1
|
Alvanou MV, Loukovitis D, Melfou K, Giantsis IA. Utility of dairy microbiome as a tool for authentication and traceability. Open Life Sci 2024; 19:20220983. [PMID: 39479351 PMCID: PMC11524395 DOI: 10.1515/biol-2022-0983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Milk microbiome contributes substantially to the formation of specific organoleptic and physicochemical characteristics of dairy products. The assessment of the composition and abundance of milk microbiota is a challenging task strongly influenced by many environmental factors. Specific dairy products may be designated by the Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) labeling, which however, occasionally fail to differentiate them according to specific quality characteristics, which are defined by different microbiota-driven reactions. Combining the above limitations, the scope of the present study, was to summarize the existing information toward three main issues. First, to assess the influence level of the diet type and grazing to rumen-GI tract, mammary gland, and udder microbiome formation in ruminants. Second, to discuss the factors affecting milk microbiota, as well as the effect of the endo-mammary route on milk microbial taxa. Lastly, to evaluate "milk microbiome" as a tool for product differentiation, according to origin, which will contribute to a more robust PDO and PGI labeling. Although the limitations are still a matter of fact (especially considering the sample collection, process, evaluation, and avoidance of its contamination), significant progress has been made, regarding the identification of the factors affecting dairy products' microbiota and its core composition. In conclusion, although so far not totally efficient in dairy products molecular identification, with the progress in soil, water, plant, and animal host's microbiota assembly's characterization, microbiomics could provide a powerful tool for authentication and traceability of dairy products.
Collapse
Affiliation(s)
- Maria V. Alvanou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Dimitrios Loukovitis
- Department of Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, 30200, Messolonghi, Greece
| | - Katerina Melfou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Ioannis A. Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54621, Thessaloniki, Greece
| |
Collapse
|
2
|
Bisht V, Das B, Hussain A, Kumar V, Navani NK. Understanding of probiotic origin antimicrobial peptides: a sustainable approach ensuring food safety. NPJ Sci Food 2024; 8:67. [PMID: 39300165 DOI: 10.1038/s41538-024-00304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
The practice of preserving and adding value to food dates back to over 10,000 BCE, when unintentional microbial-driven chemical reactions imparted flavor and extended the shelf life of fermented foods. The process evolved, and with the urbanization of society, significant shifts in dietary habits emerged, accompanied by sporadic food poisoning incidents. The repercussions of the COVID-19 pandemic have intensified the search for antibiotic alternatives owing to the rise in antibiotic-resistant pathogens, emphasizing the exploration of probiotic-origin antimicrobial peptides to alleviate human microbiome collateral damage. Often termed 'molecular knives', these peptides outstand as potent antimicrobials due to their compatibility with innate microflora, amenability to bioengineering, target specificity, versatility and rapidity in molecular level mode of action. This review centres on bacteriocins sourced from lactic acid bacteria found in ethnic fermented foods, accentuating their desirable attributes, technological applications as nanobiotics and potential future applications in the modern context of ensuring food safety.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Ajmal Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Vinod Kumar
- Visiting faculty, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
3
|
Salamandane A, Leech J, Almeida R, Silva C, Crispie F, Cotter PD, Malfeito-Ferreira M, Brito L. Metagenomic analysis of the bacterial microbiome, resistome and virulome distinguishes Portuguese Serra da Estrela PDO cheeses from similar non-PDO cheeses: An exploratory approach. Food Res Int 2024; 189:114556. [PMID: 38876593 DOI: 10.1016/j.foodres.2024.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to evaluate the microbiome, resistome and virulome of two types of Portuguese cheese using high throughput sequencing (HTS). Culture-dependent chromogenic methods were also used for certain groups/microorganisms. Eight samples of raw ewe's milk cheese were obtained from four producers: two producers with cheeses with a PDO (Protected Designation of Origin) label and the other two producers with cheeses without a PDO label. Agar-based culture methods were used to quantify total mesophiles, Enterobacteriaceae, Escherichia coli, Staphylococcus, Enterococcus and lactic acid bacteria. The presence of Listeria monocytogenes and Salmonella was also investigated. The selected isolates were identified by 16S rRNA gene sequencing and evaluated to determine antibiotic resistance and the presence of virulence genes. The eight cheese samples analyzed broadly complied with EC regulations in terms of the microbiological safety criteria. The HTS results demonstrated that Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus plantarum, Lacticaseibacillus rhamnosus, Enterococcus durans and Lactobacillus coryniformis were the most prevalent bacterial species in cheeses. The composition of the bacterial community varied, not only between PDO and non-PDO cheeses, but also between producers, particularly between the two non-PDO cheeses. Alpha-diversity analyses showed that PDO cheeses had greater bacterial diversity than non-PDO cheeses, demonstrating that the diversity of spontaneously fermented foods is significantly higher in cheeses produced without the addition of food preservatives and dairy ferments. Despite complying with microbiological regulations, both PDO and non-PDO cheeses harbored potential virulence genes as well as antibiotic resistance genes. However, PDO cheeses exhibited fewer of these virulence and antibiotic resistance genes compared to non-PDO cheeses. Therefore, the combination of conventional microbiological methods and the metagenomic approach could contribute to improving the attribution of the PDO label to this type of cheese.
