from a spontaneous animal disease model of IBD (i.e., the dog), and how it can heighten understanding of the interplay between dietary interventions, the gut microbiota and intestinal inflammation. We will also review how intestinal organoids could be used to streamline the preclinical development of therapeutic drug candidates for IBD patients and their best four-legged friends.
Collapse
Affiliation(s)
- Jamie J Kopper
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Chelsea Iennarella-Servantez
- SMART Pharmacology, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Albert E Jergens
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Dipak K Sahoo
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Emilie Guillot
- 3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| | - Agnes Bourgois-Mochel
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD, United States
| | - Karin Allenspach
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| | - Jonathan P Mochel
- SMART Pharmacology, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| |
Collapse
|
7
|
Criss ZK, Bhasin N, Di Rienzi SC, Rajan A, Deans-Fielder K, Swaminathan G, Kamyabi N, Zeng XL, Doddapaneni H, Menon VK, Chakravarti D, Estrella C, Yu X, Patil K, Petrosino JF, Fleet JC, Verzi MP, Christakos S, Helmrath MA, Arimura S, DePinho RA, Britton RA, Maresso AW, Grande-Allen KJ, Blutt SE, Crawford SE, Estes MK, Ramani S, Shroyer NF. Drivers of transcriptional variance in human intestinal epithelial organoids. Physiol Genomics 2021; 53:486-508. [PMID: 34612061 DOI: 10.1152/physiolgenomics.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.
Collapse
Affiliation(s)
- Zachary K Criss
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kali Deans-Fielder
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Vipin K Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clarissa Estrella
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James C Fleet
- Department of Nutrition Sciences, The University of Texas, Austin, Texas
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sumimasa Arimura
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Preparation of Biological Scaffolds and Primary Intestinal Epithelial Cells to Efficiently 3D Model the Fish Intestinal Mucosa. Methods Mol Biol 2021. [PMID: 33604860 DOI: 10.1007/978-1-0716-1246-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tissue engineering is an elegant tool to create organs in vitro, that can help obviate the lack of organ donors in transplantation medicine and provide the opportunity of studying complex biological systems in vitro, thereby reducing the need for animal experiments. Artificial intestine models are at the core of Fish-AI, an EU FET-Open research project dedicated to the development of a 3D in vitro platform that is intended to enable the aquaculture feed industry to predict the nutritional and health value of alternative feed sources accurately and efficiently.At present, it is impossible to infer the health and nutrition value through the chemical characterization of any given feed. Therefore, each new feed must be tested through in vivo growth trials. The procedure is lengthy, expensive and requires the use of many animals. Furthermore, although this process allows for a precise evaluation of the final effect of each feed, it does not improve our basic knowledge of the cellular and molecular mechanisms determining such end-results. In turn, this lack of mechanistic knowledge severely limits the capacity to understand and predict the biological value of a single raw material and of their different combinations.The protocol described herein allows to develop the two main components essential to produce a functional platform for the efficient and reliable screening of feeds that the feed industry is currently developing for improving their health and nutritional value. It is here applied to the Rainbow Trout, but it can be fruitfully used to many other fish species.
Collapse
|
9
|
Soto F, Guimarães CF, Reis RL, Franco W, Rizvi I, Demirci U. Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models. Cancer Lett 2021; 504:116-124. [PMID: 33577978 DOI: 10.1016/j.canlet.2021.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal organoids from laboratory settings to patient-specific models in clinical applications.
Collapse
Affiliation(s)
- Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
| | - Carlos F Guimarães
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA; 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts, Lowell, 01854, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA.
