1
|
Liu W, Wang P, Zhuang X, Ling Y, Liu H, Wang S, Yu H, Ma L, Jiang Y, Zhao G, Yan X, Zhou Z, Zhang G. RDBSB: a database for catalytic bioparts with experimental evidence. Nucleic Acids Res 2024:gkae844. [PMID: 39360609 DOI: 10.1093/nar/gkae844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Catalytic bioparts are fundamental to the design, construction and optimization of biological systems for specific metabolic pathways. However, the functional characterization information of these bioparts is frequently dispersed across multiple databases and literature sources, posing significant challenges to the effective design and optimization of specific chassis or cell factories. We developed the Registry and Database of Bioparts for Synthetic Biology (RDBSB), a comprehensive resource encompassing 83 193 curated catalytic bioparts with experimental evidences. RDBSB offers their detailed qualitative and quantitative catalytic information, including critical parameters such as activities, substrates, optimal pH and temperature, and chassis specificity. The platform features an interactive search engine, visualization tools and analysis utilities such as biopart finder, structure prediction and pathway design tools. Additionally, RDBSB promotes community engagement through a catalytic bioparts submission system to facilitate rapid data sharing and utilization. To date, RDBSB has supported the contribution of >1000 catalytic bioparts. We anticipate that the database will significantly enhance the resources available for pathway design in synthetic biology and serve essential tools for researchers. RDBSB is freely available at https://www.biosino.org/rdbsb/.
Collapse
Affiliation(s)
- Wan Liu
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | - Xinhao Zhuang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yunchao Ling
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Haiyan Liu
- School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230026, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., 4/F, Youyue Building, No. 298, Xiangke Road, Pudong New District, Shanghai 200030, China
| | - Haihan Yu
- School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230026, China
| | - Liangxiao Ma
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yuguo Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, and Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences (CAS), 3888 Chenhua Road, Shanghai 201602, China
| | - Guoping Zhao
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
2
|
Burgstaller A, Piernitzki N, Küchler N, Koch M, Kister T, Eichler H, Kraus T, Schwarz EC, Dustin ML, Lautenschläger F, Staufer O. Soft Synthetic Cells with Mobile Membrane Ligands for Ex Vivo Expansion of Therapy-Relevant T Cell Phenotypes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401844. [PMID: 38751204 DOI: 10.1002/smll.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The expansion of T cells ex vivo is crucial for effective immunotherapy but currently limited by a lack of expansion approaches that closely mimic in vivo T cell activation. Taking inspiration from bottom-up synthetic biology, a new synthetic cell technology is introduced based on dispersed liquid-liquid phase-separated droplet-supported lipid bilayers (dsLBs) with tunable biochemical and biophysical characteristics, as artificial antigen presenting cells (aAPCs) for ex vivo T cell expansion. These findings obtained with the dsLB technology reveal three key insights: first, introducing laterally mobile stimulatory ligands on soft aAPCs promotes expansion of IL-4/IL-10 secreting regulatory CD8+ T cells, with a PD-1 negative phenotype, less prone to immune suppression. Second, it is demonstrated that lateral ligand mobility can mask differential T cell activation observed on substrates of varying stiffness. Third, dsLBs are applied to reveal a mechanosensitive component in bispecific Her2/CD3 T cell engager-mediated T cell activation. Based on these three insights, lateral ligand mobility, alongside receptor- and mechanosignaling, is proposed to be considered as a third crucial dimension for the design of ex vivo T cell expansion technologies.
Collapse
Affiliation(s)
- Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nils Piernitzki
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nadja Küchler
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Thomas Kister
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123, Saarbrücken, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Franziska Lautenschläger
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
3
|
Zhang H, Guo L, Su Y, Wang R, Yang W, Mu W, Xuan L, Huang L, Wang J, Gao W. Hosts engineering and in vitro enzymatic synthesis for the discovery of novel natural products and their derivatives. Crit Rev Biotechnol 2024; 44:1121-1139. [PMID: 37574211 DOI: 10.1080/07388551.2023.2236787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 08/15/2023]
Abstract
Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and in vitro enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including Streptomyces, Aspergillus, and Penicillium, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of in vitro enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.
Collapse
Affiliation(s)
- Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenrong Mu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Liangshuang Xuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
4
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
5
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
6
|
Gómez-Márquez J. The Lithbea Domain. Adv Biol (Weinh) 2024; 8:e2300679. [PMID: 38386280 DOI: 10.1002/adbi.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The tree of life is the evolutionary metaphor for the past and present connections of all cellular organisms. Today, to speak of biodiversity is not only to speak of archaea, bacteria, and eukaryotes, but they should also consider the "new biodiversity" that includes viruses and synthetic organisms, which represent the new forms of life created in laboratories. There is even a third group of artificial entities that, although not living systems, pretend to imitate the living. To embrace and organize all this new biodiversity, I propose the creation of a new domain, with the name Lithbea (from life-on-the-border entites) The criteria for inclusion as members of Lithbea are: i) the acellular nature of the living system, ii) its origin in laboratory manipulation, iii) showing new biological traits, iv) the presence of exogenous genetic elements, v) artificial or inorganic nature. Within Lithbea there are two subdomains: Virworld (from virus world) which includes all viruses, regarded as lifeless living systems, and classified according to the International Committee on Taxonomy of Viruses (ICTV), and ii) Humade (from human-made) which includes all synthetic organisms and artificial entities. The relationships of Lithbea members to the three classical woesian domains and their implications are briefly discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain
| |
Collapse
|
7
|
Zhao Y, Wang S. Experimental and biophysical modeling of transcription and translation dynamics in bacterial- and mammalian-based cell-free expression systems. SLAS Technol 2024; 29:100036. [PMID: 35231628 DOI: 10.1016/j.slast.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022]
Abstract
Cell-free expression (CFE) systems have been used extensively in systems and synthetic biology as a promising platform for manufacturing proteins and chemicals. Currently, the most widely used CFE system is in vitro protein transcription and translation platform. As the rapidly increased applications and uses, it is crucial to have a standard biophysical model for quantitative studies of gene circuits, which will provide a fundamental understanding of basic working mechanisms of CFE systems. Current modeling approaches mainly focus on the characterization of E. coli-based CFE systems, a computational model that can be utilized for both bacterial- and mammalian-based CFE has not been investigated. Here, we developed a simple ODE (ordinary differential equation)-based biophysical model to simulate transcription and translation dynamics for both bacterial- and mammalian- based CFE systems. The key parameters were estimated and adjusted based on experimental results. We next tested four gene circuits to characterize kinetic dynamics of transcription and translation in E. coli- and HeLa-based CFE systems. The real-time transcription and translation were monitored using Broccoli aptamer, double stranded locked nucleic acid (dsLNA) probe and fluorescent protein. We demonstrated the difference of kinetic dynamics for transcription and translation in both systems, which will provide valuable information for quantitative genomic and proteomic studies. This simple biophysical model and the experimental data for both E. coli- and HeLa-based CFE will be useful for researchers that are interested in genetic engineering and CFE bio-manufacturing.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, United States; Department of Biomedical Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, United States.
