1
|
Hamid A, Mäser P, Mahmoud AB. Drug Repurposing in the Chemotherapy of Infectious Diseases. Molecules 2024; 29:635. [PMID: 38338378 PMCID: PMC10856722 DOI: 10.3390/molecules29030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Repurposing is a universal mechanism for innovation, from the evolution of feathers to the invention of Velcro tape. Repurposing is particularly attractive for drug development, given that it costs more than a billion dollars and takes longer than ten years to make a new drug from scratch. The COVID-19 pandemic has triggered a large number of drug repurposing activities. At the same time, it has highlighted potential pitfalls, in particular when concessions are made to the target product profile. Here, we discuss the pros and cons of drug repurposing for infectious diseases and analyze different ways of repurposing. We distinguish between opportunistic and rational approaches, i.e., just saving time and money by screening compounds that are already approved versus repurposing based on a particular target that is common to different pathogens. The latter can be further distinguished into divergent and convergent: points of attack that are divergent share common ancestry (e.g., prokaryotic targets in the apicoplast of malaria parasites), whereas those that are convergent arise from a shared lifestyle (e.g., the susceptibility of bacteria, parasites, and tumor cells to antifolates due to their high rate of DNA synthesis). We illustrate how such different scenarios can be capitalized on by using examples of drugs that have been repurposed to, from, or within the field of anti-infective chemotherapy.
Collapse
Affiliation(s)
- Amal Hamid
- Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, 4123 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Abdelhalim Babiker Mahmoud
- Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| |
Collapse
|
2
|
Mehta NV, Abhyankar A, Degani MS. Elemental exchange: Bioisosteric replacement of phosphorus by boron in drug design. Eur J Med Chem 2023; 260:115761. [PMID: 37651875 DOI: 10.1016/j.ejmech.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Continuous efforts are being directed toward the employment of boron in drug design due to its advantages and unique characteristics including a plethora of target engagement modes, lower metabolism, and synthetic accessibility, among others. Phosphates are components of multiple drug molecules as well as clinical candidates, since they play a vital role in various biochemical functions, being components of nucleotides, energy currency- ATP as well as several enzyme cofactors. This review discusses the unique chemistry of boron functionalities as phosphate bioisosteres - "the boron-phosphorus elemental exchange strategy" as well as the superiority of boron groups over other commonly employed phosphate bioisosteres. Boron phosphate-mimetics have been utilized for the development of enzyme inhibitors as well as novel borononucleotides. Both the boron functionalities described in this review-boronic acids and benzoxaboroles-contain a boron connected to two oxygens and one carbon atom. The boron atom of these functional groups coordinates with a water molecule in the enzyme site forming a tetrahedral molecule which mimics the phosphate structure. Although boron phosphate-mimetic molecules - FDA-approved Crisaborole and phase II/III clinical candidate Acoziborole are products of the boron-phosphorus bioisosteric elemental exchange strategy, this technique is still in its infancy. The review aims to promote the use of this strategy in future medicinal chemistry projects.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| | - Arundhati Abhyankar
- Shri Vile Parle Kelavani Mandal's Dr Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vile Parle West, Mumbai, 400056, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
3
|
Kasozi KI, MacLeod ET, Ntulume I, Welburn SC. An Update on African Trypanocide Pharmaceutics and Resistance. Front Vet Sci 2022; 9:828111. [PMID: 35356785 PMCID: PMC8959112 DOI: 10.3389/fvets.2022.828111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
African trypanosomiasis is associated with Trypanosoma evansi, T. vivax, T. congolense, and T. brucei pathogens in African animal trypanosomiasis (AAT) while T. b gambiense and T. b rhodesiense are responsible for chronic and acute human African trypanosomiasis (HAT), respectively. Suramin sodium suppresses ATP generation during the glycolytic pathway and is ineffective against T. vivax and T. congolense infections. Resistance to suramin is associated with pathogen altered transport proteins. Melarsoprol binds irreversibly with pyruvate kinase protein sulfhydryl groups and neutralizes enzymes which interrupts the trypanosome ATP generation. Melarsoprol resistance is associated with the adenine-adenosine transporter, P2, due to point mutations within this transporter. Eflornithine is used in combination with nifurtimox. Resistance to eflornithine is caused by the deletion or mutation of TbAAT6 gene which encodes the transmembrane amino acid transporter that delivers eflornithine into the cell, thus loss of transporter protein results in eflornithine resistance. Nifurtimox alone is regarded as a poor trypanocide, however, it is effective in melarsoprol-resistant gHAT patients. Resistance is associated with loss of a single copy of the genes encoding for nitroreductase enzymes. Fexinidazole is recommended for first-stage and non-severe second-stage illnesses in gHAT and resistance is associated with trypanosome bacterial nitroreductases which reduce fexinidazole. In AAT, quinapyramine sulfate interferes with DNA synthesis and suppression of cytoplasmic ribosomal activity in the mitochondria. Quinapyramine sulfate resistance is due to variations in the potential of the parasite's mitochondrial membrane. Pentamidines create cross-links between two adenines at 4–5 pairs apart in adenine-thymine-rich portions of Trypanosoma DNA. It also suppresses type II topoisomerase in the mitochondria of Trypanosoma parasites. Pentamidine resistance is due to loss of mitochondria transport proteins P2 and HAPT1. Diamidines are most effective against Trypanosome brucei group and act via the P2/TbAT1 transporters. Diminazene aceturate resistance is due to mutations that alter the activity of P2, TeDR40 (T. b. evansi). Isometamidium chloride is primarily employed in the early stages of trypanosomiasis and resistance is associated with diminazene resistance. Phenanthridine (homidium bromide, also known as ethidium bromide) acts by a breakdown of the kinetoplast network and homidium resistance is comparable to isometamidium. In humans, the development of resistance and adverse side effects against monotherapies has led to the adoption of nifurtimox-eflornithine combination therapy. Current efforts to develop new prodrug combinations of nifurtimox and eflornithine and nitroimidazole fexinidazole as well as benzoxaborole SCYX-7158 (AN5568) for HAT are in progress while little comparable progress has been done for the development of novel therapies to address trypanocide resistance in AAT.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- School of Medicine, Kabale University, Kabale, Uganda
- *Correspondence: Keneth Iceland Kasozi ;
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ibrahim Ntulume
- School of Biosecurity Biotechnical and Laboratory Sciences, College of Medicine and Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Hangzhou, China
- Susan Christina Welburn
| |
Collapse
|
4
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
5
|
Kalt MM, Schuehly W, Saf R, Ochensberger S, Solnier J, Bucar F, Kaiser M, Presser A. Palladium-catalysed synthesis of arylnaphthoquinones as antiprotozoal and antimycobacterial agents. Eur J Med Chem 2020; 207:112837. [PMID: 33002847 DOI: 10.1016/j.ejmech.2020.112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Malaria and tuberculosis are still among the leading causes of death in low-income countries. The 1,4-naphthoquinone (NQ) scaffold can be found in a variety of anti-infective agents. Herein, we report an optimised, high yield process for the preparation of various 2-arylnaphthoquinones by a palladium-catalysed Suzuki reaction. All synthesised compounds were evaluated for their in-vitro antiprotozoal and antimycobacterial activity. Antiprotozoal activity was assessed against Plasmodium falciparum (P.f.) NF54 and Trypanosoma brucei rhodesiense (T.b.r.) STIB900, and antimycobacterial activity against Mycobacterium smegmatis (M.s.) mc2 155. Substitution with pyridine and pyrimidine rings significantly increased antiplasmodial potency of our compounds. The 2-aryl-NQs exhibited trypanocidal activity in the nM range with a very favourable selectivity profile. (Pseudo)halogenated aryl-NQs were found to have a pronounced effect indicating inhibition of mycobacterial efflux pumps. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. In addition, the physicochemical parameters of the synthesised compounds were discussed.
Collapse
Affiliation(s)
- Marc-Manuel Kalt
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, A-8010, Graz, Austria
| | - Wolfgang Schuehly
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Sandra Ochensberger
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Julia Solnier
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| | - Armin Presser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, A-8010, Graz, Austria.
| |
Collapse
|
6
|
In Vitro Drug Efficacy Testing Against Trypanosoma brucei. Methods Mol Biol 2020. [PMID: 32221955 DOI: 10.1007/978-1-0716-0294-2_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The recent endorsement of fexinidazole by the European Medicines Agency for the treatment of human African trypanosomiasis has demonstrated the high predictive value of cell-based assays for parasite chemotherapy. Here we describe three in vitro drug susceptibility tests with Trypanosoma brucei that have served as the basis for the identification of fexinidazole as a promising lead: (1) a standard assay with end-point measurement to determine drug efficacy; (2) a wash-out assay to test for reversibility and speed of drug action; (3) isothermal microcalorimetry for real-time measurement of onset of drug action and time to kill. Together, these assays allow to estimate pharmacodynamic parameters in vitro and to devise appropriate treatment regimens for subsequent in vivo experiments.
