1
|
Zheng ZK, Kong L, Dai M, Chen YD, Chen YH. ADSC-Exos outperform BMSC-Exos in alleviating hydrostatic pressure-induced injury to retinal ganglion cells by upregulating nerve growth factors. World J Stem Cells 2023; 15:1077-1092. [PMID: 38179214 PMCID: PMC10762527 DOI: 10.4252/wjsc.v15.i12.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have protective effects on the cornea, lacrimal gland, retina, and photoreceptor cell damage, which may be mediated by exosomes (exos) released by MSCs. AIM To investigate the ameliorating effect of exos derived from different MSCs on retinal ganglion cell (RGC) injury induced by hydrostatic pressure. METHODS The RGC injury model was constructed by RGC damage under different hydrostatic pressures (40, 80, 120 mmHg). Then RGCs were cultured with adipose-derived stem cell (ADSC)-Exos and bone marrow-derived stem cell (BMSC)-Exos. Cell Counting Kit-8, transmission electron microscopy, flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction, and western blotting were performed to detect the ameliorating effect of exos on pressure-induced RGC injury. RESULTS ADSC-Exos and BMSC-Exos were successfully isolated and obtained. The gibbosity of RGCs was lower, the cells were irregularly ellipsoidal under pressure, and the addition of ADSC-Exos and BMSC-Exos significantly restored RGC morphology. Furthermore, the proliferative activity of RGCs was increased and the apoptosis of RGCs was inhibited. Moreover, the levels of lactate dehydrogenase and apoptosis-related proteins were increased, and the concentrations of antiapoptotic proteins and neurotrophic factors were decreased in damaged RGCs. However, the above indicators were significantly improved after ADSC-Exos and BMSC-Exos treatment. CONCLUSION These findings indicated that ADSC-Exos and BMSC-Exos could ameliorate RGC injury caused by hydrostatic pressure by inhibiting apoptosis and increasing the secretion of neurotrophic factors.
Collapse
Affiliation(s)
- Zhi-Kun Zheng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
| | - Lei Kong
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
| | - Min Dai
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China.
| | - Yi-Dan Chen
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
| | - Yan-Hua Chen
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
| |
Collapse
|
2
|
Meida NS, Purwanto B, Wasita B, Indrakila S, Soetrisno S, Poncorini E, Cilmiaty R. Effects of Ethanol Extract of Propolis on Repair Optic Nerve Damage in a Rat Model for Diabetes Mellitus (Study of MDA, CRP, Caspase-3, and TGF-β Expression and Histopathological Changes on Optic Nerve Damage). Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose
Hyperglycemia in diabetes increases oxidative stress in the body. It causes optic nerve damage and risk of glaucoma. In this study, we evaluated and analyzed the effect of propolis ethanol extract on repair of optic nerve damage in a rat model for Diabetes Mellitus.
Study Design
Laboratory experimental using the posttest only control group design was used in this study.
Methods
A total of 28 male Wistar rat were randomly divided into the following four groups namely control (K1), diabetes mellitus (K2), diabetes mellitus with propolis treatment (100 mg/kg) (P1) and diabetes mellitus with propolis treatment (200 mg/kg) (P2). Statistical analysis used ANOVA and Kruskal Wallis with a significance of p < 0.05.
Results
The results showed that Gunung Lawu propolis significantly reduced serum glucose levels, malondialdehyde levels and C-reactive protein levels (p<0.01). Furthermore, propolis extract significantly decreased caspase-3 expression and TGF-β expression (p<0.05) in the optic nerve. Propolis can significantly repair optic nerve damage (optic nerve necrosis, thinning of the retinal nerve fiber layer and retinal ganglion cell apoptosis (p < 0.01).
Conclusion
The final results showed that most of the beneficial effects of propolis were mediated by the reduction of blood glucose levels in diabetic rat.
Collapse
|
3
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Erisgin Z, Ozer MA, Tosun M, Ozen S, Takir S. The effects of intravitreal H 2 S application on apoptosis in the retina and cornea in experimental glaucoma model. Int J Exp Pathol 2019; 100:330-336. [PMID: 31777145 DOI: 10.1111/iep.12334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/28/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
One of the most important causes of visual loss (blindness) is glaucoma, which occurs due to the degeneration of the ganglion cells in retina. It has been shown that hydrogen sulphide (H2 S) acts an antioxidant, neuroprotective and neuromodulator and provides protection against oxidative stress and apoptosis. This study aims to examine through which apoptotic pathway H2 S acts in experimental glaucoma model. Twenty-two male wistar albino rats were used in this study. Group 1 (n = 6, control group): Intravitreal saline was given in the third week without inducing ocular hypertension (OHT) with laser photocoagulation. Group 2 (n = 8): After the induction of OHT with laser photocoagulation, intravitreal saline was given in the third week. Group 3 (n = 8): After the induction of OHT with laser photocoagulation, intravitreal H2 S's donor sodium hydrosulphide (NaSH) 100 nmol/L was given in the third week. At the end of the 6th week, the eyes of the rats were sacrified under anaesthesia and extracted and then routine tissue follow-up was undertaken. Besides haematoxylin & eosin (H&E) staining, Bax, Bcl-2, p53 and caspase-3 activation were examined immunohistochemically in the retina and the cornea. This showed that ocular hypertension caused apoptosis through the intrinsic pathway, due to Bax and caspase-3 activation, in both retina and cornea, and that this led to DNA damage due to p53 activation. Also, we found that H2 S exposure in glaucoma distinctly suppressed Bax, caspase-3 and p53 activations in retina but that it has a limited effect on the cornea. According to these results, glaucoma caused apoptosis in the retina through intrinsic pathway, and the damage to the retina could be compensated partially by H2 S but would have limited on the cornea.