Collapse
Affiliation(s)
- Acácio Salamandane
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Faculdade de Ciências de Saúde, Universidade Lúrio, Campus Universitário de Marrere, Nampula 4250, Mozambique
| | - John Leech
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | - Rita Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Carolina Silva
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; VistaMilk, Ireland
| | - Manuel Malfeito-Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Luísa Brito
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
4
|
Santamarina-García G, Amores G, Llamazares D, Hernández I, Javier R Barron L, Virto M. Phenotypic and genotypic characterization of antimicrobial resistances reveals the effect of the production chain in reducing resistant lactic acid bacteria in an artisanal raw ewe milk PDO cheese. Food Res Int 2024; 187:114308. [PMID: 38763625 DOI: 10.1016/j.foodres.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Antimicrobial resistance (AMR) is a significant public health threat, with the food production chain, and, specifically, fermented products, as a potential vehicle for dissemination. However, information about dairy products, especially raw ewe milk cheeses, is limited. The present study analysed, for the first time, the occurrence of AMRs related to lactic acid bacteria (LAB) along a raw ewe milk cheese production chain for the most common antimicrobial agents used on farms (dihydrostreptomycin, benzylpenicillin, amoxicillin and polymyxin B). More than 200 LAB isolates were obtained and identified by Sanger sequencing (V1-V3 16S rRNA regions); these isolates included 8 LAB genera and 21 species. Significant differences in LAB composition were observed throughout the production chain (P ≤ 0.001), with Enterococcus (e.g., E. hirae and E. faecalis) and Bacillus (e.g., B. thuringiensis and B. cereus) predominating in ovine faeces and raw ewe milk, respectively, along with Lactococcus (L. lactis) in whey and fresh cheeses, while Lactobacillus and Lacticaseibacillus species (e.g., Lactobacillus sp. and L. paracasei) prevailed in ripened cheeses. Phenotypically, by broth microdilution, Lactococcus, Enterococcus and Bacillus species presented the greatest resistance rates (on average, 78.2 %, 56.8 % and 53.4 %, respectively), specifically against polymyxin B, and were more susceptible to dihydrostreptomycin. Conversely, Lacticaseibacillus and Lactobacillus were more susceptible to all antimicrobials tested (31.4 % and 39.1 %, respectively). Thus, resistance patterns and multidrug resistance were reduced along the production chain (P ≤ 0.05). Genotypically, through HT-qPCR, 31 antimicrobial resistance genes (ARGs) and 6 mobile genetic elements (MGEs) were detected, predominating Str, StrB and aadA-01, related to aminoglycoside resistance, and the transposons tnpA-02 and tnpA-01. In general, a significant reduction in ARGs and MGEs abundances was also observed throughout the production chain (P ≤ 0.001). The current findings indicate that LAB dynamics throughout the raw ewe milk cheese production chain facilitated a reduction in AMRs, which has not been reported to date.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Diego Llamazares
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Igor Hernández
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Mailo Virto
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
5
|
Yap M, O'Sullivan O, O'Toole PW, Sheehan JJ, Fenelon MA, Cotter PD. Seasonal and geographical impact on the Irish raw milk microbiota correlates with chemical composition and climatic variables. mSystems 2024; 9:e0129023. [PMID: 38445870 PMCID: PMC11019797 DOI: 10.1128/msystems.01290-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Season and location have previously been shown to be associated with differences in the microbiota of raw milk, especially in milk from pasture-based systems. Here, we further advance research in this area by examining differences in the raw milk microbiota from several locations across Ireland over 12 months, and by investigating microbiota associations with climatic variables and chemical composition. Shotgun metagenomic sequencing was used to investigate the microbiota of raw milk collected from nine locations (n = 241). Concurrent chemical analysis of the protein, fat, lactose, total solids, nonprotein nitrogen contents, and titratable acidity (TA) of the same raw milk were performed. Although the raw milk microbiota was highly diverse, a core microbiota was found, with Pseudomonas_E, Lactococcus, Acinetobacter, and Leuconostoc present in all samples. Microbiota diversity significantly differed by season and location, with differences in seasonality and geography corresponding to 11.8% and 10.5% of the variation in the microbiota. Functional and antibiotic resistance profiles also varied across season and location. The analysis of other metadata revealed