1
|
Sun X, Yu L, Xiao M, Zhang C, Zhao J, Narbad A, Chen W, Zhai Q, Tian F. Exploring Core fermentation microorganisms, flavor compounds, and metabolic pathways in fermented Rice and wheat foods. Food Chem 2025; 463:141019. [PMID: 39243605 DOI: 10.1016/j.foodchem.2024.141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The unique flavors of fermented foods significantly influence consumer purchasing choices, prompting widespread scientific interest in the flavor development process. Fermented rice and wheat foods are known for their unique flavors and they occupy an important place in the global diet. Many of these are produced on an industrial scale using starter cultures, whereas others rely on spontaneous fermentation, homemade production, or traditional activities. Microorganisms are key in shaping the sensory properties of fermented products through different metabolic pathways, thus earning the title "the essence of fermentation." Therefore, this study systematically summarizes the key microbial communities and their interactions that contribute positively to iconic fermented rice and wheat foods, such as steamed bread, bread, Mifen, and rice wine. This study revealed the mechanism by which these core microbial communities affect flavor and revealed the strategies of core microorganisms and related enzymes to enhance flavor during fermentation.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxing Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk NR4 7UA, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Zhang L, Wang M, Song H, Liang W, Wang X, Sun J, Wang D. Changes of microbial communities and metabolites in the fermentation of persimmon vinegar by bioaugmentation fermentation. Food Microbiol 2024; 122:104565. [PMID: 38839213 DOI: 10.1016/j.fm.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Mengyang Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Hairu Song
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Weina Liang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Xiaotong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China
| | - Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China.
| |
Collapse
|
3
|
Zhang X, Gao H, Zhang J, Liu L, Fu L, Zhao Y, Sun Y. Deciphering the core microbiota in open environment solid-state fermentation of Beijing rice vinegar and its correlation with environmental factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7159-7172. [PMID: 38629632 DOI: 10.1002/jsfa.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Rice vinegar is a popular cereal vinegar worldwide and is typically produced in an open environment, and the ecosystem of solid-state fermentation is complicated and robust. The present study aimed to reveal the shaping force of the establishment of the ecosystem of Beijing rice vinegar, the core function microbiota and their correlation with critical environmental factors. [Correction added after first online publication on 29 May 2024; the word "worldwide" has been removed from the first sentence under the section Background.] RESULTS: The experimental findings revealed the changes in environmental factors, major metabolites and microbial patterns during Beijing rice vinegar fermentation were obtained. The major metabolites accumulated at the middle and late acetic acid fermentation (AAF) periods. Principal coordinates and t-test analyses revealed the specific bacterial and fungal species at corresponding stages. Kosakonia, Methlobacterium, Sphingomonas, unidentified Rhizobiaceae, Pseudozyma and Saccharomycopsis dorminated during saccharification and alcohol fermentation and early AAF, whereas Lactococcus, Acetobacter, Rhodotorula and Kazachstania dominated the later AAF stages. Canonical correspondence analysis of environmental factors with core microbiota. Temperature and total acid were the most significant factors correlated with the SAF bacterial profile (Pediococcus, Weissella, Enterococcus and Kosakonia). Ethanol was the most significant factor between AAF1 and AAF3, and mainly affected Acetobacter and Lactobacillus. Conversely, ethanol was the most significant factor in the SAF, AAF1 and AAF3 fungi communities; typical microorganisms were Saccharomyces and Malassezia. Furthermore, the predicted phenotypes of bacteria and their response to environmental factors were evaluated. CONCLUSION In conclusion, the present study has provided insights into the process regulation of spontaneous fermentation and distinguished the key driving forces in the microbiota of Beijing rice vinegar fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Hang Gao
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Jian Zhang
- Beijing Academy of Food Sciences, Beijing, China
| | - Li Liu
- Beijing Academy of Food Sciences, Beijing, China
| | - Lijun Fu
- Beijing Academy of Food Sciences, Beijing, China
| | - Yan Zhao
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| |
Collapse
|
4
|
Ye X, Yu Y, Liu J, Zhu Y, Yu Z, Liu P, Wang Y, Wang K. Seasonal environmental factors drive microbial community succession and flavor quality during acetic acid fermentation of Zhenjiang aromatic vinegar. Front Microbiol 2024; 15:1442604. [PMID: 39171262 PMCID: PMC11335490 DOI: 10.3389/fmicb.2024.1442604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigated the impact of seasonal environmental factors on microorganisms and flavor compounds during acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar (ZAV). Environmental factors were monitored throughout the fermentation process, which spanned multiple seasons. Methods such as headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), high performance liquid chromatography (HPLC), and high-throughput sequencing were employed to examine how these environmental factors influenced the flavor profile and microbial community of ZAV. The findings suggested that ZAV brewed in autumn had the strongest flavor and sweetness. The key microorganisms responsible for the flavor of ZAV included Lactobacillus acetotolerans, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, Acetobacter pasteurianus. Moreover, correlation analysis showed that room temperature had a significant impact on the composition of the microbial community, along with other key seasonal environmental factors like total acid, pH, reducing sugar, and humidity. These results provide a theoretical foundation for regulating core microorganisms and environmental factors during fermentation, enhancing ZAV quality.
Collapse
Affiliation(s)
- Xiaoting Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Jiaxin Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, China
| |
Collapse
|
5
|
Shan Q, Yu W, Xu Q, Liu R, Ying S, Dong J, Bao Y, Lyu Q, Shi C, Xia J, Tang J, Kuang H, Wang K, Tian G, Cao G. Detoxification and underlying mechanisms towards toxic alkaloids by Traditional Chinese Medicine processing: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155623. [PMID: 38703661 DOI: 10.1016/j.phymed.2024.155623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Alkaloids have attracted enduring interest worldwide due to their remarkable therapeutic effects, including analgesic, anti-inflammatory, and anti-tumor properties, thus offering a rich source for lead compound design and new drug discovery. However, some of these alkaloids possess intrinsic toxicity. Processing (Paozhi) is a pre-treatment step before the application of herbal medicines in traditional Chinese medicine (TCM) clinics, which has been employed for centuries to mitigate the toxicity of alkaloid-rich TCMs. PURPOSE To explore the toxicity phenotypes, chemical basis, mode of action, detoxification processing methods, and underlying mechanisms, we can gain crucial insights into the safe and rational use of these toxic alkaloid-rich herbs. Such insights have the great potential to offer new strategies for drug discovery and development, ultimately improving the quality of life for millions of people. METHODS Literatures published or early accessed until December 31, 2023, were retrieved from databases including PubMed, Web of Science, and CNKI. The following keywords, such as "toxicity", "alkaloid", "detoxification", "processing", "traditional Chinese medicine", "medicinal plant", and "plant", were used in combination or separately for screening. RESULTS Toxicity of alkaloids in TCM includes hepatotoxicity, nephrotoxicity, neurotoxicity, cardiotoxicity, and other forms of toxicity, primarily induced by pyrrolizidines, quinolizidines, isoquinolines, indoles, pyridines, terpenoids, and amines. Factors such as whether the toxic-alkaloid enriched part is limited or heat-sensitive, and whether toxic alkaloids are also therapeutic components, are critical for choosing appropriate detoxification processing methods. Mechanisms of alkaloid detoxification includes physical removal, chemical decomposition or transformation, as well as biological modifications. CONCLUSION Through this exploration, we review toxic alkaloids and the mechanisms underlying their toxicity, discuss methods to reduce toxicity, and unravel the intricate mechanisms behind detoxification. These offers insights into the quality control of herbs containing toxic alkaloids, safe and rational use of alkaloid-rich TCMs in clinics, new strategies for drug discovery and development, and ultimately helping improve the quality of life for millions of people.
Collapse
Affiliation(s)
- Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Wei Yu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qiongfang Xu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruina Liu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuye Ying
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jie Dong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changcheng Shi
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Junjie Xia
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Tang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Gang Tian
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Helena Sances Rabelo M, Meira Borém F, Paula de Carvalho Alves A, Soares Pieroni R, Mendes Santos C, Nakajima M, Sugino R. Fermentation of coffee fruit with sequential inoculation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae: Effects on volatile composition and sensory characteristics. Food Chem 2024; 444:138608. [PMID: 38325081 DOI: 10.1016/j.foodchem.2024.138608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Mixed starter cultures of lactic acid bacteria and yeasts used in the production of fermented foods, including coffee, can improve the sensory quality and food safety. The objective of this study was to evaluate the effects of fermentation of coffee with inoculation of Lactiplantibacillus plantarum followed by Saccharomyces cerevisiae and the effects of fermentation time on the aroma and flavor of the coffee beverage and on the volatile composition of the roasted coffee beans. The coffee was fermented for 48 h or 96 h after inoculation of Lactiplantibacillus plantarum followed by inoculation of Saccharomyces cerevisiae or the respective controls. The aroma and flavor of the coffee beverage fermented with sequential inoculation showed complexity, with a predominance of fruity and fermented sensory notes. Forty-seven volatile compounds were identified. In addition, the sequentially inoculated coffees had greater formation of volatiles and led to greater perception of fruity and fermented flavor and aroma.
