1
|
Chrysochoidis V, Andersen MH, Remigi EU, Faragó M, Smets BF, Domingo-Félez C, Valverde-Pérez B. Critical evaluation of different mass transfer equations to model N 2O emissions from water resource recovery facilities with diffuse aeration. ENVIRONMENTAL TECHNOLOGY 2024; 45:3339-3353. [PMID: 37191950 DOI: 10.1080/09593330.2023.2215454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
N2O measurements by liquid sensors in aerated tanks are an input to gas-liquid mass-transfer models for the prediction of N2O off-gas emissions. The prediction of N2O emissions from Water Resource Recovery Facilities (WRRFs) was evaluated by three different mass-transfer models using Benchmark Simulation Model 1 (BSM1) as a reference model. Inappropriate selection of mass-transfer model may result in miscalculation of carbon footprints based on soluble N2O online measurements. The film theory considers a constant mass-transfer expression, while more complex models suggest that emissions are affected by the aeration type, efficiency, and tank design characteristics. The differences among model predictions were 10-16% at dissolved oxygen (DO) concentration of 0.6 g/m3, when biological N2O production was the highest, while the flux of N2O was 20.0-24 kg N2O-N/d. At lower DO, the nitrification rate was low, while at DO higher than 2 g/m3, the N2O production was reduced leading to higher rates of complete nitrification and a flux of 5 kg N2O-N/d. The differences increased to 14-26% in deeper tanks, due to the pressure assumed in the tanks. The predicted emissions are also affected by the aeration efficiency when KLaN2O depends on the airflow instead of the KLaO2. Increasing the nitrogen loading rate under DO concentration of 0.50-0.65 g/m3 increased the differences in predictions by 10-20% in both alpha 0.6 and 1.2. A sensitivity analysis indicated that the selection of different mass-transfer models did not affect the selection of biochemical parameters for N2O model calibration.
Collapse
Affiliation(s)
| | | | | | - Maria Faragó
- Climate Adaptation and Green Infrastructure, Ramboll, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Denmark
| | - Carlos Domingo-Félez
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Denmark
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
- Infrastructure and Environment, School of Engineering, University of Glasgow, University Avenue, Glasgow, UK
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Denmark
| |
Collapse
|
2
|
Nguyen Quoc B, Cavanaugh SK, Hunt KA, Bryson SJ, Winkler MKH. Impact of aerobic granular sludge sizes and dissolved oxygen concentration on greenhouse gas N 2O emission. WATER RESEARCH 2024; 255:121479. [PMID: 38520777 DOI: 10.1016/j.watres.2024.121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Aerobic granular sludge (AGS) at wastewater treatment plants (WWTPs) are known to produce nitrous oxide (N2O), a greenhouse gas which has a ∼300 times higher global warming potential than carbon dioxide. In this research, we studied N2O emissions from different sizes of AGS developed at a dissolved oxygen (DO) level of 2 mgO2/L while exposing them to disturbances at various DO concentrations ranging from 1 to 4 mgO2/L. Five different AGS size classes were studied: 212-600 µm, 600-1000 µm, 1000-1400 µm, 1400-2000 µm, and > 2000 µm. Metagenomic data showed N2O reductase genes (nosZ) were more abundant in the smaller AGS sizes which aligned with the observation of higher N2O reduction rates in small AGS under anaerobic conditions. However, when oxygen was present, the activity measurements of N2O emission showed an opposite trend compared to metagenomic data, smaller AGS (212 to 1000 µm) emitted significantly higher N2O (p < 0.05) than larger AGS (1000 µm to >2000 µm) at DO of 2, 3, and 4 mgO2/L. The N2O emission rate showed positive correlation with both oxygen levels and nitrification rate. This pattern indicates a connection between N2O emission and nitrification. In addition, the data suggested the penetration of oxygen into the anoxic zone of granules might have hindered nitrous oxide reduction, resulting in incomplete denitrification stopping at N2O and consequently contributing to an increase in N2O emissions. This work sets the stage to better understand the impacts of AGS size on N2O emissions in WWTPs under different disturbance of DO conditions, and thus ensure that wastewater treatment will comply with possible future regulations demanding lowering greenhouse gas emissions in an effort to combat climate change.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, United States.
| | - Shannon K Cavanaugh
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, United States
| |
Collapse
|
3
|
Oba K, Suenaga T, Yasuda S, Kuroiwa M, Hori T, Lackner S, Terada A. Quest for Nitrous Oxide-reducing Bacteria Present in an Anammox Biofilm Fed with Nitrous Oxide. Microbes Environ 2024; 39:ME23106. [PMID: 38538312 PMCID: PMC10982107 DOI: 10.1264/jsme2.me23106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
N2O-reducing bacteria have been examined and harnessed to develop technologies that reduce the emission of N2O, a greenhouse gas produced by biological nitrogen removal. Recent investigations using omics and physiological activity approaches have revealed the ecophysiologies of these bacteria during nitrogen removal. Nevertheless, their involvement in anammox processes remain unclear. Therefore, the present study investigated the identity, genetic potential, and activity of N2O reducers in an anammox reactor. We hypothesized that N2O is limiting for N2O-reducing bacteria and an exogeneous N2O supply enriches as-yet-uncultured N2O-reducing bacteria. We conducted a 1200-day incubation of N2O-reducing bacteria in an anammox consortium using gas-permeable membrane biofilm reactors (MBfRs), which efficiently supply N2O in a bubbleless form directly to a biofilm grown on a gas-permeable membrane. A 15N tracer test indicated that the supply of N2O resulted in an enriched biomass with a higher N2O sink potential. Quantitative PCR and 16S rRNA amplicon sequencing revealed Clade II nosZ type-carrying N2O-reducing bacteria as protagonists of N2O sinks. Shotgun metagenomics showed the genetic potentials of the predominant Clade II nosZ-carrying bacteria, Anaerolineae and Ignavibacteria in MBfRs. Gemmatimonadota and non-anammox Planctomycetota increased their abundance in MBfRs despite their overall lower abundance. The implication of N2O as an inhibitory compound scavenging vitamin B12, which is essential for the synthesis of methionine, suggested its limited suppressive effect on the growth of B12-dependent bacteria, including N2O reducers. We identified Dehalococcoidia and Clostridia as predominant N2O sinks in an anammox consortium fed exogenous N2O because of the higher metabolic potential of vitamin B12-dependent biosynthesis.