| |
Collapse
|
8
|
Qutbuddin Y, Guinart A, Gavrilović S, Al Nahas K, Feringa BL, Schwille P. Light-Activated Synthetic Rotary Motors in Lipid Membranes Induce Shape Changes Through Membrane Expansion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311176. [PMID: 38215457 DOI: 10.1002/adma.202311176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/14/2024]
Abstract
Membranes are the key structures to separate and spatially organize cellular systems. Their rich dynamics and transformations during the cell cycle are orchestrated by specific membrane-targeted molecular machineries, many of which operate through energy dissipation. Likewise, man-made light-activated molecular rotary motors have previously shown drastic effects on cellular systems, but their physical roles on and within lipid membranes remain largely unexplored. Here, the impact of rotary motors on well-defined biological membranes is systematically investigated. Notably, dramatic mechanical transformations are observed in these systems upon motor irradiation, indicative of motor-induced membrane expansion. The influence of several factors on this phenomenon is systematically explored, such as motor concentration and membrane composition., Membrane fluidity is found to play a crucial role in motor-induced deformations, while only minor contributions from local heating and singlet oxygen generation are observed. Most remarkably, the membrane area expansion under the influence of the motors continues as long as irradiation is maintained, and the system stays out-of-equilibrium. Overall, this research contributes to a comprehensive understanding of molecular motors interacting with biological membranes, elucidating the multifaceted factors that govern membrane responses and shape transitions in the presence of these remarkable molecular machines, thereby supporting their future applications in chemical biology.
Collapse
Affiliation(s)
- Yusuf Qutbuddin
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Ainoa Guinart
- Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Svetozar Gavrilović
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Kareem Al Nahas
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| |
Collapse
|
9
|
Wang K, Liu X, Hu KKY, Haritos VS. Artificial Methylotrophic Cells via Bottom-Up Integration of a Methanol-Utilizing Pathway. ACS Synth Biol 2024; 13:888-900. [PMID: 38359048 DOI: 10.1021/acssynbio.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Methanol has gained substantial attention as a substrate for biomanufacturing due to plentiful stocks and nonreliance on agriculture, and it can be sourced renewably. However, due to inevitable complexities in cell metabolism, microbial methanol conversion requires further improvement before industrial applicability. Here, we present a novel, parallel strategy using artificial cells to provide a simplified and well-defined environment for methanol utilization as artificial methylotrophic cells. We compartmentalized a methanol-utilizing enzyme cascade, including NAD-dependent methanol dehydrogenase (Mdh) and pyruvate-dependent aldolase (KHB aldolase), in cell-sized lipid vesicles using the inverted emulsion method. The reduction of cofactor NAD+ to NADH was used to quantify the conversion of methanol within individual artificial methylotrophic cells via flow cytometry. Compartmentalization of the reaction cascade in liposomes led to a 4-fold higher NADH production compared with bulk enzyme experiments, and the incorporation of KHB aldolase facilitated another 2-fold increase above the Mdh-only reaction. This methanol-utilizing platform can serve as an alternative route to speed up methanol biological conversion, eventually shifting sugar-based bioproduction toward a sustainable methanol bioeconomy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Xueqing Liu
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Kevin K Y Hu
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| |
Collapse
|
10
|
Robinson AO, Lee J, Cameron A, Keating CD, Adamala KP. Cell-Free Expressed Membraneless Organelles Inhibit Translation in Synthetic Cells. ACS Biomater Sci Eng 2024; 10:773-781. [PMID: 38226971 DOI: 10.1021/acsbiomaterials.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Compartments within living cells create specialized microenvironments, allowing multiple reactions to be carried out simultaneously and efficiently. While some organelles are bound by a lipid bilayer, others are formed by liquid-liquid phase separation such as P-granules and nucleoli. Synthetic minimal cells are widely used to study many natural processes, including organelle formation. In this work, synthetic cells expressing artificial membrane-less organelles that inhibit translation are described. RGG-GFP-RGG, a phase-separating protein derived from Caenorhabditis elegans P-granules, is expressed by cell-free transcription and translation, forming artificial membraneless organelles that can sequester RNA and reduce protein expression in synthetic cells. The introduction of artificial membrane-less organelles creates complex microenvironments within the synthetic cell cytoplasm and functions as a tool to inhibit protein expression in synthetic cells. The engineering of compartments within synthetic cells furthers the understanding of the evolution and function of natural organelles and facilitates the creation of more complex and multifaceted synthetic lifelike systems.
Collapse
Affiliation(s)
- Abbey O Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| | - Jessica Lee
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Anders Cameron
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 SE Washington Ave., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
12
|
Heili JM, Stokes K, Gaut NJ, Deich C, Sharon J, Hoog T, Gomez-Garcia J, Cash B, Pawlak MR, Engelhart AE, Adamala KP. Controlled exchange of protein and nucleic acid signals from and between synthetic minimal cells. Cell Syst 2024; 15:49-62.e4. [PMID: 38237551 DOI: 10.1016/j.cels.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/01/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Synthetic minimal cells are a class of bioreactors that have some, but not all, functions of live cells. Here, we report a critical step toward the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell-penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes and transport of nucleic acid payloads by RNA-binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Joseph M Heili
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kaitlin Stokes
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nathaniel J Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Judee Sharon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Tanner Hoog
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jose Gomez-Garcia
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Brock Cash
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Matthew R Pawlak
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Velasco-Garcia L, Casadevall C. Bioinspired photocatalytic systems towards compartmentalized artificial photosynthesis. Commun Chem 2023; 6:263. [PMID: 38049562 PMCID: PMC10695942 DOI: 10.1038/s42004-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Artificial photosynthesis aims to produce fuels and chemicals from simple building blocks (i.e. water and carbon dioxide) using sunlight as energy source. Achieving effective photocatalytic systems necessitates a comprehensive understanding of the underlying mechanisms and factors that control the reactivity. This review underscores the growing interest in utilizing bioinspired artificial vesicles to develop compartmentalized photocatalytic systems. Herein, we summarize different scaffolds employed to develop artificial vesicles, and discuss recent examples where such systems are used to study pivotal processes of artificial photosynthesis, including light harvesting, charge transfer, and fuel production. These systems offer valuable lessons regarding the appropriate choice of membrane scaffolds, reaction partners and spatial arrangement to enhance photocatalytic activity, selectivity and efficiency. These studies highlight the pivotal role of the membrane to increase the stability of the immobilized reaction partners, generate a suitable local environment, and force proximity between electron donor and acceptor molecules (or catalysts and photosensitizers) to increase electron transfer rates. Overall, these findings pave the way for further development of bioinspired photocatalytic systems for compartmentalized artificial photosynthesis.
Collapse
Affiliation(s)
- Laura Velasco-Garcia
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain.