additional interactions, such as an association between mean daily air and grass temperatures with the abundance of spoilage taxa like Pseudomonas species. Correlations were identified between pathogenic, mastitis-related species, fat content, and the number of sun hours, suggesting a seasonal effect. Ultimately, this study expands our understanding of the interconnected nature of the microbiota, environment/climate variables, and chemical composition of raw milk and provides evidence of a season- and location-specific microbiota. IMPORTANCE The microbiota of raw milk is influenced by many factors that encourage or prevent the introduction and growth of both beneficial and undesirable microorganisms. The seasonal and geographical impacts on the microbial communities of raw milk have been previously seen, but the relationships with environmental factors and the chemical composition has yet to be investigated. In this year-long study, we found that while raw milk is highly diverse, a core microbiota was detected for Irish raw milk, with strong evidence of seasonal and geographical influence. We also found associations between groups of microorganisms, environmental factors, and milk composition, which expand current knowledge on the relationships between microbial and chemical composition and the climate. These results provide evidence for the development of a tool to allow for the prediction of raw milk quality and safety.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | - Paul W. O'Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Jeremiah J. Sheehan
- Teagasc Food Research Centre, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
- Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Mark A. Fenelon
- Teagasc Food Research Centre, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
- Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| |
Collapse
|
6
|
Papadimitriou K, Georgalaki M, Anastasiou R, Alexandropoulou AM, Manolopoulou E, Zoumpopoulou G, Tsakalidou E. Study of the Microbiome of the Cretan Sour Cream Staka Using Amplicon Sequencing and Shotgun Metagenomics and Isolation of Novel Strains with an Important Antimicrobial Potential. Foods 2024; 13:1129. [PMID: 38611432 PMCID: PMC11011300 DOI: 10.3390/foods13071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Staka is a traditional Greek sour cream made mostly from spontaneously fermented sheep milk or a mixture of sheep and goat milk. At the industrial scale, cream separators and starter cultures may also be used. Staka is sometimes cooked with flour to absorb most of the fat. In this study, we employed culture-based techniques, amplicon sequencing, and shotgun metagenomics to analyze the Staka microbiome for the first time. The samples were dominated by Lactococcus or Leuconostoc spp. Most other bacteria were lactic acid bacteria (LAB) from the Streptococcus and Enterococcus genera or Gram-negative bacteria from the Buttiauxella, Pseudomonas, Enterobacter, Escherichia-Shigella, and Hafnia genera. Debaryomyces, Kluyveromyces, or Alternaria were the most prevalent genera in the samples, followed by other yeasts and molds like Saccharomyces, Penicillium, Aspergillus, Stemphylium, Coniospotium, or Cladosporium spp. Shotgun metagenomics allowed the species-level identification of Lactococcus lactis, Lactococcus raffinolactis, Streptococcus thermophilus, Streptococcus gallolyticus, Escherichia coli, Hafnia alvei, Streptococcus parauberis, and Enterococcus durans. Binning of assembled shotgun reads followed by recruitment plot analysis of single reads could determine near-complete metagenome assembled genomes (MAGs). Culture-dependent and culture-independent analyses were in overall agreement with some distinct differences. For example, lactococci could not be isolated, presumably because they had entered a viable but not culturable (VBNC) state or because they were dead. Finally, several LAB, Hafnia paralvei, and Pseudomonas spp. isolates exhibited antimicrobial activities against oral or other pathogenic streptococci, and certain spoilage and pathogenic bacteria establishing their potential role in food bio-protection or new biomedical applications. Our study may pave the way for additional studies concerning artisanal sour creams to better understand the factors affecting their production and the quality.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.G.); (R.A.); (A.-M.A.); (E.M.); (G.Z.); (E.T.)
| | - Rania Anastasiou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.G.); (R.A.); (A.-M.A.); (E.M.); (G.Z.); (E.T.)
| | - Athanasia-Maria Alexandropoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.G.); (R.A.); (A.-M.A.); (E.M.); (G.Z.); (E.T.)
| | - Eugenia Manolopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.G.); (R.A.); (A.-M.A.); (E.M.); (G.Z.); (E.T.)
| | - Georgia Zoumpopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.G.); (R.A.); (A.-M.A.); (E.M.); (G.Z.); (E.T.)