Collapse
Affiliation(s)
- Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739–8527, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| | - Shohei Yasuda
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Megumi Kuroiwa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16–1 Onogawa, Tsukuba, Ibaraki, 305–8569, Japan
| | - Susanne Lackner
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Department of Civil and Environmental Engineering Science, Institute IWAR, Chair of Water and Environmental Biotechnology Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| |
Collapse
|
4
|
Zhu Q, Li X, Nie Z, Wang Y, Dang T, Papadakis VG, Goula MA, Wang W, Yang Z. In-situ microbial protein production by using nitrogen extracted from multifunctional bio-electrochemical system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119050. [PMID: 37751664 DOI: 10.1016/j.jenvman.2023.119050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Upgrading of waste nitrogen sources is considered as an important approach to promote sustainable development. In this study, a multifunctional bio-electrochemical system with three chambers was established, innovatively achieving 2.02 g/L in-situ microbial protein (MP) production via hydrogen-oxidizing bacteria (HOB) in the protein chamber (middle chamber), along with over 2.9 L CO2/(L·d) consumption rate. Also, 69% chemical oxygen demand was degraded by electrogenic bacteria in the anode chamber, resulting in the 394.67 J/L electricity generation. Focusing on the NH4+-N migration in the system, the current intensity contributed 4%-9% in the anode and protein chamber, whereas, the negative effect of -6.69% on contribution was shown in the cathode chamber. On the view of kinetics, NH4+-N migration in anode and cathode chambers was fitted well with Levenberg-Marquardt equation (R2 > 0.92), along with the well-matched results of HOB growth in the protein chamber based on Gompertz model (R2 > 0.99). Further evaluating MPs produced by HOB, 0.45 g/L essential amino acids was detected, showing the better amino acid profile than fish and soybean. Multifunctional bio-electrochemical system revealed the economic potential of producing 6.69 €/m3 wastewater according to a simplified economic evaluation.
Collapse
Affiliation(s)
- Qile Zhu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyue Li
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenchuan Nie
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiwen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianqi Dang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Vagelis G Papadakis
- Department of Civil Engineering, University of Patras, 26500, Rio, Patras, Greece
| | - Maria A Goula
- Laboratory of Alternative Fuels and Environmental Catalysis, Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Zhao Y, Duan H, Erler D, Yuan Z, Ye L. Decoupling the simultaneous effects of NO 2-, pH and free nitrous acid on N 2O and NO production from enriched nitrifying activated sludge. WATER RESEARCH 2023; 245:120609. [PMID: 37713792 DOI: 10.1016/j.watres.2023.120609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
In the pursuit of energy and carbon neutrality, nitrogen removal technologies have been developed featuring nitrite (NO2-) accumulation. However, high NO2- accumulations are often associated with stimulated greenhouse gas (i.e., nitrous oxide, N2O) emissions. Furthermore, the coexistence of free nitrous acid (FNA) formed by NO2- and proton (pH) makes the consequence of NO2- accumulation on N2O emissions complicated. The concurrent three factors, NO2-, pH and FNA may play different roles on N2O and nitric oxide (NO) emissions simultaneously, which has not been systematically studied. This study aims to decouple the effects of NO2- (0-200 mg N/L), pH (6.5-8) and FNA (0-0.15 mg N/L) on the N2O and NO production rates and the production pathways by ammonia oxidizing bacteria (AOB), with the use of a series of precisely executed batch tests and isotope site-preference analysis. Results suggested the dominant factors affecting the N2O production rate were NO2- and FNA concentrations, while pH alone played a relatively insignificant role. The most influential factor shifted from NO2- to FNA as FNA concentrations increased from 0 to 0.15 mg N/L. At concentrations below 0.0045 mg HNO2-N/L, nitrite rather than FNA played a significant role stimulating N2O production at elevated nitrite concentrations. The inhibition effect of FNA emerged with further increase of FNA between 0.0045-0.015 mg HNO2-N/L, weakening the promoting effect of increased nitrite. While at concentrations above 0.015 mg HNO2-N/L, FNA inhibited N2O production especially from nitrifier denitrification pathway with the level of inhibition linearly correlated with the FNA concentration. pH and the nitrite concentration regulated the production pathways, with elevated pH promoting the nitrifier nitrification pathway, while elevated NO2- concentrations promoting the nitrifier denitrification pathway. In contrast to N2O, NO emission was less susceptible to FNA at concentrations up to 0.015 mg N/L but was stimulated by increasing NO2- concentrations. This study, for the first time, distinguished the effects of pH, NO2- and FNA on N2O and NO production, thereby providing support to the design and operation of novel nitrogen removal systems with NO2- accumulation.