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
14
|
Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Anomalous Colloidal Motion under Strong Confinement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302115. [PMID: 37116105 DOI: 10.1002/smll.202302115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Diffusion of biological macromolecules in the cytoplasm is a paradigm of colloidal diffusion in an environment characterized by a strong restriction of the accessible volume. This makes of the understanding of the physical rules governing colloidal diffusion under conditions mimicking the reduction in accessible volume occurring in the cell cytoplasm, a problem of a paramount importance. This work aims to study how the thermal motion of spherical colloidal beads in the inner cavity of giant unilamellar vesicles (GUVs) is modified by strong confinement conditions, and the viscoelastic character of the medium. Using single particle tracking, it is found that both the confinement and the environmental viscoelasticity lead to the emergence of anomalous motion pathways for colloidal microbeads encapsulated in the aqueous inner cavity of GUVs. This anomalous diffusion is strongly dependent on the ratio between the volume of the colloidal particle and that of the GUV under consideration as well as on the viscosity of the particle's liquid environment. Therefore, the results evidence that the reduction of the free volume accessible to colloidal motion pushes the diffusion far from a standard Brownian pathway as a result of the change in the hydrodynamic boundary conditions driving the particle motion.
Collapse
Affiliation(s)
- Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
- Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
- Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain
| |
Collapse
|
15
|
Fumadó Navarro J, Lomora M. Mechanoresponsive Drug Delivery Systems for Vascular Diseases. Macromol Biosci 2023; 23:e2200466. [PMID: 36670512 DOI: 10.1002/mabi.202200466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Mechanoresponsive drug delivery systems (DDS) have emerged as promising candidates to improve the current effectiveness and lower the side effects typically associated with direct drug administration in the context of vascular diseases. Despite tremendous research efforts to date, designing drug delivery systems able to respond to mechanical stimuli to potentially treat these diseases is still in its infancy. By understanding relevant biological forces emerging in healthy and pathological vascular endothelium, it is believed that better-informed design strategies can be deduced for the fabrication of simple-to-complex macromolecular assemblies capable of sensing mechanical forces. These responsive systems are discussed through insights into essential parameter design (composition, size, shape, and aggregation state) , as well as their functionalization with (macro)molecules that are intrinsically mechanoresponsive (e.g., mechanosensitive ion channels and mechanophores). Mechanical forces, including the pathological shear stress and exogenous stimuli (e.g., ultrasound, magnetic fields), used for the activation of mechanoresponsive DDS are also introduced, followed by in vitro and in vivo experimental models used to investigate and validate such novel therapies. Overall, this review aims to propose a fresh perspective through identified challenges and proposed solutions that could be of benefit for the further development of this exciting field.
Collapse
Affiliation(s)
- Josep Fumadó Navarro
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| | - Mihai Lomora
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| |
Collapse
|
16
|
Seo K, Ichihashi N. Investigation of Compatibility between DNA Replication, Transcription, and Translation for in Vitro Central Dogma. ACS Synth Biol 2023; 12:1813-1822. [PMID: 37271965 DOI: 10.1021/acssynbio.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent advances in in vitro synthetic biology have made it possible to reconstitute various cellular functions in a test tube. However, the integration of these functions remains a major challenge. This study aimed to identify a suitable condition to achieve all three reactions that constitute the central dogma: transcription, translation, and DNA replication. Specifically, we investigated the effect of the concentrations of 11 nonprotein factors required for in vitro transcription, translation, and DNA replication on each of these reactions. Our results indicate that certain factors have opposing effects on the three reactions. For example, while dNTP is necessary for DNA replication, it inhibited translation, and both rNTP and tRNA, which are essential for transcription and translation, inhibited DNA replication with several DNA polymerases. We also found that these opposing effects were partially alleviated by optimizing the magnesium concentration. Using this knowledge, we successfully demonstrated transcription/translation-coupled DNA replication with higher levels of transcription and translation while maintaining a certain level of DNA replication. These findings not only provide useful insights for the development of a complex artificial system with the central dogma but also raise the question of how natural cells overcome the incompatibility between the three reactions.
Collapse
Affiliation(s)
- Kaito Seo
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
17
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
18
|
Jin Z, Vighi A, Dong Y, Bureau JA, Ignea C. Engineering membrane architecture for biotechnological applications. Biotechnol Adv 2023; 64:108118. [PMID: 36773706 DOI: 10.1016/j.biotechadv.2023.108118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cellular membranes, predominantly described as a dynamic bilayer, are composed of different lipids, transmembrane proteins, and carbohydrates. Most research on biological membranes focuses on the identification, characterization, and mechanistic aspects of their different components. These studies provide a fundamental understanding of membrane structure, function, and dynamics, establishing a basis for the development of membrane engineering strategies. To date, approaches in this field concentrate on membrane adaptation to harsh conditions during industrial fermentation, which can be caused by temperature, osmotic, or organic solvent stress. With advances in the field of metabolic engineering and synthetic biology, recent breakthroughs include proof of concept microbial production of essential medicines, such as cannabinoids and vinblastine. However, long pathways, low yields, and host adaptation continue to pose challenges to the efficient scale up production of many important compounds. The lipid bilayer is profoundly linked to the activity of heterologous membrane-bound enzymes and transport of metabolites. Therefore, strategies for improving enzyme performance, facilitating pathway reconstruction, and enabling storage of products to increase the yields directly involve cellular membranes. At the forefront of membrane engineering research are re-emerging approaches in lipid research and synthetic biology that manipulate membrane size and composition and target lipid profiles across species. This review summarizes engineering strategies applied to cellular membranes and discusses the challenges and future perspectives, particularly with regards to their applications in host engineering and bioproduction.
Collapse
Affiliation(s)
- Zimo Jin
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Asia Vighi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| |
Collapse
|
19
|
Robinson AO, Lee J, Cameron A, Keating CD, Adamala KP. Cell-free expressed membraneless organelles sequester RNA in synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535479. [PMID: 37066403 PMCID: PMC10104018 DOI: 10.1101/2023.04.03.535479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Compartments within living cells create specialized microenvironments, allowing for multiple reactions to be carried out simultaneously and efficiently. While some organelles are bound by a lipid bilayer, others are formed by liquid-liquid phase separation, such as P-granules and nucleoli. Synthetic minimal cells have been widely used to study many natural processes, including organelle formation. Here we describe a synthetic cell expressing RGG-GFP-RGG, a phase-separating protein derived from LAF-1 RGG domains, to form artificial membraneless organelles that can sequester RNA and reduce protein expression. We create complex microenvironments within synthetic cell cytoplasm and introduce a tool to modulate protein expression in synthetic cells. Engineering of compartments within synthetic cells furthers understanding of evolution and function of natural organelles, as well as it facilitates the creation of more complex and multifaceted synthetic life-like systems.