Collapse
|
7
|
Zin NNINM, Rahimi WNAWM, Bakar NA. A Review of Quercus infectoria (Olivier) Galls as a Resource for Anti-parasitic Agents: In Vitro and In Vivo Studies. Malays J Med Sci 2020; 26:19-34. [PMID: 31908584 PMCID: PMC6939732 DOI: 10.21315/mjms2019.26.6.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Parasitic diseases represent one of the causes for significant global economic, environmental and public health impacts. The efficacy of currently available anti-parasitic drugs has been threatened by the emergence of single drug- or multidrug-resistant parasite populations, vector threats and high cost of drug development. Therefore, the discovery of more potent anti-parasitic drugs coming from medicinal plants such as Quercus infectoria is seen as a major approach to tackle the problem. A systematic review was conducted to assess the efficacy of Q. infectoria in treating parasitic diseases both in vitro and in vivo due to the lack of such reviews on the anti-parasitic activities of this plant. This review consisted of intensive searches from three databases including PubMed, Science Direct and Scopus. Articles were selected throughout the years, limited to English language and fully documented. A total of 454 potential articles were identified, but only four articles were accepted to be evaluated based on inclusion and exclusion criteria. Although there were insufficient pieces of evidence to account for the efficacy of Q. infectoria against the parasites, this plant appears to have anti-leishmanial, anti-blastocystis and anti-amoebic activities. More studies in vitro and in vivo are warranted to further validate the anti-parasitic efficacy of Q. infectoria.
Collapse
|
8
|
Jourdan J, Walz A, Matile H, Schmidt A, Wu J, Wang X, Dong Y, Vennerstrom JL, Schmidt RS, Wittlin S, Mäser P. Stochastic Protein Alkylation by Antimalarial Peroxides. ACS Infect Dis 2019; 5:2067-2075. [PMID: 31626733 DOI: 10.1021/acsinfecdis.9b00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial peroxides such as the phytochemical artemisinin or the synthetic ozonides arterolane and artefenomel undergo reductive cleavage of the pharmacophoric peroxide bond by ferrous heme, released by parasite hemoglobin digestion. The generated carbon-centered radicals alkylate heme in an intramolecular reaction and proteins in an intermolecular reaction. Here, we determine the proteinaceous alkylation signatures of artemisinin and synthetic ozonides in Plasmodium falciparum using alkyne click chemistry probes to identify target proteins by affinity purification and mass spectrometry-based proteomics. Using stringent controls and purification procedures, we identified 25 P. falciparum proteins that were alkylated by the antimalarial peroxides in a peroxide-dependent manner, but the alkylation patterns were more random than we had anticipated. Moreover, there was little overlap in the alkylation signatures identified in this work and those disclosed in previous studies. Our findings suggest that alkylation of parasite proteins by antimalarial peroxides is likely to be a nonspecific, stochastic process.
Collapse
Affiliation(s)
- Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Annabelle Walz
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
9
|
Song J, Li Z, Wang G, Zhang N, Chen C, Chen J, Ren H, Pan W. Controllable Synthesis of Polyheterocyclic Spirooxindoles and 3,3‐Bistryptophol Oxindoles via Fe(ClO
4
)
3
⋅ 6H
2
O‐Promoted Hetero‐Pictet‐Spengler Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun‐Rong Song
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Zhi‐Yao Li
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| | - Guang‐Di Wang
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| | - Ni Zhang
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Chao Chen
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Juan Chen
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Hai Ren
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Weidong Pan
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| |
Collapse
|
10
|
Vil’ VA, Terent’ev AO, Mulina OM. Bioactive Natural and Synthetic Peroxides for the Treatment of Helminth and Protozoan Pathogens: Synthesis and Properties. Curr Top Med Chem 2019; 19:1201-1225. [DOI: 10.2174/1568026619666190620143848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
The significant spread of helminth and protozoan infections, the uncontrolled intake of the
known drugs by a large population, the emergence of resistant forms of pathogens have prompted people
to search for alternative drugs. In this review, we have focused attention on structures and synthesis of
peroxides active against parasites causing neglected tropical diseases and toxoplasmosis. To date, promising
active natural, semi-synthetic and synthetic peroxides compounds have been found.
Collapse
Affiliation(s)
- Vera A. Vil’
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Alexander O. Terent’ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Olga M. Mulina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| |
Collapse
|
11
|
Menna-Barreto RFS. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death Dis 2019; 10:93. [PMID: 30700697 PMCID: PMC6353990 DOI: 10.1038/s41419-019-1370-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Especially in tropical and developing countries, the clinically relevant protozoa Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness) and Leishmania species (leishmaniasis) stand out and infect millions of people worldwide leading to critical social-economic implications. Low-income populations are mainly affected by these three illnesses that are neglected by the pharmaceutical industry. Current anti-trypanosomatid drugs present variable efficacy with remarkable side effects that almost lead to treatment discontinuation, justifying a continuous search for alternative compounds that interfere with essential and specific parasite pathways. In this scenario, the triggering of trypanosomatid cell death machinery emerges as a promising approach, although the exact mechanisms involved in unicellular eukaryotes are still unclear as well as the controversial biological importance of programmed cell death (PCD). In this review, the mechanisms of autophagy, apoptosis-like cell death and necrosis found in pathogenic trypanosomatids are discussed, as well as their roles in successful infection. Based on the published genomic and proteomic maps, the panel of trypanosomatid cell death molecules was constructed under different experimental conditions. The lack of PCD molecular regulators and executioners in these parasites up to now has led to cell death being classified as an unregulated process or incidental necrosis, despite all morphological evidence published. In this context, the participation of metacaspases in PCD was also not described, and these proteases play a crucial role in proliferation and differentiation processes. On the other hand, autophagic phenotype has been described in trypanosomatids under a great variety of stress conditions (drugs, starvation, among others) suggesting that this process is involved in the turnover of damaged structures in the protozoa and is not a cell death pathway. Death mechanisms of pathogenic trypanosomatids may be involved in pathogenesis, and the identification of parasite-specific regulators could represent a rational and attractive alternative target for drug development for these neglected diseases.
Collapse
|
12
|
Saccoliti F, Madia VN, Tudino V, De Leo A, Pescatori L, Messore A, De Vita D, Scipione L, Brun R, Kaiser M, Mäser P, Calvet CM, Jennings GK, Podust LM, Pepe G, Cirilli R, Faggi C, Di Marco A, Battista MR, Summa V, Costi R, Di Santo R. Design, Synthesis, and Biological Evaluation of New 1-(Aryl-1 H-pyrrolyl)(phenyl)methyl-1 H-imidazole Derivatives as Antiprotozoal Agents. J Med Chem 2019; 62:1330-1347. [PMID: 30615444 DOI: 10.1021/acs.jmedchem.8b01464] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have designed and synthesized a series of new imidazole-based compounds structurally related to an antiprotozoal agent with nanomolar activity which we identified recently. The new analogues possess micromolar activities against Trypanosoma brucei rhodesiense and Leishmania donovani and nanomolar potency against Plasmodium falciparum. Most of the analogues displayed IC50 within the low nanomolar range against Trypanosoma cruzi, with very high selectivity toward the parasite. Discussion of structure-activity relationships and in vitro biological data for the new compounds are provided against a number of different protozoa. The mechanism of action for the most potent derivatives (5i, 6a-c, and 8b) was assessed by a target-based assay using recombinant T. cruzi CYP51. Bioavailability and efficacy of selected hits were assessed in a T. cruzi mouse model, where 6a and 6b reduced parasitemia in animals >99% following intraperitoneal administration of 25 mg/kg/day dose for 4 consecutive days.