Collapse
Affiliation(s)
- Zuleyha Erisgin
- Giresun University Faculty of Medicine Department of Histology and Embryology, Giresun, Turkey
| | - Murat Atabey Ozer
- Giresun University Faculty of Medicine Department of Opthalmology, Giresun, Turkey
| | - Murat Tosun
- Afyon Health Science University Faculty of Medicine Department of Histology and Embryology, Afyon, Turkey
| | - Serkan Ozen
- Giresun University Faculty of Medicine Department of Opthalmology, Giresun, Turkey
| | - Selcuk Takir
- Giresun University Faculty of Medicine Department of Pharmacology, Giresun, Turkey
| |
Collapse
|
5
|
Veys L, Vandenabeele M, Ortuño-Lizarán I, Baekelandt V, Cuenca N, Moons L, De Groef L. Retinal α-synuclein deposits in Parkinson's disease patients and animal models. Acta Neuropathol 2019; 137:379-395. [PMID: 30721408 DOI: 10.1007/s00401-018-01956-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of research, accurate diagnosis of Parkinson's disease remains a challenge, and disease-modifying treatments are still lacking. Research into the early (presymptomatic) stages of Parkinson's disease and the discovery of novel biomarkers is of utmost importance to reduce this burden and to come to a more accurate diagnosis at the very onset of the disease. Many have speculated that non-motor symptoms could provide a breakthrough in the quest for early biomarkers of Parkinson's disease, including the visual disturbances and retinal abnormalities that are seen in the majority of Parkinson's disease patients. An expanding number of clinical studies have investigated the use of in vivo assessments of retinal structure, electrophysiological function, and vision-driven tasks as novel means for identifying patients at risk that need further neurological examination and for longitudinal follow-up of disease progression in Parkinson's disease patients. Often, the results of these studies have been interpreted in relation to α-synuclein deposits and dopamine deficiency in the retina, mirroring the defining pathological features of Parkinson's disease in the brain. To better understand the visual defects seen in Parkinson's disease patients and to propel the use of retinal changes as biomarkers for Parkinson's disease, however, more conclusive neuropathological evidence for the presence of retinal α-synuclein aggregates, and its relation to the cerebral α-synuclein burden, is urgently needed. This review provides a comprehensive and critical overview of the research conducted to unveil α-synuclein aggregates in the retina of Parkinson's disease patients and animal models, and thereby aims to aid the ongoing discussion about the potential use of the retinal changes and/or visual symptoms as biomarkers for Parkinson's disease.
Collapse
|
6
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
7
|
Davis BM, Brenton J, Davis S, Shamsher E, Sisa C, Grgic L, Cordeiro MF. Assessing anesthetic activity through modulation of the membrane dipole potential. J Lipid Res 2017; 58:1962-1976. [PMID: 28818873 PMCID: PMC5625120 DOI: 10.1194/jlr.m073932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
There is great individual variation in response to general anesthetics (GAs) leading to difficulties in optimal dosing and sometimes even accidental awareness during general anesthesia (AAGA). AAGA is a rare, but potentially devastating, complication affecting between 0.1% and 2% of patients undergoing surgery. The development of novel personalized screening techniques to accurately predict a patient’s response to GAs and the risk of AAGA remains an unmet clinical need. In the present study, we demonstrate the principle of using a fluorescent reporter of the membrane dipole potential, di-8-ANEPPs, as a novel method to monitor anesthetic activity using a well-described inducer/noninducer pair. The membrane dipole potential has previously been suggested to contribute a novel mechanism of anesthetic action. We show that the fluorescence ratio of di-8-ANEPPs changed in response to physiological concentrations of the anesthetic, 1-chloro-1,2,2-trifluorocyclobutane (F3), but not the structurally similar noninducer, 1,2-dichlorohexafluorocyclobutane (F6), to artificial membranes and in vitro retinal cell systems. Modulation of the membrane dipole provides an explanation to overcome the limitations associated with the alternative membrane-mediated mechanisms of GA action. Furthermore, by combining this technique with noninvasive retinal imaging technologies, we propose that this technique could provide a novel and noninvasive technique to monitor GA susceptibility and identify patients at risk of AAGA.
Collapse
Affiliation(s)
| | - Jonathan Brenton
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Sterenn Davis
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Ehtesham Shamsher
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Claudia Sisa
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Ljuban Grgic
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - M Francesca Cordeiro
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom .,Western Eye Hospital, Imperial College Healthcare National Health Service Trust, and Imperial College Ophthalmic Research Group, Imperial College London, London NW1 5QH, United Kingdom
| |
Collapse
|
8
|
Davis BM, Tian K, Pahlitzsch M, Brenton J, Ravindran N, Butt G, Malaguarnera G, Normando EM, Guo L, Cordeiro MF. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion 2017; 36:114-123. [PMID: 28549843 PMCID: PMC5645575 DOI: 10.1016/j.mito.2017.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular effects when co-solubilised with α-tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo studies in Adult Dark Agouti (DA) rats with unilateral surgically-induced ocular hypertension (OHT) treated with either CoQ10/TPGS micelles or TPGS vehicle twice daily for three weeks were performed, following which retinal cell health was assessed in vivo using DARC (Detection of Apoptotic Retinal Cells) and post-mortem with Brn3a histological assessment on whole retinal mounts. CoQ10/TPGS showed a significant neuroprotective effect compared to control with DARC (p<0.05) and Brn3 (p<0.01). Topical CoQ10 appears an effective therapy preventing RGC apoptosis and loss in glaucoma-related models.
Collapse
Affiliation(s)
- Benjamin Michael Davis
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Kailin Tian
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Milena Pahlitzsch
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Jonathan Brenton
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Nivedita Ravindran
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Gibran Butt
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Giulia Malaguarnera
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Eduardo M Normando
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom; Western Eye Hospital, Imperial College London, United Kingdom
| | - Li Guo
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - M Francesca Cordeiro
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom; Western Eye Hospital, Imperial College London, United Kingdom.
| |
Collapse
|
9
|
Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF. Glaucoma: the retina and beyond. Acta Neuropathol 2016; 132:807-826. [PMID: 27544758 PMCID: PMC5106492 DOI: 10.1007/s00401-016-1609-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Over 60 million people worldwide are diagnosed with glaucomatous optic neuropathy, which is estimated to be responsible for 8.4 million cases of irreversible blindness globally. Glaucoma is associated with characteristic damage to the optic nerve and patterns of visual field loss which principally involves the loss of retinal ganglion cells (RGCs). At present, intraocular pressure (IOP) presents the only modifiable risk factor for glaucoma, although RGC and vision loss can continue in patients despite well-controlled IOP. This, coupled with the present inability to diagnose glaucoma until relatively late in the disease process, has led to intense investigations towards the development of novel techniques for the early diagnosis of disease. This review outlines our current understanding of the potential mechanisms underlying RGC and axonal loss in glaucoma. Similarities between glaucoma and other neurodegenerative diseases of the central nervous system are drawn before an overview of recent developments in techniques for monitoring RGC health is provided, including recent progress towards the development of RGC specific contrast agents. The review concludes by discussing techniques to assess glaucomatous changes in the brain using MRI and the clinical relevance of glaucomatous-associated changes in the visual centres of the brain.
Collapse
Affiliation(s)
| | - Laura Crawley
- Western Eye Hospital, Imperial College Healthcare NHS Trust, 153-173 Marylebone Road, London, UK
| | | | - Fatimah Javaid
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK.
- Western Eye Hospital, Imperial College Healthcare NHS Trust, 153-173 Marylebone Road, London, UK.
| |
Collapse
|
10
|
de Bruin DM, Broekgaarden M, van Gemert MJC, Heger M, de la Rosette JJ, Van Leeuwen TG, Faber DJ. Assesment of apoptosis induced changes in scattering using optical coherence tomography. JOURNAL OF BIOPHOTONICS 2016; 9:913-923. [PMID: 26564260 DOI: 10.1002/jbio.201500198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/28/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study is to identify changes in scattering with optical coherence tomography (OCT) and relate these measurements with mitochondrial changes during the initiation of apoptosis. Human retinal pigment epithelial cells were cultured and apoptosis was induced using 10% alcohol. Using the attenuation coefficient and backscattering, changes were measured during cell death in a cell-pellet and monolayer respectively. To confirm apoptosis, fluorescent activated cell sorting was used. Mitochondrial activity during apoptosis was assessed using an oxidative stress assay and fluorescent confocal microscopy. Pelleted apoptotic cells measured with OCT showed a clear rise while untreated cells showed a very small increase in attenuation coefficient. Monolayered apoptotic cells displayed a distinct increase, while untreated cells showed a small increase in the backscattering. Apoptosis was confirmed by FACS experiments. Mitochondrial changes during the onset of apoptosis were also measured. The results demonstrate that apoptotic cell death could be monitored in real-time by OCT. Changes in the scattering after induction of apoptosis are likely to be related to changes in the intracellular morphology. Oxidative stress-induced mitochondrial swelling could be responsible for the initial increase, while cell blebbing and secondary necrosis subsequently for the observed decrease in scattering.
Collapse
Affiliation(s)
- Daniel M de Bruin
- Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands.
- Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands.
| | - Mans Broekgaarden
- Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
| | - Martin J C van Gemert
- Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
| | - Michal Heger
- Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
| | - Jean J de la Rosette
- Urology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
| | - Ton G Van Leeuwen
- Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
| | - Dirk J Faber
- Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
| |
Collapse
|
11
|
Rice DR, Clear KJ, Smith BD. Imaging