Collapse
Affiliation(s)
- Abbey O Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anders Cameron
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Colin A, Kotila T, Guérin C, Orhant-Prioux M, Vianay B, Mogilner A, Lappalainen P, Théry M, Blanchoin L. Recycling of the actin monomer pool limits the lifetime of network turnover. EMBO J 2023; 42:e112717. [PMID: 36912152 PMCID: PMC10152149 DOI: 10.15252/embj.2022112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.
Collapse
Affiliation(s)
- Alexandra Colin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Christophe Guérin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Magali Orhant-Prioux
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Benoit Vianay
- CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.,Department of Biology, New York University, New York, NY, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Manuel Théry
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| |
Collapse
|
21
|
Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Adv Biol (Weinh) 2023; 7:e2200180. [PMID: 36470673 DOI: 10.1002/adbi.202200180] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
22
|
Gomez Melo S, Wörthmüller D, Gönczy P, Banterle N, Schwarz US. Grand canonical Brownian dynamics simulations of adsorption and self-assembly of SAS-6 rings on a surface. J Chem Phys 2023; 158:085102. [PMID: 36859084 DOI: 10.1063/5.0135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The Spindle Assembly Abnormal Protein 6 (SAS-6) forms dimers, which then self-assemble into rings that are critical for the nine-fold symmetry of the centriole organelle. It has recently been shown experimentally that the self-assembly of SAS-6 rings is strongly facilitated on a surface, shifting the reaction equilibrium by four orders of magnitude compared to the bulk. Moreover, a fraction of non-canonical symmetries (i.e., different from nine) was observed. In order to understand which aspects of the system are relevant to ensure efficient self-assembly and selection of the nine-fold symmetry, we have performed Brownian dynamics computer simulation with patchy particles and then compared our results with the experimental ones. Adsorption onto the surface was simulated by a grand canonical Monte Carlo procedure and random sequential adsorption kinetics. Furthermore, self-assembly was described by Langevin equations with hydrodynamic mobility matrices. We find that as long as the interaction energies are weak, the assembly kinetics can be described well by coagulation-fragmentation equations in the reaction-limited approximation. By contrast, larger interaction energies lead to kinetic trapping and diffusion-limited assembly. We find that the selection of nine-fold symmetry requires a small value for the angular interaction range. These predictions are confirmed by the experimentally observed reaction constant and angle fluctuations. Overall, our simulations suggest that the SAS-6 system works at the crossover between a relatively weak binding energy that avoids kinetic trapping and a small angular range that favors the nine-fold symmetry.
Collapse
Affiliation(s)
- Santiago Gomez Melo
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Dennis Wörthmüller
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Niccolo Banterle
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Sánchez MF, Tampé R. Ligand-independent receptor clustering modulates transmembrane signaling: a new paradigm. Trends Biochem Sci 2023; 48:156-171. [PMID: 36115755 DOI: 10.1016/j.tibs.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Cell-surface receptors mediate communication between cells and their environment. Lateral membrane organization and dynamic receptor cluster formation are fundamental in signal transduction and cell signaling. However, it is not yet fully understood how receptor clustering modulates a wide variety of physiologically relevant processes. Recent growing evidence indicates that biological responses triggered by membrane receptors can be modulated even in the absence of the natural receptor ligand. We review the most recent findings on how ligand-independent receptor clustering can regulate transmembrane signaling. We discuss the latest technologies to control receptor assembly, such as DNA nanotechnology, optogenetics, and optochemistry, focusing on the biological relevance and unraveling of ligand-independent signaling.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Shaytan AK, Novikov RV, Vinnikov RS, Gribkova AK, Glukhov GS. From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Front Mol Biosci 2022; 9:1070526. [PMID: 36589238 PMCID: PMC9795063 DOI: 10.3389/fmolb.2022.1070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
In the last decade, the CRISPR-Cas technology has gained widespread popularity in different fields from genome editing and detecting specific DNA/RNA sequences to gene expression control. At the heart of this technology is the ability of CRISPR-Cas complexes to be programmed for targeting particular DNA loci, even when using catalytically inactive dCas-proteins. The repertoire of naturally derived and engineered dCas-proteins including fusion proteins presents a promising toolbox that can be used to construct functional synthetic genetic circuits. Rational genetic circuit design, apart from having practical relevance, is an important step towards a deeper quantitative understanding of the basic principles governing gene expression regulation and functioning of living organisms. In this minireview, we provide a succinct overview of the application of CRISPR-dCas-based systems in the emerging field of synthetic genetic circuit design. We discuss the diversity of dCas-based tools, their properties, and their application in different types of genetic circuits and outline challenges and further research directions in the field.
Collapse
Affiliation(s)
- A. K. Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Computer Science, HSE University, Moscow, Russia,*Correspondence: A. K. Shaytan,
| | - R. V. Novikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - R. S. Vinnikov
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - A. K. Gribkova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - G. S. Glukhov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, China
| |
Collapse
|
25
|
Eliminating host-guest incompatibility via enzyme mining enables the high-temperature production of N-acetylglucosamine. iScience 2022; 26:105774. [PMID: 36636338 PMCID: PMC9829697 DOI: 10.1016/j.isci.2022.105774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/09/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The host-guest incompatibility between a production host and non-native enzymes has posed an arduous challenge for synthetic biology, particularly between mesophile-derived enzymes and a thermophilic chassis. In the present study, we develop a thermophilic enzyme mining strategy comprising an automated co-evolution-based screening pipeline (http://cem.sjtu.edu.cn), computation-based enzyme characterization, and gene synthesis-based function validation. Using glucosamine-6-phosphate acetyltransferase (GNA1) as an example, we successfully mined four novel GNA1s with excellent thermostabilities and catalytic performances. Calculation and analysis based on AlphaFold2-generated structures were also conducted to uncover the mechanism underlying their excellent properties. Finally, our mined GNA1s were used to enable the high-temperature N-acetylglucosamine (GlcNAc) production with high titers of up to 119.3 g/L, with the aid of systems metabolic engineering and temperature programming. This study demonstrates the effectiveness of the enzyme mining strategy, highlighting the application prospects of mining new enzymes from massive databases and providing an effective solution for tackling host-guest incompatibility.
Collapse
|
26
|
Halogenation of tyrosine perturbs large-scale protein self-organization. Nat Commun 2022; 13:4843. [PMID: 35977922 PMCID: PMC9385671 DOI: 10.1038/s41467-022-32535-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
Protein halogenation is a common non-enzymatic post-translational modification contributing to aging, oxidative stress-related diseases and cancer. Here, we report a genetically encodable halogenation of tyrosine residues in a reconstituted prokaryotic filamentous cell-division protein (FtsZ) as a platform to elucidate the implications of halogenation that can be extrapolated to living systems of much higher complexity. We show how single halogenations can fine-tune protein structures and dynamics of FtsZ with subtle perturbations collectively amplified by the process of FtsZ self-organization. Based on experiments and theories, we have gained valuable insights into the mechanism of halogen influence. The bending of FtsZ structures occurs by affecting surface charges and internal domain distances and is reflected in the decline of GTPase activities by reducing GTP binding energy during polymerization. Our results point to a better understanding of the physiological and pathological effects of protein halogenation and may contribute to the development of potential diagnostic tools.