Collapse
Affiliation(s)
- Francesco Saccoliti
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Alessandro De Leo
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Luca Pescatori
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Daniela De Vita
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Reto Brun
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
| | - Claudia M Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States.,Laboratório de Ultraestrutura Celular , Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro , Rio de Janeiro 21040-360 , Brazil
| | - Gareth K Jennings
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| | - Giacomo Pepe
- Dipartimento di Farmacia , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci , Istituto Superiore di Sanita , Viale Regina Elena 299 , I-00161 Rome , Italy
| | - Cristina Faggi
- Dipartimento di Chimica , Università degli studi di Firenze , Via della Lastruccia 13 , I-50019 , Sesto Fiorentino , Florence , Italy
| | - Annalise Di Marco
- Drug Discovery , IRBM Science Park , Via Pontina km 30,600 , Pomezia, Rome 00071 , Italy
| | - Maria Rosaria Battista
- Drug Discovery , IRBM Science Park , Via Pontina km 30,600 , Pomezia, Rome 00071 , Italy
| | - Vincenzo Summa
- Drug Discovery , IRBM Science Park , Via Pontina km 30,600 , Pomezia, Rome 00071 , Italy
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| |
Collapse
|
13
|
Nocentini A, Supuran CT, Winum JY. Benzoxaborole compounds for therapeutic uses: a patent review (2010- 2018). Expert Opin Ther Pat 2018; 28:493-504. [PMID: 29727210 DOI: 10.1080/13543776.2018.1473379] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Benzoxaborole is a versatile boron-heterocyclic scaffold which has found in the last 10 years a broad spectrum of applications in medicinal chemistry, due to its physicochemical and drug-like properties. Use of benzoxaborole moiety in the design of compounds led to the discovery of new classes of anti-bacterial, anti-fungal, anti-protozoal, anti-viral as well as anti-inflammatory agents with interesting drug development perspectives. AREAS COVERED This article reviews the patent literature as well as chemistry literature during the period 2010-2018 where in several benzoxaborole derivatives with therapeutic options were reported. EXPERT OPINION Two benzoxaborole derivatives are already clinically used for the treatment of onychomycosis (tavaborole) and atopic dermatitis (crisaborole), with several others in various phases of clinical trials. By inhibiting enzymes essential in the life cycle of fungal, protozoan, bacterial and viral pathogens, it is probable that other compounds may soon enter the armamentarium of anti-infective agents. On the other hand, phosphodiesterase 4 seems to be the human target responsible of the anti-inflammatory action of some benzoxaboroles. The chemical versatility, peculiar mechanism of action related to the electron deficient nature of the boron atom, and ease of preparation make benzoxaboroles a highly interesting field for the pharmaceutical industry.
Collapse
Affiliation(s)
- Alessio Nocentini
- a Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence, Polo Scientifico , Firenze , Italy.,b Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM , Université de Montpellier , Montpellier , France
| | - Claudiu T Supuran
- a Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence, Polo Scientifico , Firenze , Italy
| | - Jean-Yves Winum
- b Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM , Université de Montpellier , Montpellier , France
| |
Collapse
|
14
|
Njouendou AJ, Fombad FF, O'Neill M, Zofou D, Nutting C, Ndongmo PC, Kengne-Ouafo AJ, Geary TG, Mackenzie CD, Wanji S. Heterogeneity in the in vitro susceptibility of Loa loa microfilariae to drugs commonly used in parasitological infections. Parasit Vectors 2018; 11:223. [PMID: 29615094 PMCID: PMC5883330 DOI: 10.1186/s13071-018-2799-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023] Open
Abstract
Background Co-infection with loiasis remains a potential problem in control programs targeting filarial infections. The effects of many anti-parasitic drugs often administered to Loa loa infected people are not well documented. This study compared the in vitro activity of several of these drugs on the viability of L. loa microfilariae (mf). Methods Human strain L. loa mf were isolated from baboon blood using iso-osmotic Percoll gradient, and cultured in RPMI 1640/10% FBS with antimalarial drugs (mefloquine, amodiaquine, artesunate, chloroquine and quinine), anthelmintics (ivermectin, praziquantel, flubendazole and its reduced and hydrolyzed metabolites), two potential trypanocidal agents (fexinidazole and Scynexis-7158) and the anticancer drug imatinib. The drug concentrations used varied between 0.156 μg/ml and 10 μg/ml. Mf motility (CR50 = 50% immotility) and a metabolic viability assay (MTT) were used to assess the effects of these drugs on the parasites. Results Mf in control cultures showed only a slight reduction in motility after 5 days of culture. Active inhibition of Loa loa motility was seen with mefloquine and amodiaquine (CR50 values of 3.87 and 4.05 μg/ml, respectively), immobilizing > 90% mf within the first 24 hours: mefloquine killed the mf after 24 hours of culture at concentrations ≥ 5 μg/ml. SCYX-7158 also induced a concentration-dependent reduction in mf motility, with > 50% reduction in mf motility seen after 5 days at 10 μg/ml. The anticancer drug imatinib reduced mf motility at 10 μg/ml from the first day of incubation to 55% by day 5, and the reduction in motility was concentration-dependent. Praziquantel and fexinidazole were inactive, and FLBZ and its metabolites, as well as ivermectin at concentrations > 5 μg/ml, had very minimal effects on mf motility over the first 4 days of culture. Conclusions The considerable action of the anti-malarial drugs mefloquine and amodiaquine on Loa mf in vitro highlights the possibility of repurposing the existing anti-infectious agents for the development of drugs against loiasis. The heterogeneity in the activity of anti-parasitic agents on Loa loa mf supports the need for further investigation using animal models of loiasis. Electronic supplementary material The online version of this article (10.1186/s13071-018-2799-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdel J Njouendou
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Fanny F Fombad
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Maeghan O'Neill
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Denis Zofou
- Biotechnology unit, Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Chuck Nutting
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Patrick C Ndongmo
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Arnaud J Kengne-Ouafo
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Charles D Mackenzie
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.,Filariasis Programmes Support Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Samuel Wanji
- Parasites and Vectors Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.
| |
Collapse
|
15
|
Tetrasubstituted Imidazolium Salts as Potent Antiparasitic Agents against African and American Trypanosomiases. Molecules 2018; 23:molecules23010177. [PMID: 29337878 PMCID: PMC6017328 DOI: 10.3390/molecules23010177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 11/16/2022] Open
Abstract
Imidazolium salts are privileged compounds in organic chemistry, and have valuable biological properties. Recent studies show that symmetric imidazolium salts with bulky moieties can display antiparasitic activity against T. cruzi. After developing a facile methodology for the synthesis of tetrasubstituted imidazolium salts from propargylamines and isocyanides, we screened a small library of these adducts against the causative agents of African and American trypanosomiases. These compounds display nanomolar activity against T. brucei and low (or sub) micromolar activity against T. cruzi, with excellent selectivity indexes and favorable molecular properties, thereby emerging as promising hits for the treatment of Chagas disease and sleeping sickness.
Collapse
|
16
|
Vil' VA, Yaremenko IA, Ilovaisky AI, Terent'ev AO. Peroxides with Anthelmintic, Antiprotozoal, Fungicidal and Antiviral Bioactivity: Properties, Synthesis and Reactions. Molecules 2017; 22:E1881. [PMID: 29099089 PMCID: PMC6150334 DOI: 10.3390/molecules22111881] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
The biological activity of organic peroxides is usually associated with the antimalarial properties of artemisinin and its derivatives. However, the analysis of published data indicates that organic peroxides exhibit a variety of biological activity, which is still being given insufficient attention. In the present review, we deal with natural, semi-synthetic and synthetic peroxides exhibiting anthelmintic, antiprotozoal, fungicidal, antiviral and other activities that have not been described in detail earlier. The review is mainly concerned with the development of methods for the synthesis of biologically active natural peroxides, as well as its isolation from natural sources and the modification of natural peroxides. In addition, much attention is paid to the substantially cheaper biologically active synthetic peroxides. The present review summarizes 217 publications mainly from 2000 onwards.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| |
Collapse
|
17
|
Farahat AA, Kumar A, Say M, Wenzler T, Brun R, Paul A, Wilson WD, Boykin DW. Exploration of DAPI analogues: Synthesis, antitrypanosomal activity, DNA binding and fluorescence properties. Eur J Med Chem 2017; 128:70-78. [PMID: 28152428 PMCID: PMC5341734 DOI: 10.1016/j.ejmech.2017.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 02/05/2023]
Abstract
The DAPI structure has been modified by replacing the phenyl group with substituted phenyl or heteroaryl rings. Twelve amidines were synthesized and their DNA binding, fluorescence properties, in vitro and in vivo activities were evaluated. These compounds are shown to bind in the DNA minor groove with high affinity, and exhibit superior in vitro antitrypanosomal activity to that of DAPI. Six new diamidines (5b, 5c, 5d, 5e, 5f and 5j) exhibit superior in vivo activity to that of DAPI and four of these compounds provide 100% animal cure at a low dose of 4 × 5 mg/kg i.p. in T. b. rhodesiense infected mice. Generally, the fluorescence properties of the new analogues are inferior to that of DAPI with the exception of compound 5i which shows a moderate increase in efficacy while compound 5k is comparable to DAPI.