Collapse
Affiliation(s)
- Yingfen Zhao
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia; The Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Dirk Erler
- Centre for Coastal Biogeochemistry, School of Environmental Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
6
|
Zhang Q, Lin L, Chen Y, Wang Y, Li X, Li L, Cao W, Zhang Y. Dual-edged effects and mechanisms of hydroxylamine in partial denitrification-anaerobic ammonium oxidation system. ENVIRONMENTAL RESEARCH 2023; 235:116664. [PMID: 37451572 DOI: 10.1016/j.envres.2023.116664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The combination of partial denitrification (PD) and anaerobic ammonium oxidation (anammox) is a novel and promising nitrogen removal process. Regulating the synergistic reaction between denitrifiers and anammox bacteria (AnAOB) is the key to achieving stable and efficient PD-anammox performance. In this study, 10 mg/L of hydroxylamine (NH2OH) was considered to efficiently promote the bacterial activity, microbial energy flow, and the synergy of functional microflora. As a result, the nitrogen removal rate (NRR) significantly increased from 0.05 to 0.30 g N/L/d in parallel with an increase in the nitrogen loading rate (NLR) from 0.10 to 0.40 g N/L/d. However, the dual-edged effect of NH2OH was also confirmed. The long-term presence of NH2OH caused overgrowth of complete-denitrifying bacteria and decreased the NRR to 0.11 g N/L/d. Additionally, NH2OH enhanced nitrous oxide (N2O) emissions via chemical pathways as well as enhanced denitrification Fortunately, the inhibition caused by NH2OH was reversible by stopping the dosing, the reactor restored to stable operation with an NRR of 0.27 g N/L/d. Analysis of metabolic intensity and pathways revealed the effecting process and mechanism of NH2OH on the PD-anammox system. This study verified the dual-edged effects and mechanisms of NH2OH, therefore proving a theoretical basis and technical reference for the application of PD-anammox.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuzheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao Li
- Xiamen Junhong Environmental Solid Waste Disposal Co., Ltd., Xiamen, Fujian, 361102, China
| | - Linxi Li
- Xiamen Junhong Environmental Solid Waste Disposal Co., Ltd., Xiamen, Fujian, 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
7
|
Gorzelnik SA, Zhu X, Angelidaki I, Koski M, Valverde-Pérez B. Daphnia magna as biological harvesters for green microalgae grown on recirculated aquaculture system effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162247. [PMID: 36791858 DOI: 10.1016/j.scitotenv.2023.162247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The sustainability of recycling aquaculture systems (RAS) is challenged by nutrient discharges, which cause water eutrophication. Efficient treatments for RAS effluents are needed to mitigate its environmental impacts. Microalgae assimilate nutrients and dissolved carbon into microbial biomass with value as feed or food ingredient. However, they are difficult to harvest efficiently. Daphnia magna is an efficient filter feeder that grazes on microalgae at high rates and serves as valuable fish feed. Combining nutrient removal by microalgae and biomass harvesting by D. magna could be a cost-effective solution for wastewater valorization. Nutrient removal from unsterilized aquaculture wastewater was evaluated using the microalgae species Chlorella vulgaris, Scenedesmus dimorphus, and Haematococcus pluvialis. The first two algae were subsequently harvested using D. magna as a grazer, while H. pluvialis failed to grow stably. All phosphorus was removed, while only 50-70 % nitrogen was recovered, indicating phosphorus limitation. Shortening the hydraulic retention time (HRT) or phosphorus dosing resulted in increased nitrogen removal. C. vulgaris cultivation was unstable at 3 days HRT or when supplied with extra phosphorus at 5 days HRT. D. magna grew on produced algae accumulating protein at 20-30 % of dry weight, with an amino acid profile favorable for use as high value fish feed. Thus, this study demonstrates the application of a two steps multitrophic process to assimilate residual nutrients into live feeds suitable for fish.
Collapse
Affiliation(s)
- Stanley A Gorzelnik
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
| | - Marja Koski
- National Institute for Aquatic Resources, Technical University of Denmark, DTU, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Tirkey V, Goonesekera EM, Kovalovszki A, Smets BF, Dechesne A, Valverde-Pérez B. Short sludge age denitrification as alternative process for energy and nutrient recovery. BIORESOURCE TECHNOLOGY 2022; 366:128184. [PMID: 36283659 DOI: 10.1016/j.biortech.2022.128184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
High rate activated sludge (HRAS) systems redirect organics into highly biodegradable sludge and nutrients into microbial proteins. This study evaluates anoxic HRAS for nitrogen and carbon recovery. The reactor treated synthetic wastewater at solids retention times (SRTs) of 5, 3 and 1 days. Denitrification rates varied between 0.15 and 0.19 g-NO3-N g-TSS-1 d-1 (total suspended solids per day) and all conditions showed favourable settling. The highest sludge yield, obtained at SRT 1 d, was 0.75 g-TSS g-CODremoved-1, double that observed for aerobic HRAS. The highest methane yield (322 mL-CH4 g-VSsludge-1) was obtained from sludge wasted at 3 d SRT. Both 1 d and 3 d SRTs showed favourable energy recovery, with 14 % of the organics recovered as methane. All conditions yielded sludge with protein content ranging between 24 and 27 % of dry weight and similar amino acid profile, comparable to traditional proteins. Thus, denitrifying HRAS recovers resources as its aerobic counterpart, allowing for nitrogen removal via denitrification, more stable compared to mainstream partial nitritation anammox typically combined with aerobic HRAS.
Collapse
Affiliation(s)
- Vishal Tirkey
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, 2800 Lyngby, Denmark
| | - Estelle M Goonesekera
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, 2800 Lyngby, Denmark
| | - Adam Kovalovszki
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, 2800 Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, 2800 Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, 2800 Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, 2800 Lyngby, Denmark.
| |
Collapse
|
9
|
Yao H, Gao X, Guo J, Wang H, Zhang L, Fan L, Jia F, Guo J, Peng Y. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies- a critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120295. [PMID: 36181929 DOI: 10.1016/j.envpol.2022.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, significantly contributes to the carbon footprint of wastewater treatment plants (WWTPs) and contributes significantly to global climate change and to the deterioration of the natural environment. Our understanding of N2O generation mechanisms has significantly improved in the last decade, but the development of effective N2O emission mitigation strategies has lagged owing to the complexity of parameter regulation, substandard monitoring activities, and inadequate policy criteria. Based on critically screened published studies on N2O control in full-scale WWTPs, this review elucidates N2O generation pathway identifications and emission mechanisms and summarizes the impact of N2O on the total carbon footprint of WWTPs. In particular, a linear relationship was established between N2O emission factors and total nitrogen removal efficiencies in WWTPs located in China. Promising N2O mitigation options were proposed, which focus on optimizing operating conditions and implementation of innovative treatment processes. Furthermore, the sustainable operation of WWTPs has been anticipated to convert WWTPs into absolute greenhouse gas reducers as a result of the refinement and improvement of on-site monitoring activities, mitigation mechanisms, regulation of operational parameters, modeling, and policies.