Collapse
|
27
|
Ganar KA, Leijten L, Deshpande S. Actinosomes: Condensate-Templated Containers for Engineering Synthetic Cells. ACS Synth Biol 2022; 11:2869-2879. [PMID: 35948429 PMCID: PMC9396703 DOI: 10.1021/acssynbio.2c00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Engineering synthetic cells has a broad appeal, from
understanding
living cells to designing novel biomaterials for therapeutics, biosensing,
and hybrid interfaces. A key prerequisite to creating synthetic cells
is a three-dimensional container capable of orchestrating biochemical
reactions. In this study, we present an easy and effective technique
to make cell-sized porous containers, coined actinosomes, using the
interactions between biomolecular condensates and the actin cytoskeleton.
This approach uses polypeptide/nucleoside triphosphate condensates
and localizes actin monomers on their surface. By triggering actin
polymerization and using osmotic gradients, the condensates are transformed
into containers, with the boundary made up of actin filaments and
polylysine polymers. We show that the guanosine triphosphate (GTP)-to-adenosine
triphosphate (ATP) ratio is a crucial parameter for forming actinosomes:
insufficient ATP prevents condensate dissolution, while excess ATP
leads to undesired crumpling. Permeability studies reveal the porous
surface of actinosomes, allowing small molecules to pass through while
restricting bigger macromolecules within the interior. We show the
functionality of actinosomes as bioreactors by carrying out in vitro protein translation within them. Actinosomes are
a handy addition to the synthetic cell platform, with appealing properties
like ease of production, inherent encapsulation capacity, and a potentially
active surface to trigger signaling cascades and form multicellular
assemblies, conceivably useful for biotechnological applications.
Collapse
Affiliation(s)
- Ketan A Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Liza Leijten
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
28
|
Chien PJ, Shih YL, Cheng CT, Tu HL. Chip assisted formation of phase-separated liposomes for reconstituting spatial protein-lipid interactions. LAB ON A CHIP 2022; 22:2540-2548. [PMID: 35667105 DOI: 10.1039/d2lc00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spatially organized molecular interactions are fundamental features underlying many biochemical processes in cells. These spatially defined reactions are essential to ensure high signaling specificity and are indispensable for maintaining cell functions. The construction of synthetic cell models that can resemble such properties is thus important yet less investigated. In this study, we present a reliable method for the rapid production of highly uniform phase-separated liposomes as synthetic cell models. Specifically, a microfluidics-based strategy coupled with custom reagents for generating size-tunable liposomes with various lipid compositions is presented. In addition, an important cell signaling interacting pair, the pleckstrin homology (PH) domain and PIP2 lipid, is used to demonstrate the controlled molecular assembly inside these liposomes. The result shows that PIP2 on phase-separated domains successfully recruits the PH domains to realize spatially defined molecular interactions. Such a system is versatile and can be expanded to synthesize other proteins for realizing multiplexed molecular interactions in the same liposome. Phase-separated lipid domains can also be used to recruit targeted proteins to initiate localized reactions, thus paving the way for organizing a complex signaling cascade in the synthetic cell.
Collapse
Affiliation(s)
- Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Lun Shih
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chieh-Teng Cheng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| |
Collapse
|
29
|
Cheng T, Wang L, Sun C, Xie C. Optimizing the downstream MVA pathway using a combination optimization strategy to increase lycopene yield in Escherichia coli. Microb Cell Fact 2022; 21:121. [PMID: 35718767 PMCID: PMC9208136 DOI: 10.1186/s12934-022-01843-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Lycopene is increasing in demand due to its widespread use in the pharmaceutical and food industries. Metabolic engineering and synthetic biology technologies have been widely used to overexpress the heterologous mevalonate pathway and lycopene pathway in Escherichia coli to produce lycopene. However, due to the tedious metabolic pathways and complicated metabolic background, optimizing the lycopene synthetic pathway using reasonable design approaches becomes difficult. Results In this study, the heterologous lycopene metabolic pathway was introduced into E. coli and divided into three modules, with mevalonate and DMAPP serving as connecting nodes. The module containing the genes (MVK, PMK, MVD, IDI) of downstream MVA pathway was adjusted by altering the expression strength of the four genes using the ribosome binding sites (RBSs) library with specified strength to improve the inter-module balance. Three RBS libraries containing variably regulated MVK, PMK, MVD, and IDI were constructed based on different plasmid backbones with the variable promoter and replication origin. The RBS library was then transformed into engineered E. coli BL21(DE3) containing pCLES and pTrc-lyc to obtain a lycopene producer library and employed high-throughput screening based on lycopene color to obtain the required metabolic pathway. The shake flask culture of the selected high-yield strain resulted in a lycopene yield of 219.7 mg/g DCW, which was 4.6 times that of the reference strain. Conclusion A strain capable of producing 219.7 mg/g DCW with high lycopene metabolic flux was obtained by fine-tuning the expression of the four MVA pathway enzymes and visual selection. These results show that the strategy of optimizing the downstream MVA pathway through RBS library design can be effective, which can improve the metabolic flux and provide a reference for the synthesis of other terpenoids. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01843-z.
Collapse
Affiliation(s)
- Tao Cheng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China. .,CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, China.
| | - Lili Wang
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Chao Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China.,CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Congxia Xie
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China.
| |
Collapse
|
30
|
Jia H, Flommersfeld J, Heymann M, Vogel SK, Franquelim HG, Brückner DB, Eto H, Broedersz CP, Schwille P. 3D printed protein-based robotic structures actuated by molecular motor assemblies. NATURE MATERIALS 2022; 21:703-709. [PMID: 35618822 PMCID: PMC9156402 DOI: 10.1038/s41563-022-01258-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/13/2022] [Indexed: 06/10/2023]
Abstract
Upscaling motor protein activity to perform work in man-made devices has long been an ambitious goal in bionanotechnology. The use of hierarchical motor assemblies, as realized in sarcomeres, has so far been complicated by the challenges of arranging sufficiently high numbers of motor proteins with nanoscopic precision. Here, we describe an alternative approach based on actomyosin cortex-like force production, allowing low complexity motor arrangements in a contractile meshwork that can be coated onto soft objects and locally activated by ATP. The design is reminiscent of a motorized exoskeleton actuating protein-based robotic structures from the outside. It readily supports the connection and assembly of micro-three-dimensional printed modules into larger structures, thereby scaling up mechanical work. We provide an analytical model of force production in these systems and demonstrate the design flexibility by three-dimensional printed units performing complex mechanical tasks, such as microhands and microarms that can grasp and wave following light activation.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Johannes Flommersfeld
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Sven K Vogel
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - David B Brückner
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
31
|
Staufer O, Hernandez Bücher JE, Fichtler J, Schröter M, Platzman I, Spatz JP. Vesicle Induced Receptor Sequestration: Mechanisms behind Extracellular Vesicle-Based Protein Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200201. [PMID: 35233981 PMCID: PMC9069182 DOI: 10.1002/advs.202200201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are fundamental for proper physiological functioning of multicellular organisms. By shuttling nucleic acids and proteins between cells, EVs regulate a plethora of cellular processes, especially those involved in immune signalling. However, the mechanistic understanding concerning the biophysical principles underlying EV-based communication is still incomplete. Towards holistic understanding, particular mechanisms explaining why and when cells apply EV-based communication and how protein-based signalling is promoted by EV surfaces are sought. Here, the authors study vesicle-induced receptor sequestration (VIRS) as a universal mechanism augmenting the signalling potency of proteins presented on EV-membranes. By bottom-up reconstitution of synthetic EVs, the authors show that immobilization of the receptor ligands FasL and RANK on EV-like vesicles, increases their signalling potential by more than 100-fold compared to their soluble forms. Moreover, the authors perform diffusion simulations within immunological synapses to compare receptor activation between soluble and EV-presented proteins. By this the authors propose vesicle-triggered local clustering of membrane receptors as the principle structural mechanism underlying EV-based protein presentation. The authors conclude that EVs act as extracellular templates promoting the local aggregation of membrane receptors at the EV contact site, thereby fostering inter-protein interactions. The results uncover a potentially universal mechanism explaining the unique structural profit of EV-based intercellular signalling.