| |
Collapse
|
10
|
|
11
|
O'Connell L, Winter DC, Aherne CM. The Role of Organoids as a Novel Platform for Modeling of Inflammatory Bowel Disease. Front Pediatr 2021; 9:624045. [PMID: 33681101 PMCID: PMC7925404 DOI: 10.3389/fped.2021.624045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 12/03/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting immune-mediated disorder affecting the gut. It is common in Westernized regions and is increasing in incidence in developing countries. At a molecular level, intrinsic deficiencies in epithelial integrity, mucosal barrier function, and mechanisms of immune response and resolution contribute to the development of IBD. Traditionally two platforms have been utilized for disease modeling of IBD; in-vitro monolayer cell culture and in-vivo animal models. Both models have limitations, including cost, lack of representative cell types, lack of complexity of cellular interactions in a living organism, and xenogeneity. Organoids, three-dimensional cellular structures which recapitulate the basic architecture and functional processes of the organ of origin, hold potential as a third platform with which to investigate the pathogenesis and molecular defects which give rise to IBD. Organoids retain the genetic and transcriptomic profile of the tissue of origin over time and unlike monolayer cell culture can be induced to differentiate into most adult intestinal cell types. They may be used to model intestinal host-microbe interactions occurring at the mucosal barrier, are amenable to genetic manipulation and can be co-cultured with other cell lines of interest. Bioengineering approaches may be applied to render a more faithful representation of the intestinal epithelial niche. In this review, we outline the concept of intestinal organoids, discuss the advantages and disadvantages of the platform comparative to alternative models, and describe the translational applications of organoids in IBD.
Collapse
Affiliation(s)
- Lauren O'Connell
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.,Centre for Colorectal Disease, St. Vincents' University Hospital, Dublin, Ireland
| | - Des C Winter
- Centre for Colorectal Disease, St. Vincents' University Hospital, Dublin, Ireland
| | - Carol M Aherne
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
|
13
|
Abbey D, Elwyn S, Hand NJ, Musunuru K, Rader DJ. Self-Organizing Human Induced Pluripotent Stem Cell Hepatocyte 3D Organoids Inform the Biology of the Pleiotropic TRIB1 Gene. Hepatol Commun 2020; 4:1316-1331. [PMID: 32923835 PMCID: PMC7471428 DOI: 10.1002/hep4.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Establishment of a physiologically relevant human hepatocyte‐like cell system for in vitro translational research has been hampered by the limited availability of cell models that accurately reflect human biology and the pathophysiology of human disease. Here we report a robust, reproducible, and scalable protocol for the generation of hepatic organoids from human induced pluripotent stem cells (hiPSCs) using short exposure to nonengineered matrices. These hepatic organoids follow defined stages of hepatic development and express higher levels of early (hepatocyte nuclear factor 4A [HNF4A], prospero‐related homeobox 1 [PROX1]) and mature hepatic and metabolic markers (albumin, asialoglycoprotein receptor 1 [ASGR1], CCAAT/enhancer binding protein α [C/EBPα]) than two‐dimensional (2D) hepatocyte‐like cells (HLCs) at day 20 of differentiation. We used this model to explore the biology of the pleiotropic TRIB1 (Tribbles‐1) gene associated with a number of metabolic traits, including nonalcoholic fatty liver disease and plasma lipids. We used genome editing to delete the TRIB1 gene in hiPSCs and compared TRIB1‐deleted iPSC‐HLCs to isogenic iPSC‐HLCs under both 2D culture and three‐dimensional (3D) organoid conditions. Under conventional 2D culture conditions, TRIB1‐deficient HLCs showed maturation defects, with decreased expression of late‐stage hepatic and lipogenesis markers. In contrast, when cultured as 3D hepatic organoids, the differentiation defects were rescued, and a clear lipid‐related phenotype was noted in the TRIB1‐deficient induced pluripotent stem cell HLCs. Conclusion: This work supports the potential of genome‐edited hiPSC‐derived hepatic 3D organoids in exploring human hepatocyte biology, including the functional interrogation of genes identified through human genetic investigation.