Collapse
Affiliation(s)
- Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Xinyu Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jingbo Guo
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Liru Fan
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
10
|
Young MN, Boltz J, Rittmann BE, Al-Omari A, Jimenez JA, Takacs I, Marcus AK. Thermodynamic Analysis of Intermediary Metabolic Steps and Nitrous Oxide Production by Ammonium-Oxidizing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12532-12541. [PMID: 35993695 DOI: 10.1021/acs.est.1c08498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) is a greenhouse gas emitted from wastewater treatment, soils, and agriculture largely by ammonium-oxidizing bacteria (AOB). While AOB are characterized by being aerobes that oxidize ammonium (NH4+) to nitrite (NO2-), fundamental studies in microbiology are revealing the importance of metabolic intermediates and reactions that can lead to the production of N2O. These findings about the metabolic pathways for AOB were integrated with thermodynamic electron-equivalents modeling (TEEM) to estimate kinetic and stoichiometric parameters for each of the AOB's nitrogen (N)-oxidation and -reduction reactions. The TEEM analysis shows that hydroxylamine (NH2OH) oxidation to nitroxyl (HNO) is the most energetically efficient means for the AOB to provide electrons for ammonium monooxygenation, while oxidations of HNO to nitric oxide (NO) and NO to NO2- are energetically favorable for respiration and biomass synthesis. The respiratory electron acceptor can be O2 or NO, and both have similar energetics. The TEEM-predicted value for biomass yield, maximum-specific rate of NH4+ utilization, and maximum specific growth rate are consistent with empirical observations. NO reduction to N2O is thermodynamically favorable for respiration and biomass synthesis, but the need for O2 as a reactant in ammonium monooxygenation likely precludes NO reduction to N2O from becoming the major pathway for respiration.
Collapse
Affiliation(s)
- Michelle N Young
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Joshua Boltz
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Ahmed Al-Omari
- Brown and Caldwell, 1725 Duke Street Suite 250, Alexandria, Virginia 22314, United States
| | - Jose A Jimenez
- Brown and Caldwell, 351 Lucien Way, Suite 250, Maitland, Florida 32751, United States
| | - Imre Takacs
- Dynamita, 2015 route d'Aiglun, 06910 Sigale, France
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
11
|
López-Rosales L, López-García P, Benyachou MA, Molina-Miras A, Gallardo-Rodríguez JJ, Cerón-García MC, Sánchez Mirón A, García-Camacho F. Treatment of secondary urban wastewater with a low ammonium-tolerant marine microalga using zeolite-based adsorption. BIORESOURCE TECHNOLOGY 2022; 359:127490. [PMID: 35724909 DOI: 10.1016/j.biortech.2022.127490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The low tolerance of marine microalgae to ammonium and hyposalinity limits their use in urban wastewater (UWW) treatments. In this study, using the marine microalga Amphidinium carterae, it is demonstrated for the first time that this obstacle can be overcome by introducing a zeolite-based adsorption step to obtain a tolerable UWW stream. The maximum ammonium adsorption capacities measured in the natural zeolite used are among the highest reported. The microalga grows satisfactorily in mixtures of zeolite-treated UWW and seawater at a wide range of proportions, both with and without adjusting the salinity, as long as the ammonium concentration is below the threshold tolerated by the microalgae (6.3 mg L-1). A proof of concept performed in 10-L bubble column photobioreactors with different culture strategies, including medium recycling, showed an enhanced biomass yield relative to a control with no UWW. No noticeable effect was observed on the production of specialty metabolites.
Collapse
Affiliation(s)
- L López-Rosales
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain
| | - P López-García
- Chemical Engineering Department, University of Almería, Almería 04120, Spain
| | - M A Benyachou
- Chemical Engineering Department, University of Almería, Almería 04120, Spain
| | - A Molina-Miras
- Chemical Engineering Department, University of Almería, Almería 04120, Spain
| | - J J Gallardo-Rodríguez
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain
| | - M C Cerón-García
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain
| | - A Sánchez Mirón
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain
| | - F García-Camacho
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain.
| |
Collapse
|
12
|
Valk LC, Peces M, Singleton CM, Laursen MD, Andersen MH, Mielczarek AT, Nielsen PH. Exploring the microbial influence on seasonal nitrous oxide concentration in a full-scale wastewater treatment plant using metagenome assembled genomes. WATER RESEARCH 2022; 219:118563. [PMID: 35594748 DOI: 10.1016/j.watres.2022.118563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide is a highly potent greenhouse gas and one of the main contributors to the greenhouse gas footprint of wastewater treatment plants (WWTP). Although nitrous oxide can be produced by abiotic reactions in these systems, biological N2O production resulting from the imbalance of nitrous oxide production and reduction by microbial populations is the dominant cause. The microbial populations responsible for the imbalance have not been clearly identified, yet they are likely responsible for strong seasonal nitrous oxide patterns. Here, we examined the seasonal nitrous oxide concentration pattern in Avedøre WWTP alongside abiotic parameters, the microbial community composition based on 16S rRNA gene sequencing and already available metagenome-assembled genomes (MAGs). We found that the WWTP parameters could not explain the observed pattern. While no distinct community changes between periods of high and low dissolved nitrous oxide concentrations were determined, we found 26 and 28 species with positive and negative correlations to the seasonal N2O concentrations, respectively. MAGs were identified for 124 species (approximately 31% mean relative abundance of the community), and analysis of their genomic nitrogen transformation potential could explain this correlation for four of the negatively correlated species. Other abundant species were also analysed for their nitrogen transformation potential. Interestingly, only one full-denitrifier (Candidatus Dechloromonas phosphorivorans) was identified. 59 species had a nosZ gene predicted, with the majority identified as a clade II nosZ gene, mainly from the phylum Bacteroidota. A correlation of MAG-derived functional guilds with the N2O concentration pattern showed that there was a small but significant negative correlation with nitrite oxidizing bacteria and species with a nosZ gene (N2O reducers (DEN)). More research is required, specifically long-term activity measurements in relation to the N2O concentration to increase the resolution of these findings.