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.G.); (R.A.); (A.-M.A.); (E.M.); (G.Z.); (E.T.)
| |
Collapse
|
7
|
Rampanti G, Cantarini A, Cardinali F, Milanović V, Garofalo C, Aquilanti L, Osimani A. Technological and Enzymatic Characterization of Autochthonous Lactic Acid Bacteria Isolated from Viili Natural Starters. Foods 2024; 13:1115. [PMID: 38611419 PMCID: PMC11011773 DOI: 10.3390/foods13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Viili, a Finnish ropy fermented milk, is traditionally manufactured through spontaneous fermentation, by mesophilic lactic acid bacteria and yeast-like fungi, or back-slopping. This study evaluated four natural viili starters as sources of lactic acid bacteria for dairy production. Back-slopping activation of the studied viili samples was monitored through pH and titratable acidity measurements and enumeration of mesophilic lactic acid bacteria. Sixty lactic acid bacteria isolates were collected, molecularly identified, and assayed for acidification performance, enzymatic activities, production of exopolysaccharides (EPSs), presence of the histidine decarboxylase (hdcA) gene of Gram-positive bacteria, and production of bacteriocins. A neat predominance of Lactococcus lactis emerged among the isolates, followed by Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Enterococcus lactis, and Lactococcus cremoris. Most isolates exhibited proteolytic activity, whereas only a few enterococci showed lipase activity. Five isolates identified as L. cremoris, L. lactis, and E. faecalis showed a good acidification performance. Most of the isolates tested positive for leucine arylamidase, whereas only one E. durans and two L. lactis isolates were positive for valine arylamidase. A few isolates also showed a positive reaction for beta-galactosidase and alpha- and beta-glucosidase. None of the isolates produced EPSs or bacteriocins. The hdcA gene was detected in five isolates identified as L. lactis and E. faecium. A few L. cremoris and L. lactis isolates for potential use as starter or adjunct cultures for dairy processing were finally identified.
Collapse
Affiliation(s)
| | | | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (A.C.); (V.M.); (C.G.); (L.A.); (A.O.)
| | | | | | | | | |
Collapse
|
8
|
Tsouggou N, Slavko A, Tsipidou O, Georgoulis A, Dimov SG, Yin J, Vorgias CE, Kapolos J, Papadelli M, Papadimitriou K. Investigation of the Microbiome of Industrial PDO Sfela Cheese and Its Artisanal Variants Using 16S rDNA Amplicon Sequencing and Shotgun Metagenomics. Foods 2024; 13:1023. [PMID: 38611328 PMCID: PMC11011710 DOI: 10.3390/foods13071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Sfela is a white brined Greek cheese of protected designation of origin (PDO) produced in the Peloponnese region from ovine, caprine milk, or a mixture of the two. Despite the PDO status of Sfela, very few studies have addressed its properties, including its microbiology. For this reason, we decided to investigate the microbiome of two PDO industrial Sfela cheese samples along with two non-PDO variants, namely Sfela touloumotiri and Xerosfeli. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), 16S rDNA amplicon sequencing and shotgun metagenomics analysis were used to identify the microbiome of these traditional cheeses. Cultured-based analysis showed that the most frequent species that could be isolated from Sfela cheese were Enterococcus faecium, Lactiplantibacillus plantarum, Levilactobacillus brevis, Pediococcus pentosaceus and Streptococcus thermophilus. Shotgun analysis suggested that in industrial Sfela 1, Str. thermophilus dominated, while industrial Sfela 2 contained high levels of Lactococcus lactis. The two artisanal samples, Sfela touloumotiri and Xerosfeli, were dominated by Tetragenococcus halophilus and Str. thermophilus, respectively. Debaryomyces hansenii was the only yeast species with abundance > 1% present exclusively in the Sfela touloumotiri sample. Identifying additional yeast species in the shotgun data was challenging, possibly due to their low abundance. Sfela cheese appears to contain a rather complex microbial ecosystem and thus needs to be further studied and understood. This might be crucial for improving and standardizing both its production and safety measures.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Aleksandra Slavko
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Olympia Tsipidou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, 18855 Athens, Greece;
| | - Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis-Zographou, 15784 Athens, Greece; (A.G.); (C.E.V.)