Collapse
Affiliation(s)
- Deepti Abbey
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Translational Medicine and Human Genetics Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA
| | - Susannah Elwyn
- Department of Translational Medicine and Human Genetics Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia PA
| | - Kiran Musunuru
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia PA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Translational Medicine and Human Genetics Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA.,Division of Cardiology and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia PA
| |
Collapse
|
14
|
O'Connell L, Winter DC. Organoids: Past Learning and Future Directions. Stem Cells Dev 2020; 29:281-289. [DOI: 10.1089/scd.2019.0227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lauren O'Connell
- Department of Surgery, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Des C. Winter
- Department of Surgery, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| |
Collapse
|
15
|
Abstract
Recent advances in culturing of intestinal stem cells and pluripotent stem cells have led to the development of intestinal organoids. These are self-organizing 3D structures, which recapitulate the characteristics and physiological features of in vivo intestinal epithelium. Intestinal organoids have allowed the development of novel in vitro models to study various gastrointestinal diseases expanding our understanding of the pathophysiology of diseases and leading to the development of innovative therapies. This article aims to summarize the current usage of intestinal organoids as a model of gastrointestinal diseases and the potential applications of intestinal organoids in infants and children. Intestinal organoids allow the study of intestinal epithelium responses to stress factors. Mimicking intestinal injury such as necrotizing enterocolitis, intestinal organoids increases the expression of pro-inflammatory cytokine genes and shows disruption of tight junctions after they are injured by lipopolysaccharide and hypoxia. In cystic fibrosis, intestinal organoids derived from rectal biopsies have provided benefits in genetic studies and development of novel therapeutic gene modulation. Transplantation of intestinal organoids via enema has been shown to rescue damaged colonic epithelium in mice. In addition, tissue-engineered small intestine derived from intestinal organoids have been successfully established providing a potential novel treatment and a new hope for children with short bowel syndrome.
Collapse
|
16
|
Ham J, Lever L, Fox M, Reagan MR. In Vitro 3D Cultures to Reproduce the Bone Marrow Niche. JBMR Plus 2019; 3:e10228. [PMID: 31687654 PMCID: PMC6820578 DOI: 10.1002/jbm4.10228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
Over the past century, the study of biological processes in the human body has progressed from tissue culture on glass plates to complex 3D models of tissues, organs, and body systems. These dynamic 3D systems have allowed for more accurate recapitulation of human physiology and pathology, which has yielded a platform for disease study with a greater capacity to understand pathophysiology and to assess pharmaceutical treatments. Specifically, by increasing the accuracy with which the microenvironments of disease processes are modeled, the clinical manifestation of disease has been more accurately reproduced in vitro. The application of these models is crucial in all realms of medicine, but they find particular utility in diseases related to the complex bone marrow niche. Osteoblast, osteoclasts, bone marrow adipocytes, mesenchymal stem cells, and red and white blood cells represent some of cells that call the bone marrow microenvironment home. During states of malignant marrow disease, neoplastic cells migrate to and join this niche. These cancer cells both exploit and alter the niche to their benefit and to the patient's detriment. Malignant disease of the bone marrow, both primary and secondary, is a significant cause of morbidity and mortality today. Innovative study methods are necessary to improve patient outcomes. In this review, we discuss the evolution of 3D models and compare them to the preceding 2D models. With a specific focus on malignant bone marrow disease, we examine 3D models currently in use, their observed efficacy, and their potential in developing improved treatments and eventual cures. Finally, we comment on the aspects of 3D models that must be critically examined as systems continue to be optimized so that they can exert greater clinical impact in the future. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin Ham
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Lauren Lever
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Maura Fox
- University of New EnglandBiddefordMEUSA
| | - Michaela R Reagan
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of Maine Graduate School of Biomedical Science and EngineeringOronoMEUSA,Sackler School of Graduate Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
17
|