Collapse
Affiliation(s)
- Laura Christina Valk
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Caitlin Margaret Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Mads Dyring Laursen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | | | | | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
13
|
Li Z, Yang X, Chen H, Du M, Ok YS. Modeling nitrous oxide emissions in membrane bioreactors: Advancements, challenges and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151394. [PMID: 34740645 DOI: 10.1016/j.scitotenv.2021.151394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Membrane bioreactors (MBRs) have become a well-established wastewater treatment technology owing to their extraordinary efficiency and low space advantage over conventional activated sludge processes. Although the extended activated sludge models can predict the general trend of nitrous oxide (N2O) emissions in MBRs, the simulation results usually deviate from the actual values. This review critically evaluates the recent advances in the modeling of N2O emissions in MBRs, and proposes future directions for the development and improvement of models that better match the MBR characteristics. The quantitative impact of MBR characteristics on N2O emissions is identified as a key knowledge gap demanding urgent attention. Accurately clarification of the N2O emission pathways governed by MBR characteristics is essential to improve the reliability and practicability of existing models. This article lays a momentous foundation for the optimization of N2O models in MBRs, and proposes new demands for the next-generation model. The contents will assist academics and engineers in developing N2O production models for accurate prediction.
Collapse
Affiliation(s)
- Zeyu Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Mingyang Du
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Dias DFC, Marques R, Martins C, Martins A, Oehmen A. The impact of a seasonal change in loading rate on the nitrous oxide emissions at the WWTP of a tourist region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149987. [PMID: 34517330 DOI: 10.1016/j.scitotenv.2021.149987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas (GHG) whose production and emission must be minimised from wastewater treatment plants (WWTPs) to avoid undesirable impacts to climate change and the ozone layer. WWTPs operated in tourist regions undergo large seasonal changes to the influent loading rates of organic matter, nitrogen and phosphorus, which operators must respond to by changing their operational conditions. This study examines the impact of a change in low to high season on the N2O emissions of an activated sludge WWTP in a well-known tourist region in the Algarve, Portugal. While literature studies have suggested that increases in the nitrogen and organic loading rates can promote increased N2O emissions, we have found higher N2O emissions in the low season (7.4% kgN2O-N·kgNH4-N-1), where these loading rates were lower. It was found that the impact of accompanying operational changes to the WWTP outweighed any change caused by the increased loading rate, where the aeration rate showed a significant correlation with N2O emission dynamics. The location of the N2O fluxes observed as well as the dissolved vs gaseous N2O levels suggested that the hydroxylamine oxidation pathway was likely to be of higher relevance towards N2O production as compared to nitrifier denitrification. This study contributes towards the understanding of operational factors impacting N2O emissions at full-scale WWTPs and potential mitigation strategies.
Collapse
Affiliation(s)
- Daniel F C Dias
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ricardo Marques
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Carla Martins
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - António Martins
- Aguas do Algarve, Rua do Repouso, n°10, 8000-302, Faro, Portugal
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; School of Chemical Engineering, The University of Queensland, St. Lucia, Qld 4072, Australia.
| |
Collapse
|
15
|
Chawley P, Rana A, Jagadevan S. Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review. Crit Rev Biotechnol 2021; 42:931-952. [PMID: 34641754 DOI: 10.1080/07388551.2021.1976099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.
Collapse
Affiliation(s)
- Parmita Chawley
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
16
|
Yang Z, Tsapekos P, Zhang Y, Zhang Y, Angelidaki I, Wang W. Bio-electrochemically extracted nitrogen from residual resources for microbial protein production. BIORESOURCE TECHNOLOGY 2021; 337:125353. [PMID: 34116279 DOI: 10.1016/j.biortech.2021.125353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Upcycling of nutrients from residual resources for producing microbial protein (MP) is an attractive method to valorize residues. In this study, we investigated bio-electrochemical methods to recover ammonia-N, for further production of MP. Reject water and digestate were used for ammonia-N recovery in microbial fuel cell (MFC) system. In one-stage process, ammonia-N recovery was 32 - 42% with 57 - 154 kJ/m3 waste stream of electricity generation. For further enhancing recovery efficiency, a two-stage process was developed, achieving efficiency of 53 - 61%. Subsequently, MP was grown with the extracted ammonia-N, and amino acid concentration was 421 and 272 mg/L under 25 °C and 35 °C, respectively. Similar essential amino acid content of MP (especially under 25 °C) with the one from fish demonstrated the attractiveness of upcycling residues to proteins. Based on simplified economic evaluation, the produced energy performed the potential to catch 1.63 - 6.54 €/m3 waste stream.