| | - Svetoslav G. Dimov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China;
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis-Zographou, 15784 Athens, Greece; (A.G.); (C.E.V.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Marina Papadelli
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, 18855 Athens, Greece;
| |
Collapse
|
9
|
Crippen TL, Kim D, Poole TL, Swiger SL, Anderson RC. The bacterial and archaeal communities of flies, manure, lagoons, and troughs at a working dairy. Front Microbiol 2024; 14:1327841. [PMID: 38449879 PMCID: PMC10915237 DOI: 10.3389/fmicb.2023.1327841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Background Fundamental investigations into the location, load, and persistence of microbes, whether beneficial or detrimental, are scarce. Many questions about the retention and survival of microbes on various surfaces, as well as the load necessary for spread, exist. To answer these questions, we must know more about where to find various microbes and in what concentrations, the composition of the microbial communities, and the extent of dissemination between various elements. This study investigated the diversity, composition, and relative abundance of the communities associated with manure, lagoons, troughs, house flies, and stable flies present at a dairy, implementing two different free-stall management systems: flow-through and cross-vent. Shotgun metagenomics at the community level was used to compare the microbiomes within the dairy, allowing confident interpretation at the species level. Results The results showed that there were significant difference in microbial composition between not only each of the dairy elements but also management styles. The primary exceptions were the microbiomes of the house fly and the stable fly. Their compositions heavily overlapped with one another, but interestingly, not with the other components sampled. Additionally, both species of flies carried more pathogens than the other elements of the dairy, indicating that they may not share these organisms with the other components, or that the environments offered by the other components are unsatisfactory for the survival of some pathogens.. Conclusion The lack of overlapping pathogen profiles suggests a lack of transfer from flies to other dairy elements. Dairy health data, showing a low incidence of disease, suggests minimal sharing of bacteria by the flies at a level required for infection, given the health program of this dairy. While flies did carry a multitude of pathogenic bacteria, the mere presence of the bacteria associated with the flies did not necessarily translate into high risk leading to morbidity and mortality at this dairy. Thus, using flies as the sole sentinel of dairy health may not be appropriate for all bacterial pathogens or dairies.
Collapse
Affiliation(s)
- Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| | - Dongmin Kim
- Department of Entomology, Texas A & M University, College Station, TX, United States
| | - Toni L. Poole
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| | - Sonja L. Swiger
- Entomology Extension, Texas AgriLife, Texas A & M University, College Station, TX, United States
| | - Robin C. Anderson
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| |
Collapse
|
10
|
Rodríguez J, Vázquez L, Flórez AB, Mayo B. Epicoccum sp. as the causative agent of a reddish-brown spot defect on the surface of a hard cheese made of raw ewe milk. Int J Food Microbiol 2023; 406:110401. [PMID: 37722266 DOI: 10.1016/j.ijfoodmicro.2023.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Colour defects can affect the appearance of cheese, its flavour, the safety of its consumption, and the price it can demand. This work reports the identification of five fungal isolates from a dairy plant where the surface of most cheeses was affected by patent, reddish-to-brown stains. One of these isolates was obtained from cheese, two from brine, and two from a bulk tank containing ewe milk. Molecular identification by partial amplification, sequencing, and database comparison of the concatenated sequence of the genes coding for the largest subunit of RNA polymerase II (RPB2), β-tubulin (β-TUB), and the large subunit of the rRNA molecule (LSU), plus the internal transcribed sequence (ITS) regions, assigned the isolates to Epicoccum layuense, Epicoccum italicum, and Epicoccum mezzettii. Features of the growth of these different species on different agar-based media, and of the morphology of their conidia following sporulation, are also reported. The strain isolated from cheese, E. layuense IPLA 35011, was able to recreate the reddish-brown stains on slices of Gouda-like cheese, which linked the fungus with the colour defect. In addition, two other strains, E. italicum IPLA 35013 from brine and E. italicum IPLA 35014 from milk, also produced stains on cheese slices. Epicoccum species are widely recognized as plant pathogens but have seldom been reported in the dairy setting, and never as human or animal pathogens.