Collapse
Affiliation(s)
- Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D-69120, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg, D-69120, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, Heidelberg, D-69120, Germany
| | - Jochen Estebano Hernandez Bücher
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D-69120, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg, D-69120, Germany
| | - Julius Fichtler
- Biophysical Engineering of Life Group, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D-69120, Germany
| | - Martin Schröter
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D-69120, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg, D-69120, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D-69120, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg, D-69120, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D-69120, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg, D-69120, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, Heidelberg, D-69120, Germany
| |
Collapse
|
32
|
Hernandez Bücher JE, Staufer O, Ostertag L, Mersdorf U, Platzman I, Spatz JP. Bottom-up assembly of target-specific cytotoxic synthetic cells. Biomaterials 2022; 285:121522. [DOI: 10.1016/j.biomaterials.2022.121522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/23/2022]
|
33
|
Yao Y, Wen Q, Zhang T, Yu C, Chan KM, Gan H. Advances in Approaches to Study Chromatin-Mediated Epigenetic Memory. ACS Synth Biol 2022; 11:16-25. [PMID: 34965084 DOI: 10.1021/acssynbio.1c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromatin structure contains critical epigenetic information in various forms, such as histone post-translational modifications (PTMs). The deposition of certain histone PTMs can remodel the chromatin structure, resulting in gene expression alteration. The epigenetic information carried by histone PTMs could be inherited by daughter cells to maintain the gene expression status. Recently, studies revealed that several conserved replisome proteins regulate the recycling of parental histones carrying epigenetic information in Saccharomyces cerevisiae. Hence, the proper recycling and deposition of parental histones onto newly synthesized DNA strands is presumed to be essential for epigenetic inheritance. Here, we first reviewed the fundamental mechanisms of epigenetic modification establishment and maintenance discovered within fungal models. Next, we discussed the functions of parental histone chaperones and the potential impacts of the parental histone recycling process on heterochromatin-mediated transcriptional silencing inheritance. Subsequently, we summarized novel synthetic biology approaches developed to analyze individual epigenetic components during epigenetic inheritance in fungal and mammalian systems. These newly emerged research paradigms enable us to dissect epigenetic systems in a bottom-up manner. Furthermore, we highlighted the approaches developed in this emerging field and discussed the potential applications of these engineered regulators to building synthetic epigenetic systems.
Collapse
Affiliation(s)
- Yuan Yao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Wen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianjun Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518172, China
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
34
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
35
|
Venero OM, Sato W, Heili JM, Deich C, Adamala KP. Liposome Preparation by 3D-Printed Microcapillary-Based Apparatus. Methods Mol Biol 2022; 2433:227-235. [PMID: 34985748 DOI: 10.1007/978-1-0716-1998-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liposomal encapsulation serves as the basis for the engineering of biomimetic and novel synthetic cells. Liposomes are normally formed using such methods as thin film rehydration (TFH), density-mediated reverse emulsion encapsulation (REE), or one of many microfluidics-based approaches-with the latter of these two methods being used mainly for the encapsulation of various lumen constituents such as cell-free protein expression reactions. Here, we describe the simultaneous formation and encapsulation of liposomes and various cell-mimetic lumen chemistries, respectively, using a 3D-printable microcapillary-based microfluidics device based off of the droplet-shooting and size-filtration (DSSF) liposome preparation method.
Collapse
Affiliation(s)
- Orion M Venero
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Joseph M Heili
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
36
|
Staufer O, De Lora JA, Bailoni E, Bazrafshan A, Benk AS, Jahnke K, Manzer ZA, Otrin L, Díez Pérez T, Sharon J, Steinkühler J, Adamala KP, Jacobson B, Dogterom M, Göpfrich K, Stefanovic D, Atlas SR, Grunze M, Lakin MR, Shreve AP, Spatz JP, López GP. Building a community to engineer synthetic cells and organelles from the bottom-up. eLife 2021; 10:e73556. [PMID: 34927583 PMCID: PMC8716100 DOI: 10.7554/elife.73556] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.
Collapse
Affiliation(s)
- Oskar Staufer
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
- Max Planck Bristol Center for Minimal Biology, University of BristolBristolUnited Kingdom
| | | | | | | | - Amelie S Benk
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Kevin Jahnke
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | | | - Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | | | | | | | | | | | | | - Kerstin Göpfrich
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
| | | | | | - Michael Grunze
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
| | | | | | - Joachim P Spatz
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
- Max Planck Bristol Center for Minimal Biology, University of BristolBristolUnited Kingdom
| | | |
Collapse
|
37
|
Saper G, Tsitkov S, Katira P, Hess H. Robotic end-to-end fusion of microtubules powered by kinesin. Sci Robot 2021; 6:eabj7200. [PMID: 34731025 DOI: 10.1126/scirobotics.abj7200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The active assembly of molecules by nanorobots has advanced greatly since “molecular manufacturing”—that is, the use of nanoscale tools to build molecular structures—was proposed. In contrast to a catalyst, which accelerates a reaction by smoothing the potential energy surface along the reaction coordinate, molecular machines expend energy to accelerate a reaction relative to the baseline provided by thermal motion and forces. Here, we design a nanorobotics system to accelerate end-to-end microtubule assembly by using kinesin motors and a circular confining chamber. We show that the mechanical interaction of kinesin-propelled microtubules gliding on a surface with the walls of the confining chamber results in a nonequilibrium distribution of microtubules, which increases the number of end-to-end microtubule fusion events 20-fold compared with microtubules gliding on a plane. In contrast to earlier nanorobots, where a nonequilibrium distribution was built into the initial state and drove the process, our nanorobotic system creates and actively maintains the building blocks in the concentrated state responsible for accelerated assembly through the adenosine triphosphate–fueled generation of force by kinesin-1 motor proteins. This approach can be used in the future to develop biohybrid or bioinspired nanorobots that use molecular machines to access nonequilibrium states and accelerate nanoscale assembly.