Collapse
Affiliation(s)
- Abdelbasset A Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Martial Say
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Tanja Wenzler
- Swiss Tropical and Public Health Institute, Basel 4002, Switzerland; University of Basel, Basel, 4003, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Basel 4002, Switzerland; University of Basel, Basel, 4003, Switzerland
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| |
Collapse
|
18
|
Masand VH, El-Sayed NNE, Mahajan DT, Rastija V. QSAR analysis for 6-arylpyrazine-2-carboxamides as Trypanosoma brucei inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:165-177. [PMID: 28235390 DOI: 10.1080/1062936x.2017.1292407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
Human African trypanosomiasis (HAT) is prevalent in African countries, covering 37 countries, mostly sub-Saharan. A limited number of drugs are available to cure this neglected disease. In the present work, quantitative structure-activity (toxicity) relationships (QSA(T)R) analysis has been performed for a dataset of 54 6-arylpyrazine-2-carboxamides as Trypanosoma brucei inhibitors to identify the important structural features required for future optimization of lead candidates. The QSA(T)R models satisfy OECD guidelines and have high statistical robustness. The QSA(T)R models are based on easily interpretable molecular descriptors. The QSA(T)R models indicate that Trypanosoma brucei inhibitory activity of 6-arylpyrazine-2-carboxamides has correlation with the presence of N-sec-butylformamide and substituted benzene. The results could be beneficial for further optimization of 6-arylpyrazine-2-carboxamides as Trypanosoma brucei inhibitors. Some potential candidate molecules have been proposed.
Collapse
Affiliation(s)
- V H Masand
- a Department of Chemistry , Vidya Bharati College , Camp, Amravati , Maharashtra , India
| | - N N E El-Sayed
- b Department of Chemistry , College of Science, "Girls Section", King Saud University , Riyadh Saudi Arabia
- c National Organization for Drug Control and Research , Giza , Egypt
| | - D T Mahajan
- a Department of Chemistry , Vidya Bharati College , Camp, Amravati , Maharashtra , India
| | - V Rastija
- d Department of Chemistry, Faculty of Agriculture , Josip Juraj Strossmayer University of P. Svacica 1d , Osijek , Croatia
| |
Collapse
|
19
|
Baumgärtner F, Jourdan J, Scheurer C, Blasco B, Campo B, Mäser P, Wittlin S. In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar J 2017; 16:45. [PMID: 28122617 PMCID: PMC5267415 DOI: 10.1186/s12936-017-1696-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/13/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Recently published data suggest that artemisinin derivatives and synthetic peroxides, such as the ozonides OZ277 and OZ439, have a similar mode of action. Here the cross-resistance of OZ277 and OZ439 and four additional next-generation ozonides was probed against the artemisinin-resistant clinical isolate Plasmodium falciparum Cam3.I, which carries the K13-propeller mutation R539T (Cam3.IR539T). METHODS The previously described in vitro ring-stage survival assay (RSA0-3h) was employed and a simplified variation of the original protocol was developed. RESULTS At the pharmacologically relevant concentration of 700 nM, all six ozonides were highly effective against the dihydroartemisinin-resistant P. falciparum Cam3.IR539T parasites, showing a per cent survival ranging from <0.01 to 1.83%. A simplified version of the original RSA0-3h method was developed and gave similar results, thus providing a practical drug discovery tool for further optimization of next-generation anti-malarial peroxides. CONCLUSION The absence of in vitro cross-resistance against the artemisinin-resistant clinical isolate Cam3.IR539T suggests that ozonides could be effective against artemisinin-resistant P. falciparum. How this will translate to the human situation in clinical settings remains to be investigated.
Collapse
Affiliation(s)
- Fabian Baumgärtner
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Benjamin Blasco
- Medicines for Malaria Venture, ICC, 20 Route de Pré-Bois, PO Box 1826, 1215 Geneva, Switzerland
| | - Brice Campo
- Medicines for Malaria Venture, ICC, 20 Route de Pré-Bois, PO Box 1826, 1215 Geneva, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
20
|
Haridas V, Ranjbar S, Vorobjev IA, Goldfeld AE, Barteneva NS. Imaging flow cytometry analysis of intracellular pathogens. Methods 2017; 112:91-104. [PMID: 27642004 PMCID: PMC5857943 DOI: 10.1016/j.ymeth.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/15/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Imaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic software makes it possible to analyze hundreds of quantified features for hundreds of thousands of individual cellular or subcellular events in a single experiment. Imaging flow cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of biological questions related to intracellular infection, including cell counting, internalization score, and subcellular patterns of co-localization. Here, we provide an overview of recent achievements in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular infections in analysis of host-pathogen interactions. Specifically, we give examples of Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a combination of standard IDEAS™ software and the more recently developed Feature Finder algorithm, which is capable of identifying statistically significant differences between researcher-defined image galleries. We argue that the combination of imaging flow cytometry with these software platforms provides a powerful new approach to understanding host control of intracellular pathogens.
Collapse
Affiliation(s)
- Viraga Haridas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Ivan A Vorobjev
- School of Science and Technology, Nazarbayev University, Kazakhstan; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russia; Department of Cell Biology and Histology, M.V. Lomonosov Moscow State University, Russia
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States.
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States; School of Science and Technology, Nazarbayev University, Kazakhstan.
| |
Collapse
|
21
|
Sutherland CS, Stone CM, Steinmann P, Tanner M, Tediosi F. Seeing beyond 2020: an economic evaluation of contemporary and emerging strategies for elimination of Trypanosoma brucei gambiense. LANCET GLOBAL HEALTH 2016; 5:e69-e79. [PMID: 27884709 DOI: 10.1016/s2214-109x(16)30237-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Trypanosoma brucei (T b) gambiense is targeted to reach elimination as a public health problem by 2020 and full elimination by 2030. To achieve these goals, stakeholders need to consider strategies to accelerate elimination. Hence, we aimed to model several options related to current and emerging methods for case detection, treatment, and vector control across settings to assess cost-effectiveness and the probability of elimination. METHODS Five intervention strategies were modelled over 30 years for low, moderate, and high transmission settings. Model parameters related to costs, efficacy, and transmission were based on available evidence and parameter estimation. Outcomes included disability-adjusted life-years (DALYs), costs, and long-term prevalence. Sensitivity analyses were done to calculate the uncertainty of the results. FINDINGS To reach elimination targets for 2020 across all settings, approaches combining case detection, treatment, and vector control would be most effective. Elimination in high and moderate transmission areas was probable and cost-effective when strategies included vector control and novel methods, with incremental cost-effectiveness ratios (ICERs) ranging from US$400 to $1500 per DALY averted. In low transmission areas, approaches including the newest interventions alone or in combination with tiny targets (vector control) were cost-effective, with ICERs of $200 or $1800 per DALY averted, respectively, but only strategies including vector control were likely to lead to elimination. Results of sensitivity analyses showed that allowing for biennial surveillance, reducing vector control maintenance costs, or variations of active surveillance coverage could also be cost-effective options for elimination, depending on the setting. INTERPRETATION Although various strategies might lead to elimination of T b gambiense, cost-effective approaches will include adoption of emerging technologies and, in some settings, increased surveillance or implementation of vector control. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- C Simone Sutherland
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland
| | - Christopher M Stone
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland
| | - Peter Steinmann
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland
| | - Fabrizio Tediosi
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Zhuo X, Sun H, Wang S, Guo X, Ding H, Yang Y, Shan Y, Du A. Ginseng Stem-and-Leaf Saponin (GSLS)-Enhanced Protective Immune Responses Induced by Toxoplasma gondii Heat Shocked Protein 70 (HSP70) Against Toxoplasmosis in Mice. J Parasitol 2016; 103:111-117. [PMID: 27828760 DOI: 10.1645/16-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite and is able to infect birds and mammals including humans. In order to find effective antigen-adjuvant combinations that can boost the immunogenicity and protection of antigen vaccines against toxoplasmosis, we examined the protective efficacy in mice immunized with recombinant protein HSP70 when co-administered with ginseng stem-and-leaf saponins (GSLS) isolated from Panax ginseng . All immunized mice produced significantly high levels of specific antibodies against rTgHSP70, and splenocytes from mice presented strong proliferative immune responses. Vaccinated mice displayed a significantly increased percentage of CD4+ and CD8+ T cells, indicating a strong immune response was triggered. The cellular and humoral immune responses were enhanced, which could be reflected of the increased mRNA levels of IFN-γ and IL-4, respectively. Immunization with rTgHSP70 and GSLS prolonged survival time of the treated mice compared to the controls, which died within 6 days after challenge with the virulent T. gondii RH strain. Our data demonstrate that by addition with GSLS, rTgHSP70 induced a strong immune response and provided partial protection against T. gondii ; therefore GSLS could be used as a promising vaccine adjuvant against acute toxoplasmosis.