Collapse
Affiliation(s)
- Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yi Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
17
|
Ronan E, Aqeel H, Wolfaardt GM, Liss SN. Recent advancements in the biological treatment of high strength ammonia wastewater. World J Microbiol Biotechnol 2021; 37:158. [PMID: 34420110 DOI: 10.1007/s11274-021-03124-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The estimated global population growth of 81 million people per year, combined with increased rates of urbanization and associated industrial processes, result in volumes of high strength ammonia wastewater that cannot be treated in a cost-effective or sustainable manner using the floc-based conventional activated sludge approach of nitrification and denitrification. Biofilm and aerobic granular sludge technologies have shown promise to significantly improve the performance of biological nitrogen removal systems treating high strength wastewater. This is partly due to enhanced biomass retention and their ability to sustain diverse microbial populations with juxtaposing growth requirements. Recent research has also demonstrated the value of hybrid systems with heterogeneous bioaggregates to mitigate biofilm and granule instability during long-term operation. In the context of high strength ammonia wastewater treatment, conventional nitrification-denitrification is hampered by high energy costs and greenhouse gas emissions. Anammox-based processes such as partial nitritation-anammox and partial denitrification-anammox represent more cost-effective and sustainable methods of removing reactive nitrogen from wastewater. There is also growing interest in the use of photosynthetic bacteria for ammonia recovery from high strength waste streams, such that nitrogen can be captured and concentrated in its reactive form and recycled into high value products. The purpose of this review is to explore recent advancements and emerging approaches related to high strength ammonia wastewater treatment.
Collapse
Affiliation(s)
- Evan Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Hussain Aqeel
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.,School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Gideon M Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Steven N Liss
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada. .,School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada. .,Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
18
|
Duan H, Zhao Y, Koch K, Wells GF, Zheng M, Yuan Z, Ye L. Insights into Nitrous Oxide Mitigation Strategies in Wastewater Treatment and Challenges for Wider Implementation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7208-7224. [PMID: 33975433 DOI: 10.1021/acs.est.1c00840] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) emissions account for the majority of the carbon footprint of wastewater treatment plants (WWTPs). Many N2O mitigation strategies have since been developed while a holistic view is still missing. This article reviews the state-of-the-art of N2O mitigation studies in wastewater treatment. Through analyzing existing studies, this article presents the essential knowledge to guide N2O mitigations, and the logics behind mitigation strategies. In practice, mitigations are mainly carried out by aeration control, feed scheme optimization, and process optimization. Despite increasingly more studies, real implementation remains rare, which is a combined result of unclear climate change policies/incentives, as well as technical challenges. Five critical technical challenges, as well as opportunities, of N2O mitigations were identified. It is proposed that (i) quantification methods for overall N2O emissions and pathway contributions need improvement; (ii) a reliable while straightforward mathematical model is required to quantify benefits and compare mitigation strategies; (iii) tailored risk assessment needs to be conducted for WWTPs, in which more long-term full-scale trials of N2O mitigation are urgently needed to enable robust assessments of the resulting operational costs and impact on nutrient removal performance; (iv) current mitigation strategies focus on centralized WWTPs, more investigations are warranted for decentralised systems, especially decentralized activated sludge WWTPs; and (v) N2O may be mitigated by adopting novel strategies promoting N2O reduction denitrification or microorganisms that emit less N2O. Overall, we conclude N2O mitigation research is reaching a maturity while challenges still exist for a wider implementation, especially in relation to the reliability of N2O mitigation strategies and potential risks to nutrient removal performances of WWTPs.
Collapse
Affiliation(s)
- Haoran Duan
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yingfen Zhao
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min Zheng
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
19
|
Stentoft PA, Munk-Nielsen T, Møller JK, Madsen H, Valverde-Pérez B, Mikkelsen PS, Vezzaro L. Prioritize effluent quality, operational costs or global warming? - Using predictive control of wastewater aeration for flexible management of objectives in WRRFs. WATER RESEARCH 2021; 196:116960. [PMID: 33740729 DOI: 10.1016/j.watres.2021.116960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
This study presents a general model predictive control (MPC) algorithm for optimizing wastewater aeration in Water Resource Recovery Facilities (WRRF) under different management objectives. The flexibility of the MPC is demonstrated by controlling a WRRF under four management objectives, aiming at minimizing: (A) effluent concentrations, (B) electricity consumption, (C) total operations costs (sum electricity costs and discharge effluent tax) or (D) global warming potential (direct and indirect nitrous oxide emissions, and indirect from electricity production) . The MPC is tested with data from the alternating WRRF in Nørre Snede (Denmark) and from the Danish electricity grid. Results showed how the four control objectives resulted in important differences in aeration patterns and in the concentration dynamics over a day. Controls B and C showed similarities when looking at total costs, while similarities in global warming potential for controls A and D suggest that improving effluent quality also reduced greenhouse gasses emissions. The MPC flexibility in handling different objectives is shown by using a combined objective function, optimizing both cost and greenhouse emissions. This shows the trade-off between the two objectives, enabling the calculation of marginal costs and thus allowing WRRF operators to carefully evaluate prioritization of management objectives. The long-term MPC performance is evaluated over 51 days covering seasonal and inter-weekly variations. On a daily basis, control A was 9-30% cheaper on average compared to controls A, D and to the current rule-based control. Similarly, control D resulted on average in 35-43% lower greenhouse gasses daily emission compared to the other controls. Difference between control performance increased for days with greater inter-diurnal variations in electricity price or greenhouse emissions from electricity production, i.e. when MPC has greater possibilities for exploiting input variations. The flexibility of the proposed MPC can easily accommodate for additional control objectives, allowing WRRF operators to quickly adapt the plant operation to new management objectives and to face new performance requirements.
Collapse
Affiliation(s)
- P A Stentoft
- Krüger A/S, Veolia Water Technologies, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark.
| | | | - J K Møller
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark.
| | - H Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark.
| | - B Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, Denmark.
| | - P S Mikkelsen
- Department of Environmental Engineering, Technical University of Denmark, Denmark.
| | - L Vezzaro
- Krüger A/S, Veolia Water Technologies, Denmark; Department of Environmental Engineering, Technical University of Denmark, Denmark.
| |
Collapse
|
20
|
Feng C, Li Z, Zhu Y, Xu D, Geng J, Ren H, Xu K. Effect of magnetic powder on nitrous oxide emissions from a sequencing batch reactor for treating domestic wastewater at low temperatures. BIORESOURCE TECHNOLOGY 2020; 315:123848. [PMID: 32707505 DOI: 10.1016/j.biortech.2020.123848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Low temperatures can lead to an increase of N2O generation and emission from the nitrogen removal process in wastewater treatment plants. This study investigated the effect of the addition of magnetic powder on N2O generation and emission from a sequencing batch reactor treating domestic sewage at low temperatures. The results showed that the magnetic powder simultaneously inhibited N2O generation and emission and improved the removal of NH4+, total nitrogen (TN), and chemical oxygen demand at low temperatures. Furthermore, the conversion rate of N2O (N2O generation to TN removal) was reduced. The efficacy of the magnetic powder depended on its concentration, which could be ordered as 1 mg/L > 2 mg/L > 4 mg/L. With the addition of magnetic powder, especially at the 1 mg/L level, the activities of nitrification and denitrification enzymes in activated sludge were significantly improved and the growth of ammonium and nitrite oxidizing bacteria was also promoted.