Collapse
Affiliation(s)
- Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
11
|
Giagnoni L, Deb S, Tondello A, Zardinoni G, De Noni M, Franchin C, Vanzin A, Arrigoni G, Masi A, Stevanato P, Cecchinato A, Squartini A, Spanu C. The impact of milk storage temperatures on cheese quality and microbial communities at dairy processing plant scale. Food Res Int 2023; 172:113101. [PMID: 37689865 DOI: 10.1016/j.foodres.2023.113101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Cheese production is an applied biotechnology whose proper outcome relies strictly on the complex interactive dynamics which unfold within defined microbial groups. These may start being active from the collection of milk and continue up to its final stages of maturation. One of the critical parameters playing a major role is the milk refrigeration temperature before pasteurization as it can affect the proportion of psychrotrophic taxa abundance in the total milk bacterial population. While a standard temperature of 4 °C is the common choice, due to its general growth control effect, it does have a potential drawback. This is due to the fact that some cold-tolerant genera present a proteolytic activity with uncompleted proliferation, which could negatively affect curd clotting and regular cheese maturation. Moreover, accidental thermal variations of milk before cheese-making, in a plus or minus direction, can occur both at farm collection sites and during transfer to dairy plant. This present research, directly commissioned by a major fresh cheese-producing company, includes an in-factory trial. In this trial, a gradient of temperatures from 4 °C to 13 °C, which were subsequently reversed, was purposely adopted to: (a) verify sensory alterations in the resulting product at different maturation stages, and, (b) analyze, in parallel, using DNA extraction and 16S-metabarcoding sequencing from the same samples, the presence, abundance and corresponding taxonomical identity of all the bacteria featured in communities found in milk and cheese samples. Overall, 1,714 different variants were detected and sorted into 394 identified taxa. Significant bacterial community shifts in cheese were observed in response to milk refrigeration temperature and subsequently associated with samples having altered scores in sensory panel tests. In particular, proteolytic psychrotrophes were outcompeted by Enterobacteriales and by other taxa at the peak temperature of 13 °C, but aggressively increased in the descent phases, upon the cooling down of milk to values of 7 °C. Relevant clues have been collected for better anticipation of thermal abuse effects or parameter variations allowing for improved handling of technical processing conditions by the cheese manufacturing industry.
Collapse
Affiliation(s)
- Lucia Giagnoni
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari (SS), Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy.
| | - Saptarathi Deb
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Alessandra Tondello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Giulia Zardinoni
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Michele De Noni
- Latteria Montello S.p.A. Via Fante d'Italia 26, 31040 Giavera del Montello (TV), Italy
| | - Cinzia Franchin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Alice Vanzin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 587b, 35131 Padova (PD), Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Carlo Spanu
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari (SS), Italy
| |
Collapse
|
12
|
Sessitsch A, Wakelin S, Schloter M, Maguin E, Cernava T, Champomier-Verges MC, Charles TC, Cotter PD, Ferrocino I, Kriaa A, Lebre P, Cowan D, Lange L, Kiran S, Markiewicz L, Meisner A, Olivares M, Sarand I, Schelkle B, Selvin J, Smidt H, van Overbeek L, Berg G, Cocolin L, Sanz Y, Fernandes WL, Liu SJ, Ryan M, Singh B, Kostic T. Microbiome Interconnectedness throughout Environments with Major Consequences for Healthy People and a Healthy Planet. Microbiol Mol Biol Rev 2023; 87:e0021222. [PMID: 37367231 PMCID: PMC10521359 DOI: 10.1128/mmbr.00212-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.