Collapse
Affiliation(s)
- Xunhui Zhuo
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongchao Sun
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhua Wang
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaolu Guo
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haojie Ding
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Shan
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Aifang Du
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Huang W, Zhang Z, Barros-Álvarez X, Koh CY, Ranade RM, Gillespie JR, Creason SA, Shibata S, Verlinde CLMJ, Hol WGJ, Buckner FS, Fan E. Structure-guided design of novel Trypanosoma brucei Methionyl-tRNA synthetase inhibitors. Eur J Med Chem 2016; 124:1081-1092. [PMID: 27788467 DOI: 10.1016/j.ejmech.2016.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
A screening hit 1 against Trypanosoma brucei methionyl-tRNA synthetase was optimized using a structure-guided approach. The optimization led to the identification of two novel series of potent inhibitors, the cyclic linker and linear linker series. Compounds of both series were potent in a T. brucei growth inhibition assay while showing low toxicity to mammalian cells. The best compound of each series, 16 and 31, exhibited EC50s of 39 and 22 nM, respectively. Compounds 16 and 31 also exhibited promising PK properties after oral dosing in mice. Moreover, compound 31 had moderately good brain permeability, with a brain/plasma ratio of 0.27 at 60 min after IP injection. This study provides new lead compounds for arriving at new treatments of human African trypanosomiasis (HAT).
Collapse
Affiliation(s)
- Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Ximena Barros-Álvarez
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela
| | - Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Ranae M Ranade
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, United States
| | - J Robert Gillespie
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, United States
| | - Sharon A Creason
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, United States
| | - Sayaka Shibata
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | | | - Wim G J Hol
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Frederick S Buckner
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, United States.
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
24
|
Graf FE, Ludin P, Arquint C, Schmidt RS, Schaub N, Kunz Renggli C, Munday JC, Krezdorn J, Baker N, Horn D, Balmer O, Caccone A, de Koning HP, Mäser P. Comparative genomics of drug resistance in Trypanosoma brucei rhodesiense. Cell Mol Life Sci 2016; 73:3387-400. [PMID: 26973180 PMCID: PMC4967103 DOI: 10.1007/s00018-016-2173-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/01/2016] [Indexed: 12/02/2022]
Abstract
Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine.
Collapse
Affiliation(s)
- Fabrice E Graf
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Philipp Ludin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Christian Arquint
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Nadia Schaub
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Christina Kunz Renggli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jessica Krezdorn
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Nicola Baker
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- The University of Kent, Canterbury, Kent, CT2 7NZ, UK
| | - David Horn
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, 4000, Basel, Switzerland.
| |
Collapse
|
25
|
Thomas SM, Purmal A, Pollastri M, Mensa-Wilmot K. Discovery of a Carbazole-Derived Lead Drug for Human African Trypanosomiasis. Sci Rep 2016; 6:32083. [PMID: 27561392 PMCID: PMC5000474 DOI: 10.1038/srep32083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes the fatal illness human African trypanosomiasis (HAT). Standard of care medications currently used to treat HAT have severe limitations, and there is a need to find new chemical entities that are active against infections of T. brucei. Following a "drug repurposing" approach, we tested anti-trypanosomal effects of carbazole-derived compounds called "Curaxins". In vitro screening of 26 compounds revealed 22 with nanomolar potency against axenically cultured bloodstream trypanosomes. In a murine model of HAT, oral administration of compound 1 cured the disease. These studies established 1 as a lead for development of drugs against HAT. Pharmacological time-course studies revealed the primary effect of 1 to be concurrent inhibition of mitosis coupled with aberrant licensing of S-phase entry. Consequently, polyploid trypanosomes containing 8C equivalent of DNA per nucleus and three or four kinetoplasts were produced. These effects of 1 on the trypanosome are reminiscent of "mitotic slippage" or endoreplication observed in some other eukaryotes.
Collapse
Affiliation(s)
- Sarah M Thomas
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Andrei Purmal
- Cleveland BioLabs, Inc., Buffalo, New York 14203, USA
| | - Michael Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
26
|
Sola I, Artigas A, Taylor MC, Pérez-Areales FJ, Viayna E, Clos MV, Pérez B, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis and biological evaluation of N-cyanoalkyl-, N-aminoalkyl-, and N-guanidinoalkyl-substituted 4-aminoquinoline derivatives as potent, selective, brain permeable antitrypanosomal agents. Bioorg Med Chem 2016; 24:5162-5171. [PMID: 27591008 PMCID: PMC5080452 DOI: 10.1016/j.bmc.2016.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022]
Abstract
Current drugs against human African trypanosomiasis (HAT) suffer from several serious drawbacks. The search for novel, effective, brain permeable, safe, and inexpensive antitrypanosomal compounds is therefore an urgent need. We have recently reported that the 4-aminoquinoline derivative huprine Y, developed in our group as an anticholinesterasic agent, exhibits a submicromolar potency against Trypanosoma brucei and that its homo- and hetero-dimerization can result in to up to three-fold increased potency and selectivity. As an alternative strategy towards more potent smaller molecule anti-HAT agents, we have explored the introduction of ω-cyanoalkyl, ω-aminoalkyl, or ω-guanidinoalkyl chains at the primary amino group of huprine or the simplified 4-aminoquinoline analogue tacrine. Here, we describe the evaluation of a small in-house library and a second generation of newly synthesized derivatives, which has led to the identification of 13 side chain modified 4-aminoquinoline derivatives with submicromolar potencies against T. brucei. Among these compounds, the guanidinononyltacrine analogue 15e exhibits a 5-fold increased antitrypanosomal potency, 10-fold increased selectivity, and 100-fold decreased anticholinesterasic activity relative to the parent huprine Y. Its biological profile, lower molecular weight relative to dimeric compounds, reduced lipophilicity, and ease of synthesis, make it an interesting anti-HAT lead, amenable to further optimization to eliminate its remaining anticholinesterasic activity.
Collapse
Affiliation(s)
- Irene Sola
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Albert Artigas
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - F Javier Pérez-Areales
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Elisabet Viayna
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - M Victòria Clos
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neurosciences, Autonomous University of Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neurosciences, Autonomous University of Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Colin W Wright
- Bradford School of Pharmacy, University of Bradford, West Yorkshire BD7 1 DP, United Kingdom
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
27
|
Quinolone Amides as Antitrypanosomal Lead Compounds with In Vivo Activity. Antimicrob Agents Chemother 2016; 60:4442-52. [PMID: 27139467 DOI: 10.1128/aac.01757-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 04/25/2016] [Indexed: 12/14/2022] Open
Abstract
Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments, respectively. Spray-dried GHQ168 demonstrated exciting antitrypanosomal efficacy.
Collapse
|
28
|
Abstract
INTRODUCTION Chagas disease is a chronic infection associated with long-term morbidity. Increased funding and advocacy for drug discovery for neglected diseases have prompted the introduction of several important technological advances, and Chagas disease is among the neglected conditions that has mostly benefited from technological developments. A number of screening campaigns, and the development of new and improved in vitro and in vivo assays, has led to advances in the field of drug discovery. AREAS COVERED This review highlights the major advances in Chagas disease drug screening, and how these are being used not only to discover novel chemical entities and drug candidates, but also increase our knowledge about the disease and the parasite. Different methodologies used for compound screening and prioritization are discussed, as well as novel techniques for the investigation of these targets. The molecular mechanism of action is also discussed. EXPERT OPINION Technological advances have been executed with scientific rigour for the development of new in vitro cell-based assays and in vivo animal models, to bring about novel and better drugs for Chagas disease, as well as to increase our understanding of what are the necessary properties for a compound to be successful in the clinic. The gained knowledge, combined with new exciting approaches toward target deconvolution, will help identifying new targets for Chagas disease chemotherapy in the future.