Collapse
Affiliation(s)
- Chuanwen Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhihao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuanmo Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
21
|
Duan H, van den Akker B, Thwaites BJ, Peng L, Herman C, Pan Y, Ni BJ, Watt S, Yuan Z, Ye L. Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant. WATER RESEARCH 2020; 185:116196. [PMID: 32738601 DOI: 10.1016/j.watres.2020.116196] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Mitigation of nitrous oxide (N2O) emissions is of primary importance to meet the targets of reducing carbon footprints of wastewater treatment plants (WWTPs). Despite of a large amount of N2O mitigation studies conducted in laboratories, full-scale implementation of N2O mitigation is scarce, mainly due to uncertainties of mitigation effectiveness, validation of N2O mathematical model, risks to nutrient removal performance and additional costs. This study aims to address the uncertainties by investigating the quantification, development and implementation of N2O mitigation strategies at a full-scale sequencing batch reactor (SBR). To achieve this, N2O emission dynamics, nutrient removal performance and operation of the SBR were monitored to quantify N2O emissions, and identify the N2O generation mechanisms. N2O mitigation strategies centered on reducing dissolved oxygen (DO) levels were consequently proposed and evaluated using a multi-pathway N2O production mathematical model before implementation. The implemented mitigation strategy resulted in a 35% reduction in N2O emissions (from the emission factor of 0.89 ± 0.05 to 0.58 ± 0.06%), which was equivalent to annual reduction of 2.35 tonne of N2O from the studied WWTP. This could be mainly attributed to reductions in N2O generated via the NH2OH oxidation pathway due to the lowering of DO level. As the first reported mitigation strategy permanently implemented at a full scale WWTP, it showcased that the mitigation of N2O emissions at full-scale is feasible and that widely accepted N2O mitigation strategies developed in laboratory studies are also likely effective in full-scale plants. Furthermore, the close agreement between the validated and predicted N2O emission factors (0.58% vs 0.55%, respectively), showed that the N2O mathematical model is a useful tool to evaluate N2O mitigation strategies at full-scale. Importantly this work demonstrated that N2O mitigation does not necessarily require additional operational cost to meet reduction targets. In contrast, the N2O mitigation applied here reduced energy requirements for aeration by 20%. Equally important, long-term monitoring identified that N2O mitigation did not affect the nutrient removal performance of the plant. Finally, with the knowledge acquired in this study, a standard approach for mitigating N2O emissions from full-scale treatment plants was proposed.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Ben van den Akker
- South Australian Water Corporation, Adelaide, SA, Australia; School of Natural and Built Environments, University of South Australia, SA, Australia; College of Science and Engineering, Flinders University, SA, Australia
| | | | - Lai Peng
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, Hubei, China
| | - Caroline Herman
- Adelaide Services Alliance (Allwater) - SUEZ Water, Adelaide, SA, Australia
| | - Yuting Pan
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Shane Watt
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Vikrant K, Kim KH, Dong F, Giannakoudakis DA. Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02163] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
23
|
Fang F, Li K, Guo JS, Wang H, Zhang P, Yan P. New insights into nitrous oxide emissions in a single-stage CANON process coupled with denitrification: thermodynamics and nitrogen transformation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:157-169. [PMID: 32910800 DOI: 10.2166/wst.2020.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamic characteristics of N2O emissions and nitrogen transformation in a sequencing batch biofilm reactor (SBBR) using the completely autotrophic nitrogen removal over nitrite (CANON) process coupled with denitrification were investigated via 15N isotope tracing and thermodynamic analysis. The results indicate that the Gibbs free energy (ΔG) values of N2O production by the nitrifier denitrification and heterotrophic denitrification reactions were greater than that of NH2OH oxidation, indicating that N2O was easier to produce via either nitrifier and heterotrophic denitrification than via NH2OH oxidation. Ammonia-oxidizing bacteria (AOB) denitrification exhibited a higher fs 0 (the fraction of electron-donor electrons utilized for cell synthesis) than NH2OH oxidation. Therefore, AOB preferred the denitrification pathway because of its growth advantage when N2O was produced by the AOB. The N2O emissions by hydroxylamine oxidation, AOB denitrification and heterotrophic denitrification in the SBBRs using different C/N ratios account for 5.4-7.6%, 45.2-60.8% and 33.8-47.2% of the N2O produced, respectively. The total N2O emission with C/N ratios of 0, 0.67 and 1 was 228.04, 205.57 and 190.4 μg N2O-N·g-1VSS, respectively. The certain carbon sources aid in the reduction of N2O emissions in the process.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No.174, Shazhen Street, Chongqing 400045, China E-mail:
| | - Kai Li
- College of Eco-environment Engineering, Guizhou Minzu University, Huaxi District, Guiyang City, Guizhou 550025, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No.174, Shazhen Street, Chongqing 400045, China E-mail:
| | - Han Wang
- College of Eco-environment Engineering, Guizhou Minzu University, Huaxi District, Guiyang City, Guizhou 550025, China
| | - Ping Zhang
- College of Eco-environment Engineering, Guizhou Minzu University, Huaxi District, Guiyang City, Guizhou 550025, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No.174, Shazhen Street, Chongqing 400045, China E-mail:
| |
Collapse
|
24
|
Khoshnevisan B, Dodds M, Tsapekos P, Torresi E, Smets BF, Angelidaki I, Zhang Y, Valverde-Pérez B. Coupling electrochemical ammonia extraction and cultivation of methane oxidizing bacteria for production of microbial protein. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110560. [PMID: 32421560 DOI: 10.1016/j.jenvman.2020.110560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Conventional treatment of residual resources relies on nutrient removal to limit pollution. Recently, nutrient recovery technologies have been proposed as more environmentally and energetically efficient strategies. Nevertheless, the upcycling of recovered resources is typically limited by their quality or purity. Specifically, nitrogen extracted from residual streams, such as anaerobic digestion (AD) effluents and wastewaters, could support microbial protein production. In this context, this study was performed as a proof-of-concept to combine nitrogen recovery via electrochemical reactors with the production of high quality microbial protein via cultivation of methanotrophs. Two types of AD effluents, i.e., cattle manure and organic fraction of municipal solid waste, and urine were tested to investigate the nitrogen extraction efficiency. The results showed that 31-51% of the nitrogen could be recovered free of trace chemicals from residual streams depending on the substrate and voltage used. Based on the results achieved, higher nitrogen concentration in the residual streams resulted in higher nitrogen flux between anodic and cathodic chambers. Results showed that the extraction process has an energy demand of 9.97 (±0.7) - 14.44 (±1.19) kWh/kg-N, depending on the substrate and operating conditions. Furthermore, a mixed-culture of methanotrophic bacteria could grow well with the extracted nitrogen producing a total dry weight of 0.49 ± 0.01 g/L. Produced biomass contained a wide range of essential amino acids making it comparable with conventional protein sources.