Collapse
Affiliation(s)
| | - Flávio Meira Borém
- Departamento de Engenharia Agrícola, Universidade Federal de Lavras, POB 3037, 37.200-000, Lavras, MG, Brazil
| | - Ana Paula de Carvalho Alves
- Departamento de Engenharia Agrícola, Universidade Federal de Lavras, POB 3037, 37.200-000, Lavras, MG, Brazil
| | | | - Claudia Mendes Santos
- Departamento de Engenharia Agrícola, Universidade Federal de Lavras, POB 3037, 37.200-000, Lavras, MG, Brazil
| | | | | |
Collapse
|
7
|
Han D, Yang Y, Guo Z, Chen K, Dai S, Zhu Y, Wang Y, Yu Z, Wang K, Liu P, Rong C, Yu Y. Metagenomics profiling of the microbial community and functional differences in solid-state fermentation vinegar starter (seed Pei) from different Chinese regions. Front Microbiol 2024; 15:1389737. [PMID: 38756727 PMCID: PMC11096547 DOI: 10.3389/fmicb.2024.1389737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The starter used in solid-state fermentation (SSF) vinegar, known as seed Pei is a microbial inoculant from the previous batch that is utilized during the acetic acid fermentation stage. The seed Pei, which has a notable impact on vinegar fermentation and flavor, is under-researched with comparative studies on microorganisms. Methods Herein metagenomics was employed to reveal the microbes and their potential metabolic functions of four seed Pei from three regions in China. Results The predominant microbial taxa in all four starters were bacteria, followed by viruses, eukaryotes, and archaea, with Lactobacillus sp. or Acetobacter sp. as main functional taxa. The seed Pei used in Shanxi aged vinegar (SAV) and Sichuan bran vinegar (SBV) exhibited a higher similarity in microbial composition and distribution of functional genes, while those used in two Zhenjiang aromatic vinegar (ZAV) differed significantly. Redundancy analysis (RDA) of physicochemical factors and microbial communities indicated that moisture content, pH, and reducing sugar content are significant factors influencing microbial distribution. Moreover, seven metagenome-assembled genomes (MAGs) that could potentially represent novel species were identified. Conclusions There are distinctions in the microbiome and functional genes among different seed Pei. The vinegar starters were rich in genes related to carbohydrate metabolism. This research provides a new perspective on formulating vinegar fermentation starters and developing commercial fermentation agents for vinegar production.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yunsong Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhantong Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ken Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shuwen Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chunchi Rong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
8
|
Wang K, Shi Y, Feng J, Zhao Y, Zhu H, Chen D, Gong X, Fang M, Yu Y. Investigation of Zhenjiang Aromatic Vinegar Production Using a Novel Dry Gelatinization Process. Foods 2024; 13:1071. [PMID: 38611375 PMCID: PMC11011547 DOI: 10.3390/foods13071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The traditional process of producing Zhenjiang aromatic vinegar faces challenges such as high water usage, wastewater generation, raw material losses, and limitations in mechanization and workshop conditions. This study introduces and evaluates a novel dry gelatinization process, focusing on fermentation efficiency and the vinegar flavor profile. The new process shows a 39.1% increase in alcohol conversion efficiency and a 14% higher yield than the traditional process. Vinegar produced through the dry gelatinization process has a stronger umami taste and a higher lactic acid concentration. Both processes detected 33 volatile substances, with the dry gelatinization process showing a notably higher concentration of 2-methylbutanal, which imparts a distinct fruity and chocolate aroma. These findings suggest that the dry gelatinization process outperforms the traditional process in several aspects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yongjian Yu
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, School of Grain Science and Technology, Jiangsu University of Science and Technology, 666 Changhui Avenue, Zhenjiang 212100, China; (K.W.); (Y.S.); (J.F.); (Y.Z.); (H.Z.); (D.C.); (X.G.); (M.F.)
| |
Collapse
|
9
|
Leal Maske B, Murawski de Mello AF, da Silva Vale A, Prado Martin JG, de Oliveira Soares DL, De Dea Lindner J, Soccol CR, de Melo Pereira GV. Exploring diversity and functional traits of lactic acid bacteria in traditional vinegar fermentation: A review. Int J Food Microbiol 2024; 412:110550. [PMID: 38199016 DOI: 10.1016/j.ijfoodmicro.2023.110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Vinegar has been used for centuries as a food preservative, flavor enhancer, and medicinal agent. While commonly known for its sour taste and acidic properties due to acetic acid bacteria metabolism, vinegar is also home to a diverse community of lactic acid bacteria (LAB). The main genera found during natural fermentation include Lactobacillus, Lacticaseibacillus, Lentilactobacillus, Limosilactbacillus, Leuconostoc, and Pedicoccus. Many of the reported LAB species fulfill the probiotic criteria set by the World Health Organization (WHO). However, it is crucial to acknowledge that LAB viability undergoes a significant reduction during vinegar fermentation. While containing LAB, none of the analyzed vinegar met the minimum viable amount required for probiotic labeling. To fully unlock the potential of vinegar as a probiotic, investigations should be focused on enhancing LAB viability during vinegar fermentation, identifying strains with probiotic properties, and establishing appropriate dosage and consumption guidelines to ensure functional benefits. Currently, vinegar exhibits substantial potential as a postbiotic product, attributed to the high incidence and growth of LAB in the initial stages of the fermentation process. This review aims to identify critical gaps and address the essential requirements for establishing vinegar as a viable probiotic product. It comprehensively examines various relevant aspects, including vinegar processing, total and LAB diversity, LAB metabolism, the potential health benefits linked to vinegar consumption, and the identification of potential probiotic species.
Collapse
Affiliation(s)
- Bruna Leal Maske
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil; SENAI Institute of Innovation in Electrochemistry, Curitiba, PR, Brazil
| | | | - Alexander da Silva Vale
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil
| | | | | | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil
| | | |
Collapse
|
10
|
Shen L, Wang Y, Li X, Hou Z, Mao J, Shi J, Battino M, Routledge MN, Gong Y, Zou X, Zhang D. Spatial-temporal distribution of deoxynivalenol, aflatoxin B 1, and zearalenone in the solid-state fermentation basin of traditional vinegar and their potential correlation with microorganisms. Food Chem 2024; 433:137317. [PMID: 37683481 DOI: 10.1016/j.foodchem.2023.137317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
This study revealed the spatial-temporal distribution of deoxynivalenol (DON), aflatoxin B1 (AFB1), and zearalenone (ZEN) during the acetic acid fermentation (AAF) of aromatic vinegar and the corresponding correlation with the microbial community. A total of 324 samples were collected during the AAF process to analyze the mycotoxin content. The average DON content fluctuated during the first 7 d, while the average AFB1 and ZEN levels increased at 5-7 d and 7-11 d, respectively, remaining stable until the end of fermentation. In addition, the significant AFB1 and ZEN content variation was limited to the cross-sectional sampling planes in the fermentation basin, while DON was heterogeneously distributed on the cross-sectional, horizontal, and vertical sampling planes. Furthermore, the redundancy analysis and Spearman correlation coefficients revealed close relationships between three mycotoxins and certain bacterial and fungal species. This study provides new information regarding the mycotoxins during solid-state fermentation of traditional vinegar.
Collapse
Affiliation(s)
- Lingqin Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziqing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jin Mao
- National Reference Laboratory for Agricultural Testing, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maurizio Battino
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Michael N Routledge
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Leicester Medical School, University of Leicester, Leicester, UK
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Wu J, Li Q, Hu K, Li J, Durán-Guerrero E, Liu S, Guo M, Liu A. Microbial characterization of Sichuan Baoning vinegar: lactic acid bacteria, acetic acid bacteria and yeasts. Arch Microbiol 2024; 206:59. [PMID: 38191944 DOI: 10.1007/s00203-023-03784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Sichuan Baoning vinegar, a typical representative of Sichuan bran vinegar, is a famous traditional fermented food made from cereals in China. At present, there are few studies on microbial characterization of culturable microorganisms in solid-state fermentation of Sichuan bran vinegar. To comprehensively understand the diversity of lactic acid bacteria, acetic acid bacteria and yeasts, which play an important role in the fermentation of Sichuan bran vinegar, traditional culture-dependent methods combined with morphological, biochemical, and molecular identification techniques were employed to screen and identify these isolates. A total of 34 lactic acid bacteria isolates, 39 acetic acid bacteria isolates, and 48 yeast isolates were obtained. Lactic acid bacteria were dominated by Enterococcus durans, Leuconostoc citreum, Lactococcus lactis, and Lactiplantibacillus plantarum, respectively. Latilactobacillus sakei was the first discovery in cereal vinegar. Acetic acid bacteria were mainly Acetobacter pomorum and A. pasteurianus. The dominant yeast isolates were Saccharomyces cerevisiae, in addition to four non-Saccharomyces yeasts. DNA fingerprinting revealed that isolates belonging to the same species exhibited intraspecific diversity, and there were differences between phenotypic and genotypic classification results. This study further enriches studies on cereal vinegar and lays a foundation for the development of vinegar starters.