Collapse
Affiliation(s)
- Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Stanislav Tsitkov
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
38
|
Deng J, Walther A. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nat Commun 2021; 12:5132. [PMID: 34446724 PMCID: PMC8390752 DOI: 10.1038/s41467-021-25450-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Concatenation and communication between chemically distinct chemical reaction networks (CRNs) is an essential principle in biology for controlling dynamics of hierarchical structures. Here, to provide a model system for such biological systems, we demonstrate autonomous lifecycles of DNA nanotubes (DNTs) by two concatenated CRNs using different thermodynamic principles: (1) ATP-powered ligation/restriction of DNA components and (2) input strand-mediated DNA strand displacement (DSD) using energy gains provided in DNA toeholds. This allows to achieve hierarchical non-equilibrium systems by concurrent ATP-powered ligation-induced DSD for activating DNT self-assembly and restriction-induced backward DSD reactions for triggering DNT degradation. We introduce indirect and direct activation of DNT self-assemblies, and orthogonal molecular recognition allows ATP-fueled self-sorting of transient multicomponent DNTs. Coupling ATP dissipation to DNA nanostructures via programmable DSD is a generic concept which should be widely applicable to organize other DNA nanostructures, and enable the design of automatons and life-like systems of higher structural complexity.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
39
|
Ganar KA, Honaker LW, Deshpande S. Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Zoni V, Campomanes P, Vanni S. Investigating the structural properties of hydrophobic solvent-rich lipid bilayers. SOFT MATTER 2021; 17:5329-5335. [PMID: 33969832 PMCID: PMC8170560 DOI: 10.1039/d0sm02270e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
In vitro reconstitutions of lipid membranes have proven to be an indispensable tool to rationalize their molecular complexity and to understand their role in countless cellular processes. However, amongst the various techniques used to reconstitute lipid bilayers in vitro, several approaches are not solvent-free, but rather contain residual hydrophobic solvents in between the two bilayer leaflets, generally as a consequence of the procedure used to generate the bilayer. To what extent the presence of these hydrophobic solvents modifies bilayer properties with respect to native, solvent-free, conditions remains an open question that has important implications for the appropriate interpretation of numerous experimental observations. Here, we thorouhgly characterize hydrophobic solvent-rich lipid bilayers using atomistic molecular dynamics simulations. Our data indicate that while the presence of hydrophobic solvents at high concentrations, such as hexadecane, has a significant effect on membrane thickness, their effects on surface properties, membrane order and lateral stress are quite moderate. Our results corroborate the validity of in vitro approaches as model systems for the investigations of biological membranes but raise a few cautionary aspects that must be considered when investigating specific membrane properties.
Collapse
Affiliation(s)
- Valeria Zoni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
41
|
Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, Zhuang D, Jiang H, Chen X, He Y, Huang S, Zhu P. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater 2021; 6:1388-1401. [PMID: 33210031 PMCID: PMC7658327 DOI: 10.1016/j.bioactmat.2020.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is still one of the leading causes of death in the world, and heart transplantation is the current major treatment for end-stage cardiovascular diseases. However, because of the shortage of heart donors, new sources of cardiac regenerative medicine are greatly needed. The prominent development of tissue engineering using bioactive materials has creatively laid a direct promising foundation. Whereas, how to precisely pattern a cardiac structure with complete biological function still requires technological breakthroughs. Recently, the emerging three-dimensional (3D) bioprinting technology for tissue engineering has shown great advantages in generating micro-scale cardiac tissues, which has established its impressive potential as a novel foundation for cardiovascular regeneration. Whether 3D bioprinted hearts can replace traditional heart transplantation as a novel strategy for treating cardiovascular diseases in the future is a frontier issue. In this review article, we emphasize the current knowledge and future perspectives regarding available bioinks, bioprinting strategies and the latest outcome progress in cardiac 3D bioprinting to move this promising medical approach towards potential clinical implementation.
Collapse
Affiliation(s)
- Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xing Ye
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Mingyi Zhao
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Peng Wu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guihuan Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Donglin Zhuang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Haodong Jiang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaowei Chen
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yinru He
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
42
|
Piao J, Yuan W, Dong Y. Recent Progress of DNA Nanostructures on Amphiphilic Membranes. Macromol Biosci 2021; 21:e2000440. [PMID: 33759366 DOI: 10.1002/mabi.202000440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Indexed: 11/11/2022]
Abstract
Employing DNA nanostructures mimicking membrane proteins on artificial amphiphilic membranes have been widely developed to understand the structures and functions of the natural membrane systems. In this review, the recent developments in artificial systems constructed by amphiphilic membranes and DNA nanostructures are summarized. First, the preparations and properties of the amphipathic bilayer models are introduced. Second, the interactions are discussed between the membrane and the DNA nanostructures, as well as their coassembly behaviors. Next, the alternative systems related to membrane protein-mediated signal transmission, selective distribution, transmembrane channels, and membrane fusion are also introduced. Moreover, the constructions of membrane skeleton protein-mimicking DNA nanostructures are also highlighted.
Collapse
Affiliation(s)
- Jiafang Piao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China
| | - Wei Yuan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China
| |
Collapse
|
43
|
Sun H, Jia H, Ramirez‐Diaz DA, Budisa N, Schwille P. Fine-Tuning Protein Self-Organization by Orthogonal Chemo-Optogenetic Tools. Angew Chem Int Ed Engl 2021; 60:4501-4506. [PMID: 33155720 PMCID: PMC7986231 DOI: 10.1002/anie.202008691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/04/2020] [Indexed: 12/18/2022]
Abstract
A universal gain-of-function approach for the spatiotemporal control of protein activity is highly desirable when reconstituting biological modules in vitro. Here we used orthogonal translation with a photocaged amino acid to map and elucidate molecular mechanisms in the self-organization of the prokaryotic filamentous cell-division protein (FtsZ) that is highly relevant for the assembly of the division ring in bacteria. We masked a tyrosine residue of FtsZ by site-specific incorporation of a photocaged tyrosine analogue. While the mutant still shows self-assembly into filaments, dynamic self-organization into ring patterns can no longer be observed. UV-mediated uncaging revealed that tyrosine 222 is essential for the regulation of the protein's GTPase activity, self-organization, and treadmilling dynamics. Thus, the light-mediated assembly of functional protein modules appears to be a promising minimal-regulation strategy for building up molecular complexity towards a minimal cell.