Collapse
Affiliation(s)
- Carolina B Moraes
- a Laboratório Nacional de Biociências (LNBio) , Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas , Brazil
| | - Caio H Franco
- a Laboratório Nacional de Biociências (LNBio) , Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas , Brazil.,b Graduate Program in Microbiology and Immunology , Universidade Federal de Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
29
|
An evaluation of Minor Groove Binders as anti-Trypanosoma brucei brucei therapeutics. Eur J Med Chem 2016; 116:116-125. [PMID: 27060763 PMCID: PMC4872591 DOI: 10.1016/j.ejmech.2016.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022]
Abstract
A series of 32 structurally diverse MGBs, derived from the natural product distamycin, was evaluated for activity against Trypanosoma brucei brucei. Four compounds have been found to possess significant activity, in the nanomolar range, and represent hits for further optimisation towards novel treatments for Human and Animal African Trypanosomiases. Moreover, SAR indicates that the head group linking moiety is a significant modulator of biological activity.
Collapse
|
30
|
Spiroindolone NITD609 is a novel antimalarial drug that targets the P-type ATPase PfATP4. Future Med Chem 2016; 8:227-38. [PMID: 26824174 DOI: 10.4155/fmc.15.177] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Malaria is caused by the Plasmodium parasite and is a major health problem leading to many deaths worldwide. Lack of a vaccine and increasing drug resistance highlights the need for new antimalarial drugs with novel targets. Antiplasmodial activity of spiroindolones was discovered through whole-cell, phenotypic screening methods. Optimization of the lead spiroindolone improved both potency and pharmacokinetic properties leading to drug candidate NITD609 which has produced encouraging results in clinical trials. Spiroindolones inhibit PfATP4, a P-type Na(+)-ATPase in the plasma membrane of the parasite, causing a fatal disruption of its sodium homeostasis. Other diverse compounds from the Malaria Box appear to target PfATP4 warranting further research into its structure and binding with NITD609 and other potential antimalarial drugs.
Collapse
|
31
|
Jourdan J, Matile H, Reift E, Biehlmaier O, Dong Y, Wang X, Mäser P, Vennerstrom JL, Wittlin S. Monoclonal Antibodies That Recognize the Alkylation Signature of Antimalarial Ozonides OZ277 (Arterolane) and OZ439 (Artefenomel). ACS Infect Dis 2016; 2:54-61. [PMID: 26819968 PMCID: PMC4718528 DOI: 10.1021/acsinfecdis.5b00090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/29/2022]
Abstract
![]()
The
singular structure of artemisinin, with its embedded 1,2,4-trioxane
heterocycle, has inspired the discovery of numerous semisynthetic
artemisinin and structurally diverse synthetic peroxide antimalarials,
including ozonides OZ277 (arterolane) and OZ439 (artefenomel). Despite
the critical importance of artemisinin combination therapies (ACTs),
the precise mode of action of peroxidic antimalarials is not fully
understood. However, it has long been proposed that the peroxide bond
in artemisinin and other antimalarial peroxides undergoes reductive
activation by ferrous heme released during hemoglobin digestion to
produce carbon-centered radicals that alkylate heme and parasite proteins.
To probe the mode of action of OZ277 and OZ439, this paper now describes
initial studies with monoclonal antibodies that recognize the alkylation
signature (sum of heme and protein alkylation) of these synthetic
peroxides. Immunofluorescence experiments conducted with ozonide-treated
parasite cultures showed that ozonide alkylation is restricted to
the parasite, as no signal was found in the erythrocyte or its membrane.
In Western blot experiments with ozonide-treated Plasmodium
falciparum malaria parasites, distinct protein bands
were observed. Significantly, no protein bands were detected in parallel
Western blot experiments performed with lysates from ozonide-treated Babesia divergens, parasites that also proliferate
inside erythrocytes but, in contrast to P. falciparum, do not catabolize hemoglobin. However, subsequent immunoprecipitation
experiments with these antibodies failed to identify the P.
falciparum proteins alkylated by OZ277 and OZ439. To the
best of the authors’ knowledge, this shows for the first time
that antimalarial ozonides, such as the artemisinins, alkylate proteins
in P. falciparum.
Collapse
Affiliation(s)
- Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Ellen Reift
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Oliver Biehlmaier
- Imaging Core Facility, Biozentrum, University of Basel, CH-4003 Basel, Switzerland
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical
Center, Omaha, Nebraska 68198, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical
Center, Omaha, Nebraska 68198, United States
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical
Center, Omaha, Nebraska 68198, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| |
Collapse
|
32
|
Vahermo M, Krogerus S, Nasereddin A, Kaiser M, Brun R, Jaffe CL, Yli-Kauhaluoma J, Moreira VM. Antiprotozoal activity of dehydroabietic acid derivatives against Leishmania donovani and Trypanosoma cruzi. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00498e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dehydroabietic acid derivatives have potent antiprotozoal activity and selectivity against L. donovani and T. cruzi.
Collapse
Affiliation(s)
- Mikko Vahermo
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- Viikinkaari 5 E
- Finland
| | - Sara Krogerus
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- Viikinkaari 5 E
- Finland
| | - Abdelmajeed Nasereddin
- Department of Microbiology and Molecular Genetics
- IMRIC
- Hebrew University-Hadassah Medical School
- 9112102 Jerusalem
- Israel
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology
- Swiss Tropical and Public Health Institute
- 4051 Basel
- Switzerland
| | - Reto Brun
- Department of Medical Parasitology and Infection Biology
- Swiss Tropical and Public Health Institute
- 4051 Basel
- Switzerland
| | - Charles L. Jaffe
- Department of Microbiology and Molecular Genetics
- IMRIC
- Hebrew University-Hadassah Medical School
- 9112102 Jerusalem
- Israel
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- Viikinkaari 5 E
- Finland
| | - Vânia M. Moreira
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- Viikinkaari 5 E
- Finland
| |
Collapse
|
33
|
Jones DC, Foth BJ, Urbaniak MD, Patterson S, Ong HB, Berriman M, Fairlamb AH. Genomic and Proteomic Studies on the Mode of Action of Oxaboroles against the African Trypanosome. PLoS Negl Trop Dis 2015; 9:e0004299. [PMID: 26684831 PMCID: PMC4689576 DOI: 10.1371/journal.pntd.0004299] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022] Open
Abstract
SCYX-7158, an oxaborole, is currently in Phase I clinical trials for the treatment of human African trypanosomiasis. Here we investigate possible modes of action against Trypanosoma brucei using orthogonal chemo-proteomic and genomic approaches. SILAC-based proteomic studies using an oxaborole analogue immobilised onto a resin was used either in competition with a soluble oxaborole or an immobilised inactive control to identify thirteen proteins common to both strategies. Cell-cycle analysis of cells incubated with sub-lethal concentrations of an oxaborole identified a subtle but significant accumulation of G2 and >G2 cells. Given the possibility of compromised DNA fidelity, we investigated long-term exposure of T. brucei to oxaboroles by generating resistant cell lines in vitro. Resistance proved more difficult to generate than for drugs currently used in the field, and in one of our three cell lines was unstable. Whole-genome sequencing of the resistant cell lines revealed single nucleotide polymorphisms in 66 genes and several large-scale genomic aberrations. The absence of a simple consistent mechanism among resistant cell lines and the diverse list of binding partners from the proteomic studies suggest a degree of polypharmacology that should reduce the risk of resistance to this compound class emerging in the field. The combined genetic and chemical biology approaches have provided lists of candidates to be investigated for more detailed information on the mode of action of this promising new drug class. The mode of action of a new class of boron-containing chemicals (the oxaboroles), currently under development for the treatment of human African trypanosomiasis, is unknown. Here we identify a number of potential candidate proteins that could be involved either in the mode of action of these compounds or in the mechanism of resistance. This information could prove critical in protecting the compounds against resistance emerging in the field as well as opening up new avenues for drug discovery.