Collapse
Affiliation(s)
- Jie Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agri-food Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510, Puerto Real, Cadiz, Spain
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China
| | - Mingye Guo
- Sichuan Baoning Vinegar Co., Ltd, Langzhong, 637400, Sichuan, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Fan J, Qu G, Wang D, Chen J, Du G, Fang F. Synergistic Fermentation with Functional Microorganisms Improves Safety and Quality of Traditional Chinese Fermented Foods. Foods 2023; 12:2892. [PMID: 37569161 PMCID: PMC10418588 DOI: 10.3390/foods12152892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Traditional fermented foods are favored by people around the world for their positive health and taste advantages. Many of the fermented foods, including Chinese traditional fermented foods, are produced through mixed-culture fermentation. Apart from reducing the formation of harmful compounds such as ethyl carbamate (EC) and biogenic amines (BAs) during food fermentation, it is also difficult to precisely control and regulate the fermentation process based on the control of environmental conditions alone, due to the complex microbiota and an unclarified fermentation mechanism. In this review, key microorganisms involved in Chinese fermented foods such as baijiu, soy sauce, and vinegar production are elaborated, and relations between microbial composition and the aroma or quality of food are discussed. This review focuses on the interpretation of functions and roles of beneficial (functional) microorganisms that participate in food fermentation and the discussion of the possibilities of the synergistic use of functional microorganisms to improve the safety and quality of Chinese fermented foods. Conducting work toward the isolation of beneficial microorganisms is a challenge for modern food fermentation technology. Thus, methods for the isolation and mutagenesis of functional microbial strains for synergistic food fermentation are summarized. Finally, the limitations and future prospects of the use of functional microorganisms in traditional Chinese fermented foods are reviewed. This review provides an overview of the applications of synergistic fermentation with functional microorganisms in the improvement of the safety or sensory qualities of fermented foods.
Collapse
Affiliation(s)
- Jingya Fan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guanyi Qu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Datao Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fang Fang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Long W, Lei G, Guan Y, Chen H, Hu Z, She Y, Fu H. Classification of Chinese traditional cereal vinegars and antioxidant property predication by fluorescence spectroscopy. Food Chem 2023; 424:136406. [PMID: 37216781 DOI: 10.1016/j.foodchem.2023.136406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/15/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
In this work, a rapid and accurate strategy for classification of Chinese traditional cereal vinegars (CTCV) and antioxidant property predication was proposed by using the combination fluorescence spectroscopy and machine learning. Three characteristic fluorescent components were extracted by parallel factor analysis (PARAFAC), which have correlations greater than 0.8 with antioxidant activity of CTCV obtained by Pearson correlation analysis. Machine learning methods, including linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA) and N-way partial least squares discriminant analysis (N-PLS-DA), were used for the classification of different types of CTCV, and the correct classification rates was higher than 97%. The antioxidant property of CTCV were further quantified by using optimized variable-weighted least-squares support vector machine based on particle swarm optimization (PSO-VWLS-SVM). The proposed strategy provides a basis for further research on antioxidant active ingredients and antioxidant mechanisms of CTCV, and enable the continued exploration and application of CTCV from different types.
Collapse
Affiliation(s)
- Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Guanghua Lei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuting Guan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Zikang Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Wei J, Lu J, Nie Y, Li C, Du H, Xu Y. Amino Acids Drive the Deterministic Assembly Process of Fungal Community and Affect the Flavor Metabolites in Baijiu Fermentation. Microbiol Spectr 2023; 11:e0264022. [PMID: 36943039 PMCID: PMC10100711 DOI: 10.1128/spectrum.02640-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
Nutrient fluctuation is ubiquitous in fermentation ecosystems. However, the microbial community assembly mechanism and metabolic characteristics in response to nutrient variation are still unclear. Here, we used Baijiu fermentation as a case example to study the responses of microbial community assembly and metabolic characteristics to the variation of amino acids using high-throughput sequencing and metatranscriptomics analyses. We chose two fermentation groups (group A with low amino acid and group B with high amino acid contents). The two groups showed similar succession patterns in the bacterial community, whereas they showed different succession in the fungal community wherein Pichia was dominant in group A and Zygosaccharomyces was dominant in group B. The β-nearest taxon index (βNTI) revealed that bacterial community was randomly formed, whereas fungal community assembly was a deterministic process. Variance partitioning analysis and redundancy analysis revealed that amino acids showed the largest contribution to the fungal community (37.64%, P = 0.005) and were more tightly associated with it in group B. Further study revealed that serine was positively related to Zygosaccharomyces and promoted its growth and ethanol production. Metatranscriptomic analysis revealed that the differential metabolic pathways between the two groups mainly included carbohydrate metabolism and amino acid metabolism, which explained the differences of ethanol production and volatile metabolites (such as isoamylol, isobutanol, and 2-methyl-1-butanol). Then these metabolic pathways were constructed and related gene expression and active microorganisms were listed. Our study provides a systematical understanding of the roles of amino acids in both ecological maintenance and flavor metabolism in fermentation ecosystems. IMPORTANCE In spontaneous fermented foods production, nutrient fluctuation is a critical factor affecting microbial community assembly and metabolic function. Revealing the microbial community assembly mechanism and how it regulates its metabolic characteristics in response to nutrient variation is helpful to the management of the fermentation process. This study provides a systematical understanding of the effect of amino acids on the microbial community assembly and flavor metabolisms using Baijiu fermentation as a case example. The data of this study highlight the importance of the nutrient management in fermentation ecosystems.
Collapse
Affiliation(s)
- Junlin Wei
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jun Lu
- Guizhou Guotai Liquor Group Co. Ltd., Guizhou, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Changwen Li
- Guizhou Guotai Liquor Group Co. Ltd., Guizhou, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Ye X, Yu Y, Liu J, Zhu Y, Yu Z, Liu P, Wang Y, Wang K. Inoculation strategies affect the physicochemical properties and flavor of Zhenjiang aromatic vinegar. Front Microbiol 2023; 14:1126238. [PMID: 36970705 PMCID: PMC10033837 DOI: 10.3389/fmicb.2023.1126238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Inoculation strategy is a significant determinant of the flavor quality of Zhenjiang aromatic vinegar. Herein, the comparative analyses of the effects of various inoculation strategies on the physicochemical properties, microbial community structure, and flavoring characteristics of Zhenjiang aromatic vinegar were performed. The results showed that the contents of total acid (6.91 g/100 g), organic acid (2099.63 ± 4.13 mg/100 g) and amino acid (3666.18 ± 14.40 mg/100 g) in the direct inoculation strategy were higher than those in the traditional inoculation strategy (6.21 ± 0.02 g/100 g, 1939.66 ± 4.16 mg/100 g and 3301.46 ± 13.41 mg/100 g). At the same time, it can effectively promote the production of acetoin. The diversity of strains under the traditional inoculation strategy was higher than that under the direct inoculation strategy, and the relative abundance of major microbial genera in the fermentation process was lower than that under the direct inoculation strategy. In addition, for two different inoculation strategies, pH was proved to be an important environmental factor affecting the microbial community structure during acetic acid fermentation. The correlation between main microbial species, organic acids, non-volatile acids, and volatile flavor compounds is more consistent. Therefore, this study may help to develop direct injection composite microbial inoculants to replace traditional starter cultures in future research.
Collapse
|
16
|
Tang Q, Huang J, Zhang S, Qin H, Dong Y, Wang C, Li D, Zhou R. Exploring the mechanism of regulating the microbial community and metabolizing trait in Chinese Baijiu fermentation via Huizao. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Yao C, Li Y, Luo L, Xie F, Xiong Q, Li T, Yang C, Feng PM. Significant Differences in Gut Microbiota Between Irritable Bowel Syndrome with Diarrhea and Healthy Controls in Southwest China. Dig Dis Sci 2023; 68:106-127. [PMID: 35503487 DOI: 10.1007/s10620-022-07500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/24/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a heterogeneous disease, which is closely related to environmental factors and gut microbiota. OBJECTIVE To study gut microbiota in IBS-D of Han nationality in Southwest China and explore its relationship with environmental factors. METHODS One hundred and twenty cases of IBS-D and 63 cases of HCs were recruited; baseline data such as age, height, and weight were collected. HAMA, HAMD, IBS-SSS, IBS-QOL, and laboratory tests were performed. Feces were collected for 16S rDNA sequencing. Then, the differences of gut microbiota were analyzed and looked for biomarkers of each. FAPROTAX was used to predict the functional differences of gut microbiota. Spearman analysis was conducted between the phylum level and environmental factor. RESULTS There were significant differences in daily life between IBS-D and HCs, especially in the spicy taste. The scores of HAMA and HAMD, urea, and transaminase in IBS-D were significantly higher than those of HCs. The richness of gut microbiota in IBS-D was significantly lower than that of HCs, as well as the beta diversity, but not diversity. The biomarkers of IBS-D were Prevotella, Clostridiales, and Roseburia, and the biomarkers of HCs were Veillonellaceae, Bacteroides coprocola, and Bifidobacteriales. The functions of gut microbiota in IBS-D were significantly different from HCs. Correlation analysis showed that multiple gut microbiota were closely related to HAMA, IBS-SSS, IBS-QOL, inflammatory indexes, and liver enzymes. CONCLUSION There are significant differences in richness of gut microbiota, flora structure, and flora function between IBS-D and HCs in Southwest China. These differences may be closely related to environmental factors such as eating habits, living habits, and mental and psychological factors. CLINICAL TRIAL REGISTRATION The trial was registered and approved in China Clinical Trial Registry (Registration No. ChiCTR2100045751).