Padhi A, Nain AS. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann Biomed Eng 2019; 48:1071-1089. [PMID: 31485876 DOI: 10.1007/s10439-019-02337-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Stem cell regenerative potential owing to the capacity to self-renew as well as differentiate into other cell types is a promising avenue in regenerative medicine. Stem cell niche not only provides physical scaffolding but also possess instructional capacity as it provides a milieu of biophysical and biochemical cues. Extracellular matrix (ECM) has been identified as a major dictator of stem cell lineage, thus understanding the structure of in vivo ECM pertaining to specific tissue differentiation will aid in devising in vitro strategies to improve the differentiation efficiency. In this review, we summarize details about the native architecture, composition and mechanical properties of in vivo ECM of the early embryonic stages and the later adult stages. Native ECM from adult tissues categorized on their origin from respective germ layers are discussed while engineering techniques employed to facilitate differentiation of stem cells into particular lineages are noted. Overall, we emphasize that in vitro strategies need to integrate tissue specific ECM biophysical cues for developing accurate artificial environments for optimizing stem cell differentiation.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
18
|
Saglam-Metiner P, Gulce-Iz S, Biray-Avci C. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene 2019; 686:203-212. [DOI: 10.1016/j.gene.2018.11.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/04/2018] [Accepted: 11/17/2018] [Indexed: 01/03/2023]
|
19
|
Schwartz C, Fallon PG. Schistosoma "Eggs-Iting" the Host: Granuloma Formation and Egg Excretion. Front Immunol 2018; 9:2492. [PMID: 30459767 PMCID: PMC6232930 DOI: 10.3389/fimmu.2018.02492] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Schistosomiasis is a major cause of morbidity in humans invoked by chronic infection with parasitic trematodes of the genus Schistosoma. Schistosomes have a complex life-cycle involving infections of an aquatic snail intermediate host and a definitive mammalian host. In humans, adult male and female worms lie within the vasculature. Here, they propagate and eggs are laid. These eggs must then be released from the host to continue the life cycle. Schistosoma mansoni and Schistosoma japonicum reside in the mesenteric circulation of the intestines with egg excreted in the feces. In contrast, S. haematobium are present in the venus plexus of the bladder, expelling eggs in the urine. In an impressive case of exploitation of the host immune system, this process of Schistosome “eggs-iting” the host is immune dependent. In this article, we review the formation of the egg granuloma and explore how S. mansoni eggs laid in vasculature must usurp immunity to induce regulated inflammation, to facilitate extravasation through the intestinal wall and to be expelled in the feces. We highlight the roles of immune cell populations, stromal factors, and egg secretions in the process of egg excretion to provide a comprehensive overview of the current state of knowledge regarding a vastly unexplored mechanism.
Collapse
Affiliation(s)
- Christian Schwartz
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
iPSC-Derived Enterocyte-like Cells for Drug Absorption and Metabolism Studies. Trends Mol Med 2018; 24:696-708. [PMID: 29945758 DOI: 10.1016/j.molmed.2018.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
Intestinal cell models have been widely studied and used to evaluate absorption and metabolism of drugs in the small intestine, constituting valuable tools as a first approach to evaluate the behavior of new drugs. However, such cell models might not be able to fully predict the absorption mechanisms and metabolic pathways of the tested compounds. In recent years, induced pluripotent stem cells (iPSCs) differentiated into enterocyte-like cells have been proposed as more biorelevant intestinal models. In this review, we describe mechanisms underlying the differentiation of iPSCs into enterocyte-like cells, appraise the usefulness of these cells in tridimensional intestinal models, and discuss their suitability to be used in the future for drug screening.
Collapse
|
21
|
Thakuri PS, Liu C, Luker GD, Tavana H. Biomaterials-Based Approaches to Tumor Spheroid and Organoid Modeling. Adv Healthc Mater 2018; 7:e1700980. [PMID: 29205942 PMCID: PMC5867257 DOI: 10.1002/adhm.201700980] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Evolving understanding of structural and biological complexity of tumors has stimulated development of physiologically relevant tumor models for cancer research and drug discovery. A major motivation for developing new tumor models is to recreate the 3D environment of tumors and context-mediated functional regulation of cancer cells. Such models overcome many limitations of standard monolayer cancer cell cultures. Under defined culture conditions, cancer cells self-assemble into 3D constructs known as spheroids. Additionally, cancer cells may recapitulate steps in embryonic development to self-organize into 3D cultures known as organoids. Importantly, spheroids and organoids reproduce morphology and biologic properties of tumors, providing valuable new tools for research, drug discovery, and precision medicine in cancer. This Progress Report discusses uses of both natural and synthetic biomaterials to culture cancer cells as spheroids or organoids, specifically highlighting studies that demonstrate how these models recapitulate key properties of native tumors. The report concludes with the perspectives on the utility of these models and areas of need for future developments to more closely mimic pathologic events in tumors.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Chun Liu
- Departments of Radiology, Biomedical Engineering and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Departments of Radiology, Biomedical Engineering and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|