1
|
Nasim S, Abujamra BA, Chaparro D, Nogueira PDS, Riva A, Hutcheson JD, Kos L. Multiple cell types including melanocytes contribute to elastogenesis in the developing murine aortic valve. Sci Rep 2024; 14:25481. [PMID: 39461968 PMCID: PMC11513076 DOI: 10.1038/s41598-024-73673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Elastic fibers are crucial for aortic valve (AoV) function and are generated and maintained by valvular interstitial cells (VICs). VICs exhibit diverse phenotypes, yet the specific subpopulation responsible for producing and regulating elastic fibers remains unclear. This gap in knowledge is significant, given that elastin (Eln) abnormalities lead to congenital AoV defects and initiate AoV diseases. This study characterizes the timing of Eln expression in murine AoV, revealing it peaks during late embryogenesis and early postnatal stages, decreasing in adulthood. Spatial transcriptomics and RT-qPCR indicate that Eln expression correlates with genes associated to elastogenesis, including Acta2, a smooth muscle cell marker. While Eln expression is not exclusive to a single VIC subpopulation, RNAscope and immunofluorescence demonstrate a population of Eln-expressing VICs that co-express alpha smooth muscle actin and melanocytic markers. As previously reported in adult mice, we show a relationship between AoV pigment and elastic fiber patterning during early postnatal stages and further show that melanocytes may play a critical role in elastogenesis. In summary, Eln is expressed in the AoV during early postnatal stages by cells co-expressing markers of various types, highlighting the complexity of VICs phenotypes and their role in elastic fiber regulation.
Collapse
Affiliation(s)
- Sana Nasim
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Beatriz Abdo Abujamra
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Daniel Chaparro
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Perony Da Silva Nogueira
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | | | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
2
|
Bayne EF, Buck KM, Towler AG, Zhu Y, Pergande MR, Zhou T, Price S, Rossler KJ, Morales-Tirado V, Lloyd S, Wang F, He Y, Tian Y, Ge Y. High-Throughput Extracellular Matrix Proteomics of Human Lungs Enabled by Photocleavable Surfactant and diaPASEF. J Proteome Res 2024; 23:2908-2918. [PMID: 38315831 DOI: 10.1021/acs.jproteome.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The extracellular matrix (ECM) is a complex assembly of proteins that provide interstitial scaffolding and elastic recoil for human lungs. The pulmonary extracellular matrix is increasingly recognized as an independent bioactive entity, by creating biochemical and mechanical signals that influence disease pathogenesis, making it an attractive therapeutic target. However, the pulmonary ECM proteome ("matrisome") remains challenging to analyze by mass spectrometry due to its inherent biophysical properties and relatively low abundance. Here, we introduce a strategy designed for rapid and efficient characterization of the human pulmonary ECM using the photocleavable surfactant Azo. We coupled this approach with trapped ion mobility MS with diaPASEF to maximize the depth of matrisome coverage. Using this strategy, we identify nearly 400 unique matrisome proteins with excellent reproducibility that are known to be important in lung biology, including key core matrisome proteins.
Collapse
Affiliation(s)
- Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kevin M Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Anna G Towler
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Melissa R Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Tianhua Zhou
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Scott Price
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kalina J Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Vanessa Morales-Tirado
- Discovery Immunology, Pharmacology and Pathology, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Sarah Lloyd
- Discovery Immunology, Pharmacology and Pathology, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Fei Wang
- Quantitative Translational & ADME Science, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Yupeng He
- Discovery Immunology, Pharmacology and Pathology, AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Yu Tian
- Quantitative Translational & ADME Science, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Yan L, Wang Y, Feng J, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Mechanism and application of fibrous proteins in diabetic wound healing: a literature review. Front Endocrinol (Lausanne) 2024; 15:1430543. [PMID: 39129915 PMCID: PMC11309995 DOI: 10.3389/fendo.2024.1430543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Diabetic wounds are more complex than normal chronic wounds because of factors such as hypoxia, reduced local angiogenesis, and prolonged inflammation phase. Fibrous proteins, including collagen, fibrin, laminin, fibronectin, elastin etc., possess excellent inherent properties that make them highly advantageous in the area of wound healing. Accumulating evidence suggests that they contribute to the healing process of diabetic wounds by facilitating the repair and remodel of extracellular matrix, stimulating the development of vascular and granulation tissue, and so on. However, there is currently a lack of a comprehensive review of the application of these proteins in diabetes wounds. An overview of fibrous protein characteristics and the alterations linked to diabetic wounds is given in this article's initial section. Next is a summary of the advanced applications of fibrous proteins in the last five years, including acellular dermal matrix, hydrogel, foam, scaffold, and electrospun nanofibrous membrane. These dressings have the ability to actively promote healing in addition to just covering wounds compared to traditional wound dressings like gauze or bandage. Research on fibrous proteins and their role in diabetic wound healing may result in novel therapeutic modalities that lower the incidence of diabetic wounds and thereby enhance the health of diabetic patients.