Collapse
Affiliation(s)
- Chengjiao Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China.,Department of Geriatrics of the Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yilin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China.,North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihong Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China
| | - Fengjiao Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China
| | - Qin Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China
| | - Tinglin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China
| | - Chunrong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China
| | - Pei-Min Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
18
|
Chen C, Xiong Y, Xie Y, Zhang H, Jiang K, Pang XN, Huang M. Metabolic characteristics of lactic acid bacteria and interaction with yeast isolated from light-flavor Baijiu fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Pelicaen R, Weckx S, Gonze D, De Vuyst L. Application of comparative genomics of Acetobacter species facilitates genome-scale metabolic reconstruction of the Acetobacter ghanensis LMG 23848 T and Acetobacter senegalensis 108B cocoa strains. Front Microbiol 2022; 13:1060160. [PMID: 36504784 PMCID: PMC9729256 DOI: 10.3389/fmicb.2022.1060160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Acetobacter species play an import role during cocoa fermentation. However, Acetobacter ghanensis and Acetobacter senegalensis are outcompeted during fermentation of the cocoa pulp-bean mass, whereas Acetobacter pasteurianus prevails. In this paper, an in silico approach aimed at delivering some insights into the possible metabolic adaptations of A. ghanensis LMG 23848T and A. senegalensis 108B, two candidate starter culture strains for cocoa fermentation processes, by reconstructing genome-scale metabolic models (GEMs). Therefore, genome sequence data of a selection of strains of Acetobacter species were used to perform a comparative genomic analysis. Combining the predicted orthologous groups of protein-encoding genes from the Acetobacter genomes with gene-reaction rules of GEMs from two reference bacteria, namely a previously manually curated model of A. pasteurianus 386B (iAp386B454) and two manually curated models of Escherichia coli (EcoCyc and iJO1366), allowed to predict the set of reactions present in A. ghanensis LMG 23848T and A. senegalensis 108B. The predicted metabolic network was manually curated using genome re-annotation data, followed by the reconstruction of species-specific GEMs. This approach additionally revealed possible differences concerning the carbon core metabolism and redox metabolism among Acetobacter species, pointing to a hitherto unexplored metabolic diversity. More specifically, the presence or absence of reactions related to citrate catabolism and the glyoxylate cycle for assimilation of C2 compounds provided not only new insights into cocoa fermentation but also interesting guidelines for future research. In general, the A. ghanensis LMG 23848T and A. senegalensis 108B GEMs, reconstructed in a semi-automated way, provided a proof-of-concept toward accelerated formation of GEMs of candidate functional starter cultures for food fermentation processes.
Collapse
Affiliation(s)
- Rudy Pelicaen
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium,ULB-VUB Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium,ULB-VUB Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Didier Gonze
- ULB-VUB Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium,Unité de Chronobiologie Théorique, Service de Chimie Physique, Faculté des Sciences, Université libre de Bruxelles, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Luc De Vuyst,
| |
Collapse
|
20
|
Xia M, Zhang X, Xiao Y, Sheng Q, Tu L, Chen F, Yan Y, Zheng Y, Wang M. Interaction of acetic acid bacteria and lactic acid bacteria in multispecies solid-state fermentation of traditional Chinese cereal vinegar. Front Microbiol 2022; 13:964855. [PMID: 36246224 PMCID: PMC9557190 DOI: 10.3389/fmicb.2022.964855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The microbial community plays an important role on the solid-state fermentation (SSF) of Chinese cereal vinegar, where acetic acid bacteria (AAB) and lactic acid bacteria (LAB) are the dominant bacteria. In this study, the top-down (in situ) and bottom-up (in vitro) approaches were employed to reveal the interaction of AAB and LAB in SSF of Shanxi aged vinegar (SAV). The results of high-throughput sequencing indicates that Acetobacter pasteurianus and Lactobacillus helveticus are the predominant species of AAB and LAB, respectively, and they showed negative interrelationship during the fermentation. A. pasteurianus CGMCC 3089 and L. helveticus CGMCC 12062, both of which were isolated from fermentation of SAV, showed no nutritional competition when they were co-cultured in vitro. However, the growth and metabolism of L. helveticus CGMCC 12062 were inhibited during SSF due to the presence of A. pasteurianus CGMCC 3089, indicating an amensalism phenomenon between these two species. The transcriptomic results shows that there are 831 differentially expressed genes (|log2 (Fold Change)| > 1 and, p ≤ 0.05) in L. helveticus CGMCC 12062 under co-culture condition comparing to its mono-culture, which are mainly classified into Gene Ontology classification of molecular function, biological process, and cell composition. Of those 831 differentially expressed genes, 202 genes are up-regulated and 629 genes are down-regulated. The down-regulated genes were enriched in KEGG pathways of sugar, amino acid, purine, and pyrimidine metabolism. The transcriptomic results for A. pasteurianus CGMCC 3089 under co-culture condition reveals 529 differentially expressed genes with 393 up-regulated and 136 down-regulated, and the genes within KEGG pathways of sugar, amino acid, purine, and pyrimidine metabolism are up-regulated. Results indicate an amensalism relationship in co-culture of A. pasteurianus and L. helveticus. Therefore, this work gives a whole insight on the interaction between the predominant species in SSF of cereal vinegar from nutrient utilization, endogenous factors inhibition and the regulation of gene transcription.
Collapse
Affiliation(s)
- Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaofeng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yun Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Linna Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Yan
- Shanxi Zilin Vinegar Industry Co., Ltd., Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Taiyuan, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Yu Zheng, Min Wang,
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Yu Zheng, Min Wang,
| |
Collapse
|
21
|
Zhang X, Zhang X, Yan Y, Liu Y, Zhao X, Xu H, He L, Huang Y. Relationship between flavor compounds and changes of microbial community in the solid fermented vinegar. Biosci Biotechnol Biochem 2022; 86:1581-1589. [PMID: 35998319 DOI: 10.1093/bbb/zbac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022]
Abstract
The relationship between volatile compounds of vinegar and microorganisms is not clear, especially pyrazine, a trace component. In order to reveal their potential relationship, high throughput sequencing, solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and Spearman's correlation analysis were used. Results showed that Acetobacter and Lactobacillus with opposite abundance trends were the predominant bacteria, and the total abundance of them exceeds 98%, while the predominant fungal genera were Aspergillus and Malassezia, their highest abundances are 75.4% and 81.5% respectively. In the whole process of microbial community succession, six pyrazines were detected including trimethylpyrazine and tetramethylpyrazine, etc, and Spearman's correlation analysis showed that they were positively correlated with the presence of Vibrionimonas, Paraburkholderia, Paucibacter, Komagataeibacter, Acinetobacter and Slinibacter. In general, this study further revealed more species related to pyrazines, it will be helpful to understand the formation of pyrazines and promote the improvement of vinegar quality.
Collapse
Affiliation(s)
- Xuelin Zhang
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Jinan, Shandong, China
| | - Xingrong Zhang
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Jinan, Shandong, China
| | - Yongheng Yan
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Jinan, Shandong, China
| | - Yang Liu
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Jinan, Shandong, China
| | - Xiangying Zhao
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Jinan, Shandong, China
| | - Hui Xu
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Jinan, Shandong, China
| | - Lianzhi He
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Jinan, Shandong, China
| | - Yanhong Huang
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
22
|
Mao F, Huang J, Zhou R, Qin H, Zhang S, Cai X, Qiu C. Effects of Different Daqu on Microbial Community Domestication and Metabolites in Nongxiang Baijiu Brewing Microecosystem. Front Microbiol 2022; 13:939904. [PMID: 35847071 PMCID: PMC9279870 DOI: 10.3389/fmicb.2022.939904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
The quality and yield of the fresh Baijiu mainly depend on the activity of pit mud (PM) and the quality of Daqu. However, the cultivation of PM is a long-term process, and high-quality Daqu can change the community structure of fermented grain (FG) and accelerate the evolution of PM communities. The present research aimed to investigate the four different types of Daqu on the FG-fermenting microbial community structure and metabolites and their interphase interactions with PM. These results show that Kroppenstedtia in the bacterial community of Taikong Daqu (TK) was positively correlated with ethyl caproate, which significantly increased the content of FG volatile metabolites, especially lipid components, and facilitated the accelerated evolution of Methanobacteriales and Methanosarcinales in PM. Bacillus has a high relative abundance in Qianghua Daqu (QH), which shows obvious advantages to improving the alcoholic strength of FG and contributing to increasing the abundance of Methanomicrobiales in PM. Qianghua and traditional-mixed Daqu (HH) have a similar bacterial composition to QH and a similar fungal composition to traditional Daqu (DZ), and thus also showed the advantage of increased yield, but the volatile flavor metabolites produced were not as dominant as DZ. β-diversity analysis showed that in TK fermentation systems, FG is more likely to domesticate the structure of PM microorganisms. These results indicated that the interaction between microbial communities in Baijiu fermentation niches was significantly influenced by different Daqu. It can not only enhance the key volatiles in FG but also accelerate the evolving direction of the community in PM. Daqu fortified by functional genera or microbiota can evolve a community structure more suitable for Baijiu fermentation. The microbiota composition and interaction between the communities in both Daqu and PM significantly impacts the yield and quality of the base liquor.