Collapse
Affiliation(s)
- Benyamin Khoshnevisan
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark Dodds
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Elena Torresi
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark; Veolia Water Technologies AB, AnoxKaldnes, Klosterängsvägen 11A, SE-226 47, Lund, Sweden
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
25
|
Domingo-Félez C, Smets BF. Modeling Denitrification as an Electric Circuit Accurately Captures Electron Competition between Individual Reductive Steps: The Activated Sludge Model-Electron Competition Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7330-7338. [PMID: 32428412 DOI: 10.1021/acs.est.0c01095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterotrophic denitrification consists of the four-step sequential reduction of nitrate to dinitrogen gas over nitrite, nitric oxide, and nitrous oxide. Oxidation processes, commonly of organic compounds, provide the electrons needed for the sequential reaction steps. The intracellular electron distribution is a competitive process among the four reduction steps. In this study, a model describing organic carbon oxidation and four-step denitrification through electron competition is proposed [Activated Sludge Model-Electron Competition (ASM-EC)]. The model describes denitrification rates as an analogy to how current intensity varies through a parallel set of resistors in electric circuits. The ASM-EC model was calibrated with data from batch experiments with heterotrophic denitrifying communities, where reduction of mixtures of nitrogen oxides was monitored, while different carbon sources were supplied in excess. The carbon sources included methanol, ethanol, acetate, and their ternary mixture. The electron distribution preference and electron uptake rates varied between the carbon sources and were captured by the model structure for most of the experiments. The ASM-EC model uses fewer parameters compared to existing state-of-the-art denitrification models and performed equally well in the tested scenarios. We advocate the use of this model for denitrification in the activated sludge model, which can easily be integrated in existing model structures, because it provides a parsimonious description of electron competition during denitrification.
Collapse
Affiliation(s)
- Carlos Domingo-Félez
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 115, 2800 Kongens Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
26
|
Cruz H, Law YY, Guest JS, Rabaey K, Batstone D, Laycock B, Verstraete W, Pikaar I. Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11066-11079. [PMID: 31483625 DOI: 10.1021/acs.est.9b00603] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Throughout the 20th century, the prevailing approach toward nitrogen management in municipal wastewater treatment was to remove ammonium by transforming it into dinitrogen (N2) using biological processes such as conventional activated sludge. While this has been a very successful strategy for safeguarding human health and protecting aquatic ecosystems, the conversion of ammonium into its elemental form is incompatible with the developing circular economy of the 21st century. Equally important, the activated sludge process and other emerging ammonium removal pathways have several environmental and technological limitations. Here, we assess that the theoretical energy embedded in ammonium in domestic wastewater represents roughly 38-48% of the embedded chemical energy available in the whole of the discharged bodily waste. The current routes for ammonium removal not only neglect the energy embedded in ammonium, but they can also produce N2O, a very strong greenhouse gas, with such emissions comprising the equivalent of 14-26% of the overall carbon footprint of wastewater treatment plants. N2O emissions often exceed the carbon emissions related to the electricity consumption for the process requirements of WWTPs. Considering these limitations, there is a need to develop alternative ammonium management approaches that center around recovery of ammonium from domestic wastewater rather than deal with its "destruction" into elemental dinitrogen. Current ammonium recovery techniques are applicable only at orders of magnitude above domestic wastewater strength, and so new techniques based on physicochemical adsorption are of particular interest. A new pathway is proposed that allows for mainstream ammonium recovery from wastewater based on physicochemical adsorption through development of polymer-based adsorbents. Provided adequate adsorbents corresponding to characteristics outlined in this paper are designed and brought to industrial production, this adsorption-based approach opens perspectives for mainstream continuous adsorption coupled with side-stream recovery of ammonium with minimal chemical requirements. This proposed pathway can bring forward an effective resource-oriented approach to upgrade the fate of ammonium in urban water management without generating hidden externalized environmental costs.
Collapse
Affiliation(s)
- Heidy Cruz
- School of Civil Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Ying Yu Law
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , 637551 , Singapore
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Illinois 61801 , United States
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Damien Batstone
- Advanced Water Management Centre , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Bronwyn Laycock
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Ilje Pikaar
- School of Civil Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|