Collapse
Affiliation(s)
- Deuan C. Jones
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bernardo J. Foth
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Michael D. Urbaniak
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Stephen Patterson
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Han B. Ong
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew Berriman
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Alan H. Fairlamb
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Pinzan CF, Sardinha-Silva A, Almeida F, Lai L, Lopes CD, Lourenço EV, Panunto-Castelo A, Matthews S, Roque-Barreira MC. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice. PLoS One 2015; 10:e0143087. [PMID: 26575028 PMCID: PMC4648487 DOI: 10.1371/journal.pone.0143087] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/04/2015] [Indexed: 12/24/2022] Open
Abstract
Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.
Collapse
Affiliation(s)
- Camila Figueiredo Pinzan
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Sardinha-Silva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Livia Lai
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Carla Duque Lopes
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Vicente Lourenço
- Department of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, California, 90095–1670, United States of America
| | - Ademilson Panunto-Castelo
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Stephen Matthews
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
35
|
Targeting the parasite's DNA with methyltriazenyl purine analogs is a safe, selective, and efficacious antitrypanosomal strategy. Antimicrob Agents Chemother 2015; 59:6708-16. [PMID: 26282430 PMCID: PMC4604408 DOI: 10.1128/aac.00596-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/22/2015] [Indexed: 12/04/2022] Open
Abstract
The human and veterinary disease complex known as African trypanosomiasis continues to inflict significant global morbidity, mortality, and economic hardship. Drug resistance and toxic side effects of old drugs call for novel and unorthodox strategies for new and safe treatment options. We designed methyltriazenyl purine prodrugs to be rapidly and selectively internalized by the parasite, after which they disintegrate into a nontoxic and naturally occurring purine nucleobase, a simple triazene-stabilizing group, and the active toxin: a methyldiazonium cation capable of damaging DNA by alkylation. We identified 2-(3-acetyl-3-methyltriazen-1-yl)-6-hydroxypurine (compound 1) as a new lead compound, which showed submicromolar potency against Trypanosoma brucei, with a selectivity index of >500, and it demonstrated a curative effect in animal models of acute trypanosomiasis. We investigated the mechanism of action of this lead compound and showed that this molecule has significantly higher affinity for parasites over mammalian nucleobase transporters, and it does not show cross-resistance with current first-line drugs. Once selectively accumulated inside the parasite, the prodrug releases a DNA-damaging methyldiazonium cation. We propose that ensuing futile cycles of attempted mismatch repair then lead to G2/M phase arrest and eventually cell death, as evidenced by the reduced efficacy of this purine analog against a mismatch repair-deficient (MSH2−/−) trypanosome cell line. The observed absence of genotoxicity, hepatotoxicity, and cytotoxicity against mammalian cells revitalizes the idea of pursuing parasite-selective DNA alkylators as a safe chemotherapeutic option for the treatment of human and animal trypanosomiasis.
Collapse
|
36
|
Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes. Proc Natl Acad Sci U S A 2015; 112:9112-7. [PMID: 26150481 DOI: 10.1073/pnas.1505411112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastid parasites cause lethal diseases in humans and animals. The kinetoplast itself contains the mitochondrial genome, comprising a huge, complex DNA network that is also an important drug target. Isometamidium, for example, is a key veterinary drug that accumulates in the kinetoplast in African trypanosomes. Kinetoplast independence and isometamidium resistance are observed where certain mutations in the F1-γ-subunit of the two-sector F1Fo-ATP synthase allow for Fo-independent generation of a mitochondrial membrane potential. To further explore kinetoplast biology and drug resistance, we screened a genome-scale RNA interference library in African trypanosomes for isometamidium resistance mechanisms. Our screen identified 14 V-ATPase subunits and all 4 adaptin-3 subunits, implicating acidic compartment defects in resistance; V-ATPase acidifies lysosomes and related organelles, whereas adaptin-3 is responsible for trafficking among these organelles. Independent strains with depleted V-ATPase or adaptin-3 subunits were isometamidium resistant, and chemical inhibition of the V-ATPase phenocopied this effect. While drug accumulation in the kinetoplast continued after V-ATPase subunit depletion, acriflavine-induced kinetoplast loss was specifically tolerated in these cells and in cells depleted for adaptin-3 or endoplasmic reticulum membrane complex subunits, also identified in our screen. Consistent with kinetoplast dispensability, V-ATPase defective cells were oligomycin resistant, suggesting ATP synthase uncoupling and bypass of the normal Fo-A6-subunit requirement; this subunit is the only kinetoplast-encoded product ultimately required for viability in bloodstream-form trypanosomes. Thus, we describe 30 genes and 3 protein complexes associated with kinetoplast-dependent growth. Mutations affecting these genes could explain natural cases of dyskinetoplasty and multidrug resistance. Our results also reveal potentially conserved communication between the compartmentalized two-sector rotary ATPases.
Collapse
|
37
|
Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, Muñóz-Torres M, de Koning HP, Magez S, Garcia-Salcedo JA. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis. PLoS Pathog 2015; 11:e1004942. [PMID: 26110623 PMCID: PMC4482409 DOI: 10.1371/journal.ppat.1004942] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/08/2015] [Indexed: 01/01/2023] Open
Abstract
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.
Collapse
Affiliation(s)
- Juan D. Unciti-Broceta
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - José L. Arias
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - José Maceira
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - Miguel Soriano
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
- Departamento de Agronomía, Universidad de Almería, Almería, Spain
| | - Matilde Ortiz-González
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - José Hernández-Quero
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Manuel Muñóz-Torres
- Unidad de Metabolismo Óseo, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan Magez
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - José A. Garcia-Salcedo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
38
|
Adamczyk-Woźniak A, Borys KM, Sporzyński A. Recent Developments in the Chemistry and Biological Applications of Benzoxaboroles. Chem Rev 2015; 115:5224-47. [DOI: 10.1021/cr500642d] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Krzysztof M. Borys
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
39
|
Graf FE, Baker N, Munday JC, de Koning HP, Horn D, Mäser P. Chimerization at the AQP2-AQP3 locus is the genetic basis of melarsoprol-pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:65-8. [PMID: 26042196 PMCID: PMC4443405 DOI: 10.1016/j.ijpddr.2015.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/12/2023]
Abstract
Expression of AQP2 restores drug susceptibility in a resistant Trypanosoma brucei gambiense isolate. The AQP2/3 chimera from the resistant isolate does not complement AQP2 deletion. Hence AQP2/3 chimerization accompanied by loss of AQP2 is the cause of drug resistance.
Aquaglyceroporin-2 is a known determinant of melarsoprol–pentamidine cross-resistance in Trypanosoma brucei brucei laboratory strains. Recently, chimerization at the AQP2–AQP3 tandem locus was described from melarsoprol–pentamidine cross-resistant Trypanosoma brucei gambiense isolates from sleeping sickness patients in the Democratic Republic of the Congo. Here, we demonstrate that reintroduction of wild-type AQP2 into one of these isolates fully restores drug susceptibility while expression of the chimeric AQP2/3 gene in aqp2–aqp3 null T. b. brucei does not. This proves that AQP2–AQP3 chimerization is the cause of melarsoprol–pentamidine cross-resistance in the T. b. gambiense isolates.
Collapse
Affiliation(s)
- Fabrice E Graf
- Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland ; University of Basel, CH-4000 Basel, Switzerland
| | - Nicola Baker
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland ; University of Basel, CH-4000 Basel, Switzerland
| |
Collapse
|
40
|
Steinmann P, Stone CM, Sutherland CS, Tanner M, Tediosi F. Contemporary and emerging strategies for eliminating human African trypanosomiasis due to Trypanosoma brucei gambiense: review. Trop Med Int Health 2015; 20:707-18. [PMID: 25694261 DOI: 10.1111/tmi.12483] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To review current and emerging tools for Gambiense HAT control and elimination, and propose strategies that integrate these tools with epidemiological evidence. METHODS We reviewed the scientific literature to identify contemporary and emerging tools and strategies for controlling and eliminating Gambiense HAT. Through an iterative process involving key stakeholders, we then developed comprehensive scenarios leading to elimination, considering both established and new tools for diagnosis, case treatment and vector control. RESULTS Core components of all scenarios include detecting and treating cases with established or emerging techniques. Relatively more intensive scenarios incorporate vector control. New tools considered include tiny targets for tsetse fly control, use of rapid diagnostic tests and oral treatment with fexinidazole or oxaboroles. Scenarios consider the time when critical new tools are expected to become ready for deployment by national control programmes. Based on a review of the latest epidemiological data, we estimate the various interventions to cover 1,380,600 km(2) and 56,986,000 people. CONCLUSIONS A number of new tools will fill critical gaps in the current armamentarium for diagnosing and treating Gambiense HAT. Deploying these tools in endemic areas will facilitate the comprehensive and sustainable control of the disease considerably and contribute to the ultimate goal of elimination.