Collapse
Affiliation(s)
- Fengjiao Mao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- National Engineering Laboratory of Clean Technology for Leather Manufacture, Sichuan University, Chengdu, China
- National Engineering Research Centre of Solid-State Brewing, Luzhou, China
- *Correspondence: Rongqing Zhou,
| | - Hui Qin
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | - Suyi Zhang
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | - Xiaobo Cai
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | | |
Collapse
|
23
|
Zheng T, Zhang Q, Peng Z, Li D, Wu X, Liu Y, Li P, Zhang J, Du G. Metabolite-based cell sorting workflow for identifying microbes producing carbonyls in tobacco leaves. Appl Microbiol Biotechnol 2022; 106:4199-4209. [PMID: 35599257 DOI: 10.1007/s00253-022-11982-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
Carbonyl compounds represented by aldehydes and ketones make an important contribution to the flavor of tobacco. Since most carbonyl compounds are produced by microbes during tobacco fermentation, identifying their producers is important to improve the quality of tobacco. Here, we created an efficient workflow that combines metabolite labeling with fluorescence-activated cell sorting (ML-FACS), 16S rRNA gene sequencing, and microbial culture to identify the microbes that produce aldehydes or ketones in fermented cigar tobacco leaves (FCTL). Microbes were labeled with a specific fluorescent dye (cyanine5 hydrazide) and separated by flow cytometry. Subsequently, the sorted microbes were identified and cultured under laboratory conditions. Four genera, Acinetobacter, Sphingomonas, Solibacillus, and Lysinibacillus, were identified as the main carbonyl compound-producing microbes in FCTL. In addition, these microorganisms could produce flavor-related aldehydes and ketones in a simple synthetic medium, such as benzaldehyde, phenylacetaldehyde, 4-hydroxy-3-ethoxy-benzaldehyde, and 3,5,5-trimethyl-2-cyclohexene-1-one. On the whole, this research has developed a new method to quickly isolate and identify microorganisms that produce aldehydes or ketones from complex microbial communities. ML-FACS would also be used to identify other compound-producing microorganisms in other systems. KEY POINTS: • An approach was developed to identify target microbes in complex communities. • Microbes that produce aldehyde/ketone flavor compounds in fermented cigar tobacco leaves were identified. • Functional microbes that produce aldehyde/ketone flavor compounds from the native environment were captured in pure cultures.
Collapse
Affiliation(s)
- Tianfei Zheng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Zheng Peng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Xinying Wu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yi Liu
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
24
|
Spatial heterogeneity of the microbiome and metabolome profiles of high-temperature Daqu in the same workshop. Food Res Int 2022; 156:111298. [DOI: 10.1016/j.foodres.2022.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
|
25
|
He M, Jin Y, Zhou R, Zhao D, Zheng J, Wu C. Dynamic succession of microbial community in Nongxiangxing daqu and microbial roles involved in flavor formation. Food Res Int 2022; 159:111559. [DOI: 10.1016/j.foodres.2022.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
|
26
|
Li Z, Zhao C, Dong L, Huan Y, Yoshimoto M, Zhu Y, Tada I, Wang X, Zhao S, Zhang F, Li L, Arita M. Comprehensive Metabolomic Comparison of Five Cereal Vinegars Using Non-Targeted and Chemical Isotope Labeling LC-MS Analysis. Metabolites 2022; 12:metabo12050427. [PMID: 35629931 PMCID: PMC9144210 DOI: 10.3390/metabo12050427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Vinegar is used as an acidic condiment and preservative worldwide. In Asia, various black vinegars are made from different combinations of grains, such as Sichuan bran vinegar (SBV), Shanxi aged vinegar (SAV), Zhenjiang aromatic vinegar (ZAV), and Fujian Monascus vinegar (FMV) in China and Ehime black vinegar in Japan (JBV). Understanding the chemical compositions of different vinegars can provide information about nutritional values and the quality of the taste. This study investigated the vinegar metabolome using a combination of GC-MS, conventional LC-MS, and chemical isotope labeling LC-MS. Different types of vinegar contained different metabolites and concentrations. Amino acids and organic acids were found to be the main components. Tetrahydroharman-3-carboxylic acid and harmalan were identified first in vinegar. Various diketopiperazines and linear dipeptides contributing to different taste effects were also detected first in vinegar. Dipeptides, 3-phenyllactic acid, and tyrosine were found to be potential metabolic markers for differentiating vinegars. The differently expressed pathway between Chinese and Japanese vinegar was tryptophan metabolism, while the main difference within Chinese vinegars was aminoacyl-tRNA biosynthesis metabolism. These results not only give insights into the metabolites in famous types of cereal vinegar but also provide valuable knowledge for making vinegar with desirable health characteristics.
Collapse
Affiliation(s)
- Zhihua Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (C.Z.); (L.D.); (Y.Z.); (F.Z.)
- Correspondence: (Z.L.); (L.L.); (M.A.)
| | - Chi Zhao
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (C.Z.); (L.D.); (Y.Z.); (F.Z.)
| | - Ling Dong
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (C.Z.); (L.D.); (Y.Z.); (F.Z.)
| | - Yu Huan
- China Application Service Center, SCIEX Analytical Instrument Trading Co., Shanghai 200335, China;
| | - Miwa Yoshimoto
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Japan; (M.Y.); (I.T.)
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (C.Z.); (L.D.); (Y.Z.); (F.Z.)
| | - Ipputa Tada
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Japan; (M.Y.); (I.T.)
| | - Xiaohang Wang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.W.); (S.Z.)
| | - Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.W.); (S.Z.)
| | - Fengju Zhang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (C.Z.); (L.D.); (Y.Z.); (F.Z.)
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.W.); (S.Z.)
- Correspondence: (Z.L.); (L.L.); (M.A.)
| | - Masanori Arita
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Japan; (M.Y.); (I.T.)
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Correspondence: (Z.L.); (L.L.); (M.A.)
| |
Collapse
|
27
|
Zhang M, Li X, Mu D, Cai J, Zhang M, Liu Y, Zheng Z, Jiang S, Wu X. Cofermentation metabolism characteristics of apple vinegar with
Acetobacter pasteurianus
and
Lactobacillus plantarum. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Meng Zhang
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei, Anhui Province 230009 P.R. China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei, Anhui Province 230009 P.R. China
| | - Dongdong Mu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei, Anhui Province 230009 P.R. China
| | - Jing Cai
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei, Anhui Province 230009 P.R. China
| | - Min Zhang
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei, Anhui Province 230009 P.R. China
| | - Yong Liu
- Fuyang Normal University Fuyang, 236037 P.R. China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei, Anhui Province 230009 P.R. China
| | - Shaotong Jiang
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei, Anhui Province 230009 P.R. China
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei, Anhui Province 230009 P.R. China
| |
Collapse
|
28
|
Zheng Y, Zhao C, Li X, Xia M, Wang X, Zhang Q, Yan Y, Lang F, Song J, Wang M. Kinetics of predominant microorganisms in the multi-microorganism solid-state fermentation of cereal vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Shi H, Li J, Zhang Y, Ding K, Zhao G, Hadiatullah H, Duan X. Effect of wheat germination on nutritional properties and the flavor of soy sauce. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Unraveling the Chemosensory Characteristics of Typical Chinese Commercial Rice Vinegars with Multiple Strategies. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Shi H, Zhou X, Yao Y, Qu A, Ding K, Zhao G, Liu SQ. Insights into the microbiota and driving forces to control the quality of vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Huang T, Lu ZM, Peng MY, Liu ZF, Chai LJ, Zhang XJ, Shi JS, Li Q, Xu ZH. Combined effects of fermentation starters and environmental factors on the microbial community assembly and flavor formation of Zhenjiang aromatic vinegar. Food Res Int 2022; 152:110900. [DOI: 10.1016/j.foodres.2021.110900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/06/2023]
|
33
|
Peng MY, Zhang XJ, Huang T, Zhong XZ, Chai LJ, Lu ZM, Shi JS, Xu ZH. Komagataeibacter europaeus improves community stability and function in solid-state cereal vinegar fermentation ecosystem: Non-abundant species plays important role. Food Res Int 2021; 150:110815. [PMID: 34863491 DOI: 10.1016/j.foodres.2021.110815] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023]
Abstract
Solid-state fermentation of Chinese traditional cereal vinegar is a complex and retractable ecosystem with multi-species involved, including few abundant and many non-abundant species. However, the roles of non-abundant species in vinegar fermentation remain unknown. Here, we studied the assembly and co-occurrence patterns for abundant and non-abundant bacterial sub-communities using Zhenjiang aromatic vinegar fermentation as a model system. Our results showed that the change of reducing sugar and total titratable acid were the main driving forces for the assembly of abundant and non-abundant sub-communities, respectively. The non-abundant sub-community was more sensitive to the environmental variation of acetic acid fermentation (AAF) process. Integrated co-occurrence network revealed that non-abundant sub-communities occupied most of the nodes in the network, which play fundamental roles in network stability. Importantly, non-abundant species-Komagataeibacter europaeus, showed the highest value of degree in the co-occurrence network, implying its importance for the metabolic function and resilience of the microbial community. Bioaugmentation of K. europaeus JNP1 verified that it can effectively modulate bacterial composition and improve the robustness of co-occurrence network in situ, accompanied by (i) increased acetic acid content (14.78%) and decreased reducing sugar content (40.38%); and (ii) increased the gene numbers of phosphogluconate dehydratase (212.24%) and aldehyde dehydrogenase (192.31%). Overall, the results showed that non-abundant bacteria could be used to regulate the desired metabolic function of the community, and might play an important ecological significance in traditional fermented foods.