Collapse
Affiliation(s)
| | | | | | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Tomislav Cernava
- University of Southampton, Faculty of Environmental and Life Sciences, Southampton, United Kingdom
| | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | | | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pedro Lebre
- University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- University of Pretoria, Pretoria, South Africa
| | - Lene Lange
- LL-BioEconomy, Valby, Copenhagen, Denmark
| | | | - Lidia Markiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Immunology and Food Microbiology, Olsztyn, Poland
| | - Annelein Meisner
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inga Sarand
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Tallinn, Estonia
| | | | | | - Hauke Smidt
- Wageningen University and Research, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Leo van Overbeek
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | | | | | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | - S. J. Liu
- Chinese Academy of Sciences, Institute of Microbiology, Beijing, China
| | - Matthew Ryan
- Genetic Resources Collection, CABI, Egham, United Kingdom
| | - Brajesh Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
13
|
Luziatelli F, Melini F, Ficca AG, Melini V, Nardilli F, Ruzzi M. Core microbiome and bacterial diversity of the Italian Mediterranean river buffalo milk. Appl Microbiol Biotechnol 2023; 107:1875-1886. [PMID: 36773061 DOI: 10.1007/s00253-023-12415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Milk is one of the most nutritionally complete foods and plays an important role in the human diet. Buffalo milk represents 15% of worldwide milk production and is an important source of bioactive compounds. Buffalo milk has a great market in the Mediterranean area, and dairy products, such as Mozzarella and Ricotta di Bufala Campana, obtained with the Italian Mediterranean buffalo milk, are acknowledged with the Protected Designation of Origin (PDO). This study aimed to characterize, using high-throughput sequencing of the 16S rRNA gene, the milk core microbiome of water buffalo rises in the Amaseno Valley included in the Mozzarella PDO region. The principal features of the core and the auxiliary buffalo milk microbiome are the predominance of Firmicutes and Lactococcus, one of the most important lactic acid bacteria (LAB) taxa in the dairy industry. The comparative analysis of the core microbiomes indicated that the milk of the Italian Mediterranean Buffalo and other mammals share the presence of Streptococcus-affiliated OTUs (operational taxonomic units). Our data also demonstrated that the core microbiome of milk samples collected from PDO and non-PDO regions differ in the number and type of taxa. KEY POINTS: • Buffalo milk and their derivate products are becoming more popular worldwide. • Dairy locations and practice management affect the structure of the milk microbiota. • Next-generation sequencing (NGS) analysis allows to identify the features of the Italian Buffalo milk microbiome.
Collapse
Affiliation(s)
- Francesca Luziatelli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - Francesca Melini
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.,Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Rome, Italy
| | - Anna Grazia Ficca
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Valentina Melini
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Rome, Italy
| | - Francesca Nardilli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
14
|
Ferrocino I, Rantsiou K, McClure R, Kostic T, de Souza RSC, Lange L, FitzGerald J, Kriaa A, Cotter P, Maguin E, Schelkle B, Schloter M, Berg G, Sessitsch A, Cocolin L. The need for an integrated multi-OMICs approach in microbiome science in the food system. Compr Rev Food Sci Food Saf 2023; 22:1082-1103. [PMID: 36636774 DOI: 10.1111/1541-4337.13103] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Microbiome science as an interdisciplinary research field has evolved rapidly over the past two decades, becoming a popular topic not only in the scientific community and among the general public, but also in the food industry due to the growing demand for microbiome-based technologies that provide added-value solutions. Microbiome research has expanded in the context of food systems, strongly driven by methodological advances in different -omics fields that leverage our understanding of microbial diversity and function. However, managing and integrating different complex -omics layers are still challenging. Within the Coordinated Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), a project supported by the European Commission, the workshop "Metagenomics, Metaproteomics and Metabolomics: the need for data integration in microbiome research" gathered 70 participants from different microbiome research fields relevant to food systems, to discuss challenges in microbiome research and to promote a switch from microbiome-based descriptive studies to functional studies, elucidating the biology and interactive roles of microbiomes in food systems. A combination of technologies is proposed. This will reduce the biases resulting from each individual technology and result in a more comprehensive view of the biological system as a whole. Although combinations of different datasets are still rare, advanced bioinformatics tools and artificial intelligence approaches can contribute to understanding, prediction, and management of the microbiome, thereby providing the basis for the improvement of food quality and safety.
Collapse
Affiliation(s)
- Ilario Ferrocino
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Kalliopi Rantsiou
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Tulln, Austria
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Denmark
| | - Jamie FitzGerald
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Aicha Kriaa
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Emmanuelle Maguin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Tulln, Austria
| | - Luca Cocolin
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | | |
Collapse
|
15
|
Srinivas M, O’Sullivan O, Cotter PD, van Sinderen D, Kenny JG. The Application of Metagenomics to Study Microbial Communities and Develop Desirable Traits in Fermented Foods. Foods 2022; 11:3297. [PMID: 37431045 PMCID: PMC9601669 DOI: 10.3390/foods11203297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities present within fermented foods are diverse and dynamic, producing a variety of metabolites responsible for the fermentation processes, imparting characteristic organoleptic qualities and health-promoting traits, and maintaining microbiological safety of fermented foods. In this context, it is crucial to study these microbial communities to characterise fermented foods and the production processes involved. High Throughput Sequencing (HTS)-based methods such as metagenomics enable microbial community studies through amplicon and shotgun sequencing approaches. As the field constantly develops, sequencing technologies are becoming more accessible, affordable and accurate with a further shift from short read to long read sequencing being observed. Metagenomics is enjoying wide-spread application in fermented food studies and in recent years is also being employed in concert with synthetic biology techniques to help tackle problems with the large amounts of waste generated in the food sector. This review presents an introduction to current sequencing technologies and the benefits of their application in fermented foods.