Collapse
Affiliation(s)
- Peter Steinmann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol 2015; 200:30-40. [PMID: 25736427 PMCID: PMC4509711 DOI: 10.1016/j.molbiopara.2015.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
42
|
Shanks GD, Edstein MD, Jacobus D. Evolution from double to triple-antimalarial drug combinations. Trans R Soc Trop Med Hyg 2014; 109:182-8. [DOI: 10.1093/trstmh/tru199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Ong HB, Lee WS, Patterson S, Wyllie S, Fairlamb AH. Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine: a potential role for homoserine kinase in insect-stage Trypanosoma brucei. Mol Microbiol 2014; 95:143-56. [PMID: 25367138 PMCID: PMC4460637 DOI: 10.1111/mmi.12853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 12/29/2022]
Abstract
De novo synthesis of threonine from aspartate occurs via the β-aspartyl phosphate pathway in plants, bacteria and fungi. However, the Trypanosoma brucei genome encodes only the last two steps in this pathway: homoserine kinase (HSK) and threonine synthase. Here, we investigated the possible roles for this incomplete pathway through biochemical, genetic and nutritional studies. Purified recombinant TbHSK specifically phosphorylates L-homoserine and displays kinetic properties similar to other HSKs. HSK null mutants generated in bloodstream forms displayed no growth phenotype in vitro or loss of virulence in vivo. However, following transformation into procyclic forms, homoserine, homoserine lactone and certain acyl homoserine lactones (AHLs) were found to substitute for threonine in growth media for wild-type procyclics, but not HSK null mutants. The tsetse fly is considered to be an unlikely source of these nutrients as it feeds exclusively on mammalian blood. Bioinformatic studies predict that tsetse endosymbionts possess part (up to homoserine in Wigglesworthia glossinidia) or all of the β-aspartyl phosphate pathway (Sodalis glossinidius). In addition S. glossinidius is known to produce 3-oxohexanoylhomoserine lactone which also supports trypanosome growth. We propose that T. brucei has retained HSK and threonine synthase in order to salvage these nutrients when threonine availability is limiting.
Collapse
Affiliation(s)
- Han B Ong
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
44
|
1,2-substituted 4-(1H)-quinolones: synthesis, antimalarial and antitrypanosomal activities in vitro. Molecules 2014; 19:14204-20. [PMID: 25211002 PMCID: PMC6271202 DOI: 10.3390/molecules190914204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022] Open
Abstract
A diverse array of 4-(1H)-quinolone derivatives bearing substituents at positions 1 and 2 were synthesized and evaluated for antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense, and cytotoxicity against L-6 cells in vitro. Furthermore, selectivity indices were also determined for both parasites. All compounds tested showed antimalarial activity at low micromolar concentrations, with varied degrees of selectivity against L-6 cells. Compound 5a was found to be the most active against P. falciparum, with an IC50 value of 90 nM and good selectivity for the malarial parasite compared to the L-6 cells. Compound 10a, on the other hand, showed a strong antitrypanosomal effect with an IC50 value of 1.25 µM. In this study side chain diversity was explored by varying the side chain length and substitution pattern on the aliphatic group at position-2 and a structure-antiprotozoal activity study revealed that the aromatic ring introduced at C-2 contributed significantly to the antiprotozoal activities.
Collapse
|
45
|
Arzumanyan AV, Terent'ev AO, Novikov RA, Lakhtin VG, Chernyshev VV, Fitch AN, Nikishin GI. Six Peroxide Groups in One Molecule - Synthesis of Nine-Membered Bicyclic Silyl Peroxides. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
In vitro and in vivo evaluation of 28DAP010, a novel diamidine for treatment of second-stage African sleeping sickness. Antimicrob Agents Chemother 2014; 58:4452-63. [PMID: 24867978 DOI: 10.1128/aac.02309-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
African sleeping sickness is a neglected tropical disease transmitted by tsetse flies. New and better drugs are still needed especially for its second stage, which is fatal if untreated. 28DAP010, a dipyridylbenzene analogue of DB829, is the second simple diamidine found to cure mice with central nervous system infections by a parenteral route of administration. 28DAP010 showed efficacy similar to that of DB829 in dose-response studies in mouse models of first- and second-stage African sleeping sickness. The in vitro time to kill, determined by microcalorimetry, and the parasite clearance time in mice were shorter for 28DAP010 than for DB829. No cross-resistance was observed between 28DAP010 and pentamidine on the tested Trypanosoma brucei gambiense isolates from melarsoprol-refractory patients. 28DAP010 is the second promising preclinical candidate among the diamidines for the treatment of second-stage African sleeping sickness.
Collapse
|
47
|
Werbovetz KA, Riccio ES, Furimsky A, Richard JV, He S, Iyer L, Mirsalis J. Evaluation of Antitrypanosomal Dihydroquinolines for Hepatotoxicity, Mutagenicity, and Methemoglobin Formation In Vitro. Int J Toxicol 2014; 33:282-287. [PMID: 24819520 DOI: 10.1177/1091581814533971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N1-Benzylated dihydroquinolin-6-ols and their corresponding esters display exceptional activity against African trypanosomes in vitro, and administration of members of this class of compounds to trypanosome-infected mice results in cures in a first-stage African trypanosomiasis model. Since a quinone imine intermediate has been implicated in the antiparasitic mechanism of action of these compounds, evaluation of the hepatotoxic, mutagenic, and methemoglobin-promoting effects of these agents was performed. 1-Benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride and 1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate showed outstanding in vitro selectivity for Trypanosoma brucei compared to the HepG2, Hep3B, Huh7, and PLC5 hepatocyte cell lines. 1-Benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride and 1-(2-methoxybenzyl)-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate were not mutagenic when screened in the Ames assay, with or without metabolic activation. The latter 2 compounds promoted time- and dose-dependent formation of methemoglobin when incubated in whole human blood, but such levels were below those typically required to produce symptoms of methemoglobinemia in humans. Although compounds capable of quinone imine formation require careful evaluation, these in vitro studies indicate that antitrypanosomal dihydroquinolines merit further study as drug candidates against the neglected tropical disease human African trypanosomiasis.
Collapse
Affiliation(s)
- Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Edward S Riccio
- Toxicology and Pharmacokinetics, SRI International, Menlo Park, CA, USA
| | - Anna Furimsky
- Toxicology and Pharmacokinetics, SRI International, Menlo Park, CA, USA
| | - Julian V Richard
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Shanshan He
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Lalitha Iyer
- Toxicology and Pharmacokinetics, SRI International, Menlo Park, CA, USA
| | - Jon Mirsalis
- Toxicology and Pharmacokinetics, SRI International, Menlo Park, CA, USA
| |
Collapse
|
48
|
Showler AJ, Wilson ME, Kain KC, Boggild AK. Parasitic diseases in travelers: a focus on therapy. Expert Rev Anti Infect Ther 2014; 12:497-521. [DOI: 10.1586/14787210.2014.892827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
Hata Y, Ebrahimi SN, De Mieri M, Zimmermann S, Mokoka T, Naidoo D, Fouche G, Maharaj V, Kaiser M, Brun R, Potterat O, Hamburger M. Antitrypanosomal isoflavan quinones from Abrus precatorius. Fitoterapia 2014; 93:81-7. [DOI: 10.1016/j.fitote.2013.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022]
|
50
|
Spiroindolone that inhibits PfATPase4 is a potent, cidal inhibitor of Toxoplasma gondii tachyzoites in vitro and in vivo. Antimicrob Agents Chemother 2013; 58:1789-92. [PMID: 24366743 DOI: 10.1128/aac.02225-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we show that spiroindolone, an effective treatment for plasmodia, is also active against Toxoplasma gondii tachyzoites. In vitro, spiroindolone NITD609 is cidal for tachyzoites (50% inhibitory concentration [IC50], 1μM) and not toxic to human cells at ≥10μM. Two daily oral doses of 100 mg/kg of body weight reduced the parasite burden in mice by 90% (P=0.002), measured 3 days after the last dose. This inhibition of T. gondii tachyzoites in vitro and in vivo indicates that spiroindolone is a promising lead candidate for further medicine development.
Collapse
|