Collapse
Affiliation(s)
- Ming-Ye Peng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| | - Ting Huang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Zhong Zhong
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| |
Collapse
|
34
|
Wang Z, Ji X, Wang S, Wu Q, Xu Y. Sugar profile regulates the microbial metabolic diversity in Chinese Baijiu fermentation. Int J Food Microbiol 2021; 359:109426. [PMID: 34627066 DOI: 10.1016/j.ijfoodmicro.2021.109426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Cereals are widely used as raw material for food fermentation, and they can provide a variety of sugars in the fermentation via saccharification. However, the effect of sugar profile on microbial metabolism in spontaneous food fermentation is still unclear. Here, this work studied the regulation of sugar profile on the diversity of microbiota and their metabolism in Chinese Baijiu fermentation using sorghum as raw material. Six sugars were detected during Baijiu fermentation with 6 different cultivars of sorghum. The diversity of microbiota (ANOSIM: bacteria: P = 0.001, R = 0.77; fungi: P = 0.009, R = 0.33) and metabolites (ANOSIM: P = 0.001, R = 0.50) had different profiles during Baijiu fermentation. Among these sugars, glucose, fructose, and arabinose were identified as key sugars driving both the microbial and the metabolic diversity during Chinese Baijiu fermentation, and the metabolic diversity was positively correlated with the microbial diversity (P < 0.05). Hence, response surface methodology was used to establish a predictive model for regulating the metabolic diversity with the combination of three key sugars. The metabolic diversity significantly increased to 0.42 with the optimized levels of glucose (31.82 g/L), fructose (4.81 g/L), and arabinose (0.20 g/L), compared with unoptimized low-level average metabolic diversity (0.29). This work would provide a strategy to control microbial metabolism in spontaneous food fermentation, hence to improve the quality of fermented foods.
Collapse
Affiliation(s)
- Zheng Wang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xueao Ji
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shilei Wang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
35
|
Constructing a Defined Starter for Multispecies Vinegar Fermentation via Evaluating the Vitality and Dominance of Functional Microbes in Autochthonous Starter. Appl Environ Microbiol 2021; 88:e0217521. [PMID: 34818103 DOI: 10.1128/aem.02175-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature vinegar culture has usually been used as a type of autochthonous starter for rapidly initiate initiating the next batch of acetic acid fermentation (AAF) and maintaining the batch-to-batch uniformity of AAF in the production of traditional cereal vinegar. However, the vitality and dominance of functional microbes in autochthonous starters remain unclear, which hinders further improvement of fermentation yield and production. Here, based on metagenomic (MG), metatranscriptomic (MT), and 16S rRNA gene sequencings, 11 bacterial operational taxonomic units (OTUs) with significant metabolic activity (MT/MG ratio >1) and dominance (relative abundance >1%) were targeted in the autochthonous vinegar starter, all of which were assigned to 4 species (Acetobacter pasteurianus, Lactobacillus acetotolerans, L. helveticus, Acetilactobacillus jinshanensis). Then, we evaluated the successions and interactions of these 11 bacterial OTUs at different AAF stages. Last, a defined starter was constructed with 4 core species isolated from the autochthonous starter (A. pasteurianus, L. acetotolerans, L. helveticus, Ac. jinshanensis). The defined starter culture could rapidly initiate the AAF in a sterile or unsterilized environment and similar dynamics of metabolites (ethanol, titratable acidity, acetic acid, lactic acid, and volatile compounds) and environmental indexes (temperature, pH) of fermentation were observed as compared with that of autochthonous starter (P > 0.05). This work provides a method to construct a defined microbiota from a complex system while preserving its metabolic function. IMPORTANCE Complex microorganisms are beneficial to the flavor formation in natural food fermentation, but they also pose challenges to the mass production of standardized products. It is attractive to construct a defined starter to rapidly initiate fermentation process and significantly improve fermentation yield. This study provides a comprehensive understanding of vital and dominant species in the autochthonous vinegar starter via multi-omics, and designs a defined microbial community for the efficient fermentation of cereal vinegar.
Collapse
|
36
|
Yang Y, Xu NJ, Li JH, Zeng LF, Liang GH, Zhang F, Luo MH, Pan JK, Huang HT, Han YH, Zhao JL, Xiao X, Ma C, Liu H, Yang Y, Yang WY, Liu J. Exercise or Dietotherapy Is Not Better than Returning to a Regular Diet to Rebuild Lipid Homeostasis of Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3047437. [PMID: 34631878 PMCID: PMC8500750 DOI: 10.1155/2021/3047437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Our aim was to explore the effects of dietary and behavior interventions on lipometabolism caused by an unhealthy high-fat diet and the best method to rebuild lipid homeostasis of this lifestyle. Apart from normal diet rats, 34 rats were fed with high-fat emulsion for 4 weeks and then intervened for another 4 weeks. Eight of them were classified into high-fat control group, and 9 were sorted into high-fat diet with rice vinegar group. Meanwhile, 10 were put into high-fat diet in swimming group, and 7 were just for refeeding normal diet group. Then, the data of body weight was recorded and analyzed. Indexes of serum samples were tested by kits. AMPKα, HNF1α, and CTRP6 in pancreas, liver, cardiac, and epididymis adipose tissues were detected by western blot. According to our experiments, swimming and refeeding groups reflected a better regulation on lipid homeostasis mainly by upregulating the expression of pancreas AMPKα. To be more specific, the refeeding rats showed lower T-CHO (P < 0.001) and LDL-C (P < 0.05), but higher weight gain (P < 0.001), insulin level (P < 0.01), and pancreas AMPKα (P < 0.01) than high-fat control rats. Compared with rats intervened by swimming or rice vinegar, they showed higher weight gain (P < 0.001), insulin level (P < 0.01), and HNF1α, but lower of CTRP6. In summary, refeeding diet functioned better in regulating the lipometabolic level after high-fat diet. Whatever approach mentioned above we adopted to intervene, the best policy to keep the balance of lipid homeostasis is to maintain a healthy diet.
Collapse
Affiliation(s)
- Yuan Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan-Jun Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Hui Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Feng Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gui-Hong Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Feng Zhang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ming-Hui Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jian-Ke Pan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - He-Tao Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hong Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Long Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao Xiao
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Chunlian Ma
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Wei-Yi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jun Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
37
|
Lu Y, Yang L, Yang G, Chi Y, He Q. Bio-augmented effect of Bacillus amyloliquefaciens and Candida versatilis on microbial community and flavor metabolites during Chinese horse bean-chili-paste fermentation. Int J Food Microbiol 2021; 351:109262. [PMID: 34090033 DOI: 10.1016/j.ijfoodmicro.2021.109262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022]
Abstract
Chinese horse bean-chili-paste (CHCP), a fermented condiment in China, is traditionally manufactured through naturally spontaneous semi-solid fermentation procedures without intentionally inoculated microorganisms. The aim of this study was to investigate the effect on microbiota and quality variations during CHCP fermentation by inoculation of selected autochthonous microorganisms Bacillus amyloliquefaciens and Candida versatilis. The results showed that relative abundance of Bacillus in the samples inoculated with B. amyloliquefaciens were increased from about 0.6% to almost 25%, and the batches bio-augmented with C. versatilis exhibited clearly 0.7 Lg copies/g higher biomass than that of the other samples. By bio-augmentation, six enzyme activities, namely acid protease, leucine aminopeptidase, α-amylase, cellulose, β-glucosidase and esterase, were considerably enhanced. As a result, inoculation of these two strains exhibited significant effect on the volatile profiles of CHCP. B. amyloliquefaciens herein was found to contribute mainly to the accumulation of acids, sulfur-containing compounds and pyrazines, whereas C. versatilis was considerably associated with the formation of alcohols, esters and phenols. This study proved that combination of B. amyloliquefaciens and C. versatilis could obtain more extensive aroma profiles, especially for the enrichment of miso-like and fruity flavors, which could provide a guideline for the tailored control of CHCP fermentation process.