Collapse
Affiliation(s)
- Meghana Srinivas
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - Orla O’Sullivan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - John G. Kenny
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
16
|
Olmo R, Wetzels SU, Armanhi JSL, Arruda P, Berg G, Cernava T, Cotter PD, Araujo SC, de Souza RSC, Ferrocino I, Frisvad JC, Georgalaki M, Hansen HH, Kazou M, Kiran GS, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Mitter B, Nielsen MO, Olivares M, Quijada NM, Romaní-Pérez M, Sanz Y, Schloter M, Schmitt-Kopplin P, Seaton SC, Selvin J, Sessitsch A, Wang M, Zwirzitz B, Selberherr E, Wagner M. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Front Microbiol 2022; 13:834622. [PMID: 35903477 PMCID: PMC9315449 DOI: 10.3389/fmicb.2022.834622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Rocío Olmo,
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jaderson Silveira Leite Armanhi
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Paul D. Cotter
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Solon Cordeiro Araujo
- SCA, Consultoria em Microbiologia Agrícola, Campinas, Brazil
- Brazil National Association of Inoculant Producers and Importers (ANPII), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Tanja Kostic
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Aicha Kriaa
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| | - Emmanuelle Maguin
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mette Olaf Nielsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Narciso Martín Quijada
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joseph Selvin
- School of Life Sciences, Pondicherry University, Puducherry, India
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Effect of supercritical carbon dioxide on bacterial community, volatile profiles and quality changes during storage of Mongolian cheese. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Ferreira LR, de Almeida TT, Andretta M, Perin LM, Camargo AC, de Carvalho AF, Nero LA. Further culture-independent characterization of the lactic microbiota of Serro artisanal cheese. Braz J Microbiol 2022; 53:1593-1598. [PMID: 35689157 DOI: 10.1007/s42770-022-00778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
This study aimed to provide a further characterization of the lactic microbiota present in Minas artisanal cheese (MAC) from the Serro region by using culture-independent methods, as a complementary analysis of a previous study. The total DNA extracted from MAC samples (n = 55) was subjected to repetitive extragenic palindromic-PCR (rep-PCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Rep-PCR analysis showed that core microbiota of Serro MAC was closely related, independent of the production town, farm size, or time of production. The sequencing of PCR-DGGE bands identified the prevalence of Lactococcus lactis in all samples, and Streptococcus salivarius was also identified. Thus, we conclude that when more accurate methods are unavailable, rep-PCR can be used as a culture-independent method to demonstrate if the microbiota is closely related or not among the samples. PCR-DGGE results also matched to the main findings of high-throughput sequencing, previously presented, confirming its confidence to detect the main microbial groups present in the raw milk cheeses.
Collapse
Affiliation(s)
- Letícia Rocha Ferreira
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil.,Departamento de Tecnologia de Alimentos, Inovaleite - Laboratório de Ciência E Tecnologia Do Leite E Derivados, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil
| | - Thaiza Teixeira de Almeida
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil.,Departamento de Tecnologia de Alimentos, Inovaleite - Laboratório de Ciência E Tecnologia Do Leite E Derivados, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil
| | - Milimani Andretta
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil
| | - Luana Martins Perin
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil
| | - Anderson Carlos Camargo
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil.,Departamento de Tecnologia de Alimentos, Inovaleite - Laboratório de Ciência E Tecnologia Do Leite E Derivados, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil
| | - Antônio Fernandes de Carvalho
- Departamento de Tecnologia de Alimentos, Inovaleite - Laboratório de Ciência E Tecnologia Do Leite E Derivados, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG, 36570 900, Brazil.
| |
Collapse
|
19
|
Ferrocino I, Rantsiou K, Cocolin L. Microbiome and -omics application in food industry. Int J Food Microbiol 2022; 377:109781. [DOI: 10.1016/j.ijfoodmicro.2022.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
|
20
|
Jiang N, Wu R, Wu C, Wang R, Wu J, Shi H. Multi-omics approaches to elucidate the role of interactions between microbial communities in cheese flavor and quality. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2070199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P. R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|