Collapse
Affiliation(s)
- Huan Sun
- Technical University of BerlinMüller-Breslau-Str. 1010623BerlinGermany
| | - Haiyang Jia
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | | | - Nediljko Budisa
- Technical University of BerlinMüller-Breslau-Str. 1010623BerlinGermany
- Present address: University of Manitoba44 DysartRdR3T 2N2WinnipegMBCanada
| | - Petra Schwille
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
44
|
Gaut NJ, Adamala KP. Reconstituting Natural Cell Elements in Synthetic Cells. Adv Biol (Weinh) 2021; 5:e2000188. [DOI: 10.1002/adbi.202000188] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nathaniel J. Gaut
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| | - Katarzyna P. Adamala
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| |
Collapse
|
45
|
Sun H, Jia H, Ramirez‐Diaz DA, Budisa N, Schwille P. Fine‐Tuning Protein Self‐Organization by Orthogonal Chemo‐Optogenetic Tools. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huan Sun
- Technical University of Berlin Müller-Breslau-Str. 10 10623 Berlin Germany
| | - Haiyang Jia
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | | | - Nediljko Budisa
- Technical University of Berlin Müller-Breslau-Str. 10 10623 Berlin Germany
- Present address: University of Manitoba 44 DysartRd R3T 2N2 Winnipeg MB Canada
| | - Petra Schwille
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
46
|
Zhang T. DNA origami-based microtubule analogue. NANOTECHNOLOGY 2020; 31:50LT01. [PMID: 33034304 DOI: 10.1088/1361-6528/abb395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A microtubule hollow structure is one type of cytoskeletons which directs a number of important cellular functions. When recapitulating biological events in a cell-free system, artificial frames are often required to execute similar cytoskeletal functions in synthetic systems. Here, I report a prototypical microtubular assembly using a DNA origami nanostructuring method. Through structural design at the molecular level, 32HB (helices bundle)-based DNA origami objects can form micrometers long tubular structures via shape-complementary side patterns engagement and head-to-tail blunt-end stacking. Multiple parameters have been investigated to gain optimized polymerization conditions. Conformational change with an open vs closed hinge is also included, rendering conformational changes for a dynamic assembly. When implementing further improved external regulation with DNA dynamics (DNA strand displacement reactions or using other switchable non-canonical DNA secondary structures) or chemical stimuli, the DNA origami-based microtubule analogue will have great potential to assemble and disassemble on purpose and conduct significantly complicated cytoskeletal tasks in vitro.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong Province 264005, People's Republic of China
| |
Collapse
|
47
|
Vibhute MA, Schaap MH, Maas RJM, Nelissen FHT, Spruijt E, Heus HA, Hansen MMK, Huck WTS. Transcription and Translation in Cytomimetic Protocells Perform Most Efficiently at Distinct Macromolecular Crowding Conditions. ACS Synth Biol 2020; 9:2797-2807. [PMID: 32976714 PMCID: PMC7573978 DOI: 10.1021/acssynbio.0c00330] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The formation of
cytomimetic protocells that capture the physicochemical
aspects of living cells is an important goal in bottom-up synthetic
biology. Here, we recreated the crowded cytoplasm in liposome-based
protocells and studied the kinetics of cell-free gene expression in
these crowded containers. We found that diffusion of key components
is affected not only by macromolecular crowding but also by enzymatic
activity in the protocell. Surprisingly, size-dependent diffusion
in crowded conditions yielded two distinct maxima for protein synthesis,
reflecting the differential impact of crowding on transcription and
translation. Our experimental data show, for the first time, that
macromolecular crowding induces a switch from reaction to diffusion
control and that this switch depends on the sizes of the macromolecules
involved. These results highlight the need to control the physical
environment in the design of synthetic cells.
Collapse
Affiliation(s)
- Mahesh A. Vibhute
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mark H. Schaap
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roel J. M. Maas
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Frank H. T. Nelissen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maike M. K. Hansen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
48
|
Linsenmeier M, Kopp MRG, Stavrakis S, de Mello A, Arosio P. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118823. [PMID: 32800925 DOI: 10.1016/j.bbamcr.2020.118823] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
An increasing body of evidence shows that membraneless organelles are key components in cellular organization. These observations open a variety of outstanding questions about the physico-chemical rules underlying their assembly, disassembly and functions. Some molecular determinants of biomolecular condensates are challenging to probe and understand in complex in vivo systems. Minimalistic in vitro reconstitution approaches can fill this gap, mimicking key biological features, while maintaining sufficient simplicity to enable the analysis of fundamental aspects of biomolecular condensates. In this context, microfluidic technologies are highly attractive tools for the analysis of biomolecular phase transitions. In addition to enabling high-throughput measurements on small sample volumes, microfluidic tools provide for exquisite control of self-assembly in both time and space, leading to accurate quantitative analysis of biomolecular phase transitions. Here, with a specific focus on droplet-based microfluidics, we describe the advantages of microfluidic technology for the analysis of several aspects of phase separation. These include phase diagrams, dynamics of assembly and disassembly, rheological and surface properties, exchange of materials with the surrounding environment and the coupling between compartmentalization and biochemical reactions. We illustrate these concepts with selected examples, ranging from simple solutions of individual proteins to more complex mixtures of proteins and RNA, which represent synthetic models of biological membraneless organelles. Finally, we discuss how this technology may impact the bottom-up fabrication of synthetic artificial cells and for the development of synthetic protein materials in biotechnology.
Collapse
Affiliation(s)
- Miriam Linsenmeier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Andrew de Mello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
49
|
Bashkirov PV, Kuzmin PI, Chekashkina K, Arrasate P, Vera Lillo J, Shnyrova AV, Frolov VA. Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nat Protoc 2020; 15:2443-2469. [PMID: 32591769 PMCID: PMC10839814 DOI: 10.1038/s41596-020-0337-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
Cellular membrane processes, from signal transduction to membrane fusion and fission, depend on acute membrane deformations produced by small and short-lived protein complexes working in conditions far from equilibrium. Real-time monitoring and quantitative assessment of such deformations are challenging; hence, mechanistic analyses of the protein action are commonly based on ensemble averaging, which masks important mechanistic details of the action. In this protocol, we describe how to reconstruct and quantify membrane remodeling by individual proteins and small protein complexes in vitro, using an ultra-short (80- to 400-nm) lipid nanotube (usNT) template. We use the luminal conductance of the usNT as the real-time reporter of the protein interaction(s) with the usNT. We explain how to make and calibrate the usNT template to achieve subnanometer precision in the geometrical assessment of the molecular footprints on the nanotube membrane. We next demonstrate how membrane deformations driven by purified proteins implicated in cellular membrane remodeling can be analyzed at a single-molecule level. The preparation of one usNT takes ~1 h, and the shortest procedure yielding the basic geometrical parameters of a small protein complex takes 10 h.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia.
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudnyy, Russia.
| | - Peter I Kuzmin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia Chekashkina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Pedro Arrasate
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Javier Vera Lillo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Anna V Shnyrova
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
50
|
Jia H, Litschel T, Heymann M, Eto H, Franquelim HG, Schwille P. Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906259. [PMID: 32105403 DOI: 10.1002/smll.201906259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Thomas Litschel
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| |
Collapse
|