Collapse
Affiliation(s)
- Yunhao Lu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Linzi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Guohua Yang
- Sichuan dandan Pixian-douban Co., Ltd., Chengdu 610065, PR China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
38
|
Li T, Zhang X, Zeng Y, Ren Y, Sun J, Yao R, Wang Y, Wang J, Huang Q. Semen Sojae Preparatum as a Traditional Chinese Medicine: Manufacturing Technology, Bioactive Compounds, Microbiology and Medicinal Function. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tingna Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yijia Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Sun
- Sichuan Fuzheng Pharm Corporation, Chengdu, China
| | - Renchuan Yao
- Sichuan Engineering Technology Research Center of Fermented Traditional Chinese Medicine (Koji), China
| | - Yijie Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Jia Y, Niu CT, Zheng FY, Liu CF, Wang JJ, Lu ZM, Xu ZH, Li Q. Development of a defined autochthonous starter through dissecting the seasonal microbiome of broad bean paste. Food Chem 2021; 357:129625. [PMID: 33864999 DOI: 10.1016/j.foodchem.2021.129625] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/16/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Bean-based fermentation foods are usually ripened in open environment, which would lead to inconsistencies in flavor and quality between batches. The physicochemical metabolism and microbial community of seasonal broad bean paste (BBP) were compared to distinguish discriminant metabolites and unique taxa, as well as their specific reasons for different flavor and quality in this study. Here, we found that environmental variables led to the seasonal distribution of microbiota, and differential microorganisms further contributed to the inconsistency of flavor quality, in which Lactobacillales was responsible for the higher titratable acid and amino acid nitrogen concentration in winter pei, while Saccharomycetales benefited the formation of volatile flavor substances in autumn pei. Additionally, we compared the effect of different combinations of Lactobacillales with Zygosaccharomyces rouxii on the quality of BBP, and found that W. confusa was more suitable for BBP fermentation rather than T. halophilus in terms of sensory characteristics and physicochemical metabolites.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng-Tuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei-Yun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chun-Feng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jin-Jing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Jiangsu Modern Industrial Fermentation, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
40
|
Xiao C, Yang Y, Lu ZM, Chai LJ, Zhang XJ, Wang ST, Shen CH, Shi JS, Xu ZH. Daqu microbiota exhibits species-specific and periodic succession features in Chinese baijiu fermentation process. Food Microbiol 2021; 98:103766. [PMID: 33875202 DOI: 10.1016/j.fm.2021.103766] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022]
Abstract
Daqu, a brick-shaped product spontaneously fermented under an open environment, has been regarded as the starter of fermentation, raw enzyme preparation and raw materials for baijiu production. However, its contribution in baijiu fermentation has not been fully elaborated yet. Here, the effects of daqu microbiota on baijiu fermentation were investigated under both field-scale and lab-scale conditions. In field-scale baijiu fermentation, the dominant daqu microbes (average relative abundance>10.0%), including unclassified_Leuconostocaceae, Thermoascus, and Thermomyces, tended to dominate the early stage (0-7 d). However, the rare daqu microbes (average relative abundance <0.1%, e.g., Kazachstania) tended to dominate the middle and late stages (11-40 d). In addition, some genera showed differences in species diversity between daqu and fermented grains. The average relative abundance of Lactobacillus was over 75% during baijiu fermentation, and most of them were affiliated with Lactobacillus acetotolerans, while Lactobacillus crustorum dominated the Lactobacillus OTUs in daqu. The similar patterns were also observed during lab-scale baijiu fermentation. The results of function prediction showed the enriched metabolic pathways were associated with glycolysis and long-chain fatty acid esters in baijiu fermentation. These results improved the understanding of daqu microbiota function during baijiu fermentation and provided a basic theory to support the regulation of baijiu production.
Collapse
Affiliation(s)
- Chen Xiao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China
| | - Yang Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China.
| |
Collapse
|
41
|
Deciphering the succession patterns of bacterial community and their correlations with environmental factors and flavor compounds during the fermentation of Zhejiang rosy vinegar. Int J Food Microbiol 2021; 341:109070. [PMID: 33503540 DOI: 10.1016/j.ijfoodmicro.2021.109070] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Zhejiang Rosy Vinegar (ZRV) is a traditional condiment in Southeast China, produced using semi-solid-state fermentation techniques under an open environment, yet little is known about the functional microbiota involved in the flavor formation of ZRV. In this study, 43 kinds of volatile flavor substances were identified by HS-SPME/GC-MS, mainly including ethyl acetate (relative content at the end of fermentation: 1104.1 mg/L), phenylethyl alcohol (417.6 mg/L) and acetoin (605.2 mg/L). The most abundant organic acid was acetic acid (59.6 g/L), which kept rising during the fermentation, followed by lactic acid (7.0 g/L), which showed a continuously downward trend. Amplicon sequencing analysis revealed that the richness and diversity of bacterial community were the highest at the beginning and then maintained decreasing during the fermentation. The predominant bacteria were scattered in Acetobacter (average relative abundance: 63.7%) and Lactobacillus (19.8%). Both sequencing and culture-dependent analysis showed Lactobacillus dominated the early stage (day 10 to 30), and Acetobacter kept highly abundant from day 40 to the end. Spearman correlation analysis displayed that the potential major groups involved in the formation of flavor compounds were Acetobacter and Lactobacillus, which were also showed strong relationships with other bacteria through co-occurrence network analysis (edges attached to Acetobacter: 61.7%; Lactobacillus: 14.0%). Moreover, structural equation model showed that the contents of ethanol, titratable acid and reducing sugar were the major environmental factors playing essential roles in influencing the succession of bacterial community and their metabolism during the fermentation. Overall, these findings illuminated the dynamic profiles of bacterial community and flavor compounds and the potential functional microbes, which were expected to help us understand the formation of flavor substances in ZRV.
Collapse
|
42
|
Monitoring microbial succession and metabolic activity during manual and mechanical solid-state fermentation of Chinese cereal vinegar. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Modulating microbiota metabolism via bioaugmentation with Lactobacillus casei and Acetobacter pasteurianus to enhance acetoin accumulation during cereal vinegar fermentation. Food Res Int 2020; 138:109737. [PMID: 33292931 DOI: 10.1016/j.foodres.2020.109737] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/11/2023]
Abstract
Acetoin, giving a creamy yogurt aroma and buttery taste, exists in cereal vinegar as an important flavor substance and is mainly produced by the metabolism of Lactobacillus and Acetobacter during multispecies solid-state acetic acid fermentation. However, the impacts of Lactobacillus-Acetobacter interactions on acetoin accumulation and the microbial metabolism during acetic acid fermentation are not completely clear. Here, six strains isolated from vinegar fermentation culture and associated with acetoin metabolism, namely, Lactobacillus reuteri L-0, L. buchneri F2-6, L. brevis 4-20, L. fermentum M10-7, L. casei M1-6 and Acetobacter pasteurianus G3-2, were selected for microbial growth and metabolism analysis in monoculture and coculture fermentations. Lactobacillus sp. and A. pasteurianus G3-2 respectively utilized glucose and ethanol preferentially. In monocultures, L. casei M1-6 (183.7 mg/L) and A. pasteurianus G3-2 (121.0 mg/L) showed better acetoin-producing capacity than the others. In the bicultures with Lactobacillus sp. and A. pasteurianus G3-2, biomass analysis in the stationary phase demonstrated that significant growth depressions of Lactobacillus sp. occurred compared with monocultures, possibly due to intolerance to acetic acid produced by A. pasteurianus G3-2. Synergistic effect between Lactobacillus sp. and A. pasteurianus G3-2 on enhanced acetoin accumulation was identified, however, cocultures of two Lactobacillus strains could not apparently facilitate acetoin accumulation. Coculture of L. casei M1-6 and A. pasteurianus G3-2 showed the best performance in acetoin production amongst all mono-, bi- and triculture combinations, and the yield of acetoin increased from 1827.7 to 7529.8 mg/L following optimization of culture conditions. Moreover, the interactions of L. casei M1-6 and A. pasteurianus G3-2 regulated the global metabolism of vinegar microbiota during fermentation through performing in situ bioaugmentation, which could accelerate the production of acetic acid, lactic acid, acetoin, ethyl acetate, ethyl lactate, ligustrazine and other important flavoring substances. This work provides a promising strategy for the production of acetoin-rich vinegar through Lactobacillus sp.-A. pasteurianus joint bioaugmentation.
Collapse
|
44
|
Xu P. Dynamics of microbial competition, commensalism, and cooperation and its implications for coculture and microbiome engineering. Biotechnol Bioeng 2020; 118:199-209. [PMID: 32915459 PMCID: PMC7821011 DOI: 10.1002/bit.27562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Microbial consortium is a complex adaptive system with higher‐order dynamic characteristics that are not present by individual members. To accurately predict the social interactions, we formulate a set of unstructured kinetic models to quantitatively capture the dynamic interactions of multiple microbial species. By introducing an interaction coefficient, we analytically derived the steady‐state solutions for the interacting species and the substrate‐depleting profile in the chemostat. We analyzed the stability of the possible coexisting states defined by competition, parasitism, amensalism, commensalism, and cooperation. Our model predicts that only parasitism, commensalism, and cooperation could lead to stable coexisting states. We also determined the optimal social interaction criteria of microbial coculture when sequential metabolic reactions are compartmentalized into two distinct species. Coupled with Luedeking–Piret and Michaelis–Menten equations, accumulation of metabolic intermediates in one species and formation of end‐product in another species could be derived and assessed. We discovered that parasitism consortia disfavor the bioconversion of intermediate to final product; and commensalism consortia could efficiently convert metabolic intermediates to final product and maintain metabolic homeostasis with a broad range of operational conditions (i.e., dilution rates); whereas cooperative consortia leads to highly nonlinear pattern of precursor accumulation and end‐product formation. The underlying dynamics and emergent properties of microbial consortia may provide critical knowledge for us to understand ecological coexisting states, engineer efficient bioconversion process, deliver effective gut therapeutics as well as elucidate probiotic‐pathogen or tumor‐host interactions in general.
Collapse
Affiliation(s)
- Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Chai LJ, Shen MN, Sun J, Deng YJ, Lu ZM, Zhang XJ, Shi JS, Xu ZH. Deciphering the d-/l-lactate-producing microbiota and manipulating their accumulation during solid-state fermentation of cereal vinegar. Food Microbiol 2020; 92:103559. [PMID: 32950153 DOI: 10.1016/j.fm.2020.103559] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/30/2023]
Abstract
Symphony orchestra of multi-microorganisms characterizes the solid-state acetic acid fermentation process of Chinese cereal vinegars. Lactate is the predominant non-volatile acid and plays indispensable roles in flavor formation. This study investigated the microbial consortia driving the metabolism of D-/l-lactate during fermentation. Sequencing analysis based on D-/l-lactate dehydrogenase genes demonstrated that Lactobacillus (relative abundance: > 95%) dominated the production of both d-lactate and l-lactate, showing species-specific features between the two types. Lactobacillus helveticus (>65%) and L. reuteri (~80%) respectively dominated l- and d-lactate-producing communities. D-/l-lactate production and utilization capabilities of eight predominant Lactobacillus strains were determined by culture-dependent approach. Subsequently, D-/l-lactate producer L. plantarum M10-1 (d:l ≈ 1:1), l-lactate producer L. casei 21M3-1 (D:L ≈ 0.2:9.8) and D-/l-lactate utilizer Acetobacter pasteurianus G3-2 were selected to modulate the metabolic flux of D-/l-lactate of microbial consortia. The production ratio of D-/l-lactate was correspondingly shifted coupling with microbial consortia changes. Bioaugmentation with L.casei 21M3-1 merely enhanced l-lactate production, displaying ~4-fold elevation at the end of fermentation. Addition of L.plantarum M10-1 twice increased both D- and l-lactate production, while A. pasteurianus G3-2 decreased the content of D-/l-isomer. Our results provided an alternative strategy to specifically manipulate the metabolic flux within microbial consortia of certain ecological niches.
Collapse
Affiliation(s)
- Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Mi-Na Shen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jia Sun
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yong-Jian Deng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China.
| |
Collapse
|
46
|
A Bottom-Up Approach To Develop a Synthetic Microbial Community Model: Application for Efficient Reduced-Salt Broad Bean Paste Fermentation. Appl Environ Microbiol 2020; 86:AEM.00306-20. [PMID: 32303548 DOI: 10.1128/aem.00306-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Humans have used high salinity for the production of bean-based fermented foods over thousands of years. Although high salinity can inhibit the growth of harmful microbes and select functional microbiota in an open environment, it also affects fermentation efficiency of bean-based fermented foods and has a negative impact on people's health. Therefore, it is imperative to develop novel defined starter cultures for reduced-salt fermentation in a sterile environment. Here, we explored the microbial assembly and function in the fermentation of traditional Chinese broad bean paste with 12% salinity. The results revealed that the salinity and microbial interactions together drove the dynamic of community and pointed out that five dominant genera (Staphylococcus, Bacillus, Weissella, Aspergillus, and Zygosaccharomyces) may play different key roles in different fermentation stages. Then, core species were isolated from broad bean paste, and their salinity tolerance, interactions, and metabolic characteristics were evaluated. The results provided an opportunity to validate in situ predictions through in vitro dissection of microbial assembly and function. Last, we reconstructed the synthetic microbial community with five strains (Aspergillus oryzae, Bacillus subtilis, Staphylococcus gallinarum, Weissella confusa, and Zygosaccharomyces rouxii) under different salinities and realized efficient fermentation of broad bean paste for 6 weeks in a sterile environment with 6% salinity. In general, this work provided a bottom-up approach for the development of a simplified microbial community model with desired functions to improve the fermentation efficiency of bean-based fermented foods by deconstructing and reconstructing the microbial structure and function.IMPORTANCE Humans have mastered high-salinity fermentation techniques for bean-based fermented product preparation over thousands of years. High salinity was used to select the functional microbiota and conducted food fermentation production with unique flavor. Although a high-salinity environment is beneficial for suppressing harmful microbes in the open fermentation environment, the fermentation efficiency of functional microbes is partially inhibited. Therefore, application of defined starter cultures for reduced-salt fermentation in a sterile environment is an alternative approach to improve the fermentation efficiency of bean-based fermented foods and guide the transformation of traditional industry. However, the assembly and function of self-organized microbiota in an open fermentation environment are still unclear. This study provides a comprehensive understanding of microbial function and the mechanism of community succession in a high-salinity environment during the fermentation of broad bean paste so as to reconstruct the microbial community and realize efficient fermentation of broad bean paste in a sterile environment.
Collapse
|
47
|
Zhong XZ, Li XX, Zeng Y, Wang SP, Sun ZY, Tang YQ. Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. BIORESOURCE TECHNOLOGY 2020; 306:123091. [PMID: 32169511 DOI: 10.1016/j.biortech.2020.123091] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
The aim of this work was to study the dynamic change in structure and potential function of bacterial community during dairy manure composting process using high-throughput sequencing and advanced bioinformatics tools. Alpha diversity of microbial community significantly decreased during the thermophilic phase and then recovered gradually. Beta diversity analysis showed unique community structures in different composting phases. Keystone microbes such as genus Corynebacterium, Bacillus, Luteimonas and Nonomuraea were identified for different composting phases. Six functional modules were identified for bacterial community during the composting process using co-occurrence analysis. These modules were significantly associated with temperature, pH, degradation of organic matter and maturation of compost. Predicted metagenomics analysis showed that the relative abundance of amino acid, lipid, energy and xenobiotics metabolism increased during the composting process. These results provide valuable insights into the microbiota during dairy manure composting and how the structures and metabolic functions changed in response to composting phases.
Collapse
Affiliation(s)
- Xiao-Zhong Zhong
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Xing Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Wang ZM, Wang CT, Shen CH, Wang ST, Mao JQ, Li Z, Gänzle M, Mao J. Microbiota stratification and succession of amylase-producing Bacillus in traditional Chinese Jiuqu (fermentation starters). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3544-3553. [PMID: 32242927 DOI: 10.1002/jsfa.10405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Jiuqu are vital saccharifying and fermenting agents for Chinese fermented foods. Natural ventilation during Jiuqu fermentation causes changes in temperature, oxygen and moisture content, resulting in mass and heat gradients from the outer to inner areas of Jiuqu blocks. In the present study, microbiota stratification in Jiuqu was investigated by single molecule real-time sequencing and culture isolation. The contributors of Bacillus to amylase activity of Jiuqu and the dynamics of their biomass during Jiuqu fermentation were also analyzed. RESULTS The dominant orders, genera and species between the inner and outer layers of Huangjiu qu (HJQ) were similar, although they displayed greater variance in two layers of Baijiu qu (BJQ). Bacillus possessed the highest diversity (including 27 species) in Jiuqu. Bacillus licheniformis, Bacillus altitudinis, Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus megaterium were most prevalent in HJQ, whereas B. licheniformis, B. amyloliquefaciens and Bacillus cereus were dominant in BJQ. Isolates of B. amyloliquefaciens, B. subtilis and B. cereus exhibited high activities of amylase and glucoamylase. Quantification of Bacillus members possessing genes of α-amylase revealed that B. cereus and B. licheniformis were the most dominant microbes to secret α-amylase in Jiuqu and their biomass were increasing during Jiuqu fermentation. CONCLUSION The present study demonstrates the microbial distribution in different layers of Jiuqu and clarifies the Bacillus species processing the activity of α-amylase. These results will help industries control the quality of Jiuqu by rationally selecting starters and optimizing their microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zong-Min Wang
- School of Agriculture and Food Engineering, Shandong University of Technology, Zibo, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng-Tao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jie-Qi Mao
- College of Agriculture and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Zhen Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jian Mao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, China
| |
Collapse
|
49
|
Investigation of the 5-hydroxymethylfurfural and furfural content of Chinese traditional fermented vinegars from different regions and its correlation with the saccharide and amino acid content. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Fan NS, Qi R, Huang BC, Jin RC, Yang M. Factors influencing Candidatus Microthrix parvicella growth and specific filamentous bulking control: A review. CHEMOSPHERE 2020; 244:125371. [PMID: 31835053 DOI: 10.1016/j.chemosphere.2019.125371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Candidatus Microthrix parvicella has been frequently detected as the dominant filamentous bacteria in bulking sludge and thus seriously affects the stable operation of activated sludge processes. The extremely low growth rate of Ca. M. parvicella and its sensitivity to environmental variations greatly limit the development of effective techniques to control filamentous bulking. Based on previous investigations, a variety of restrictive substrates, operating and culture conditions, environmental factors and other potential inhibitors have varying degrees of impact on the growth of this microorganism. This review systematically summarizes the key factors affecting Ca. M. parvicella growth with a focus on the influencing mechanism. Recent filamentous bulking control strategies are also critically reviewed and discussed. Additionally, research needs for the next few years are proposed with the aim of establishing effective and specific control strategies for filamentous sludge bulking.
Collapse
Affiliation(s)
- Nian-Si Fan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Qi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Min Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|