Collapse
Affiliation(s)
- Lilin Yan
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Loffet EA, Durel JF, Gao J, Kam R, Lim H, Nerurkar NL. Elastic fibers define embryonic tissue stiffness to enable buckling morphogenesis of the small intestine. Biomaterials 2023; 303:122405. [PMID: 38000151 PMCID: PMC10842730 DOI: 10.1016/j.biomaterials.2023.122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
During embryonic development, tissues must possess precise material properties to ensure that cell-generated forces give rise to the stereotyped morphologies of developing organs. However, the question of how material properties are established and regulated during development remains understudied. Here, we aim to address these broader questions through the study of intestinal looping, a process by which the initially straight intestinal tube buckles into loops, permitting ordered packing within the body cavity. Looping results from elongation of the tube against the constraint of an attached tissue, the dorsal mesentery, which is elastically stretched by the elongating tube to nearly triple its length. This elastic energy storage allows the mesentery to provide stable compressive forces that ultimately buckle the tube into loops. Beginning with a transcriptomic analysis of the mesentery, we identified widespread upregulation of extracellular matrix related genes during looping, including genes related to elastic fiber deposition. Combining molecular and mechanical analyses, we conclude that elastin confers tensile stiffness to the mesentery, enabling its mechanical role in organizing the developing small intestine. These results shed light on the role of elastin as a driver of morphogenesis that extends beyond its more established role in resisting cyclic deformation in adult tissues.
Collapse
Affiliation(s)
- Elise A Loffet
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jenny Gao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Richard Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hyunjee Lim
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Loffet EA, Durel JF, Kam R, Lim H, Nerurkar NL. ELASTIC FIBERS DEFINE EMBRYONIC TISSUE STIFFNESS TO ENABLE BUCKLING MORPHOGENESIS OF THE SMALL INTESTINE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549562. [PMID: 37502968 PMCID: PMC10370103 DOI: 10.1101/2023.07.18.549562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
During embryonic development, tissues must possess precise material properties to ensure that cell-generated forces give rise to the stereotyped morphologies of developing organs. However, the question of how material properties are established and regulated during development remains understudied. Here, we aim to address these broader questions through the study of intestinal looping, a process by which the initially straight intestinal tube buckles into loops, permitting ordered packing within the body cavity. Looping results from elongation of the tube against the constraint of an attached tissue, the dorsal mesentery, which is elastically stretched by the elongating tube to nearly triple its length. This elastic energy storage allows the mesentery to provide stable compressive forces that ultimately buckle the tube into loops. Beginning with a transcriptomic analysis of the mesentery, we identified widespread upregulation of extracellular matrix related genes during looping, including genes related to elastic fiber deposition. Combining molecular and mechanical analyses, we conclude that elastin confers tensile stiffness to the mesentery, enabling its mechanical role in organizing the developing small intestine. These results shed light on the role of elastin as a driver of morphogenesis that extends beyond its more established role in resisting cyclic deformation in adult tissues.
Collapse
Affiliation(s)
- Elise A. Loffet
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - John F. Durel
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Richard Kam
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Hyunjee Lim
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Nandan L. Nerurkar
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| |
Collapse
|
6
|
Mariano CA, Sattari S, Ramirez GO, Eskandari M. Effects of tissue degradation by collagenase and elastase on the biaxial mechanics of porcine airways. Respir Res 2023; 24:105. [PMID: 37031200 PMCID: PMC10082978 DOI: 10.1186/s12931-023-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/22/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Common respiratory illnesses, such as emphysema and chronic obstructive pulmonary disease, are characterized by connective tissue damage and remodeling. Two major fibers govern the mechanics of airway tissue: elastin enables stretch and permits airway recoil, while collagen prevents overextension with stiffer properties. Collagenase and elastase degradation treatments are common avenues for contrasting the role of collagen and elastin in healthy and diseased states; while previous lung studies of collagen and elastin have analyzed parenchymal strips in animal and human specimens, none have focused on the airways to date. METHODS Specimens were extracted from the proximal and distal airways, namely the trachea, large bronchi, and small bronchi to facilitate evaluations of material heterogeneity, and subjected to biaxial planar loading in the circumferential and axial directions to assess airway anisotropy. Next, samples were subjected to collagenase and elastase enzymatic treatment and tensile tests were repeated. Airway tissue mechanical properties pre- and post-treatment were comprehensively characterized via measures of initial and ultimate moduli, strain transitions, maximum stress, hysteresis, energy loss, and viscoelasticity to gain insights regarding the specialized role of individual connective tissue fibers and network interactions. RESULTS Enzymatic treatment demonstrated an increase in airway tissue compliance throughout loading and resulted in at least a 50% decrease in maximum stress overall. Strain transition values led to significant anisotropic manifestation post-treatment, where circumferential tissues transitioned at higher strains compared to axial counterparts. Hysteresis values and energy loss decreased after enzymatic treatment, where hysteresis reduced by almost half of the untreated value. Anisotropic ratios exhibited axially led stiffness at low strains which transitioned to circumferentially led stiffness when subjected to higher strains. Viscoelastic stress relaxation was found to be greater in the circumferential direction for bronchial airway regions compared to axial counterparts. CONCLUSION Targeted fiber treatment resulted in mechanical alterations across the loading range and interactions between elastin and collagen connective tissue networks was observed. Providing novel mechanical characterization of elastase and collagenase treated airways aids our understanding of individual and interconnected fiber roles, ultimately helping to establish a foundation for constructing constitutive models to represent various states and progressions of pulmonary disease.
Collapse
Affiliation(s)
- Crystal A Mariano
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Samaneh Sattari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Gustavo O Ramirez
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA.
- BREATHE Center, School of Medicine, University of California at Riverside, Riverside, CA, USA.
- Department of Bioengineering, University of California at Riverside, Riverside, CA, USA.
| |
Collapse
|
7
|
Jeon EY, Sorrells L, Abaci HE. Biomaterials and bioengineering to guide tissue morphogenesis in epithelial organoids. Front Bioeng Biotechnol 2022; 10:1038277. [PMID: 36466337 PMCID: PMC9712807 DOI: 10.3389/fbioe.2022.1038277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 09/27/2024] Open
Abstract
Organoids are self-organized and miniatured in vitro models of organs and recapitulate key aspects of organ architecture and function, leading to rapid progress in understanding tissue development and disease. However, current organoid culture systems lack accurate spatiotemporal control over biochemical and physical cues that occur during in vivo organogenesis and fail to recapitulate the complexity of organ development, causing the generation of immature organoids partially resembling tissues in vivo. Recent advances in biomaterials and microengineering technologies paved the way for better recapitulation of organ morphogenesis and the generation of anatomically-relevant organoids. For this, understanding the native ECM components and organization of a target organ is essential in providing rational design of extracellular scaffolds that support organoid growth and maturation similarly to the in vivo microenvironment. In this review, we focus on epithelial organoids that resemble the spatial distinct structure and function of organs lined with epithelial cells including intestine, skin, lung, liver, and kidney. We first discuss the ECM diversity and organization found in epithelial organs and provide an overview of developing hydrogel systems for epithelial organoid culture emphasizing their key parameters to determine cell fates. Finally, we review the recent advances in tissue engineering and microfabrication technologies including bioprinting and microfluidics to overcome the limitations of traditional organoid cultures. The integration of engineering methodologies with the organoid systems provides a novel approach for instructing organoid morphogenesis via precise spatiotemporal modulation of bioactive cues and the establishment of high-throughput screening platforms.
Collapse
Affiliation(s)
- Eun Young Jeon
- Dermatology Department, Columbia University Medical Center, New York, NY, United States
| | - Leila Sorrells
- Biomedical Engineering Department, Columbia University, New York, New York, United States
| | - Hasan Erbil Abaci
- Dermatology Department, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
8
|
The synergistic mechanism of fibroblast growth factor 18 and integrin β1 in rat abdominal aortic aneurysm repair. BMC Cardiovasc Disord 2022; 22:415. [PMID: 36115958 PMCID: PMC9482292 DOI: 10.1186/s12872-022-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Abdominal aortic aneurysms have a high mortality rate. While surgery is the preferred treatment method, the biological repair of abdominal aortic aneurysms is being increasingly studied. We performed cellular and animal experiments to investigate the simultaneous function and mechanism of fibroblast growth factor 18 and integrin β1 in the biological repair of abdominal aortic aneurysms. Methods Endothelial and smooth muscle cells of rat arteries were used for the cellular experiments. Intracellular integrin β1 expression was regulated through lentiviral transfection. Interventions with fibroblast growth factor 18 were determined according to the experimental protocol. Several methods were used to detect the expression of elastic fiber component proteins, cell proliferation, and migratory activity of endothelial and smooth muscle cells after different treatments. For animal experiments, abdominal aortic aneurysms were induced in rats by wrapping the abdominal aortae in sterile cotton balls soaked with CaCl2 solution. Fibroblast growth factor 18 was administered through tail vein injections. The local expression of integrin β1 was regulated through lentiviral injections into the adventitia of the abdominal aortic aneurysms. The abdominal aortae were harvested for pathological examinations and tensile mechanical tests. Results The expression of integrin β1 in endothelial and smooth muscle cells could be regulated effectively through lentiviral transfection. Animal and cellular experiments showed that fibroblast growth factor 18 + integrin β1 could improve the expression of elastic fiber component proteins and enhance the migratory and proliferative activities of smooth muscle and endothelial cells. Moreover, animal experiments showed that fibroblast growth factor 18 + integrin β1 could enhance the aortic integrity to withstand stretch of aortic aneurysm tissue. Conclusion Fibroblast growth factor 18 + integrin β1 improved the biological repair of abdominal aortic aneurysms in rats by increasing the expression of elastic proteins, improving the migratory and proliferative abilities of endothelial and smooth muscle cells, and improving aortic remodeling. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02851-y.
Collapse
|
9
|
Boraldi F, Lofaro FD, Cossarizza A, Quaglino D. The "Elastic Perspective" of SARS-CoV-2 Infection and the Role of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms23031559. [PMID: 35163482 PMCID: PMC8835950 DOI: 10.3390/ijms23031559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
- Correspondence:
| |
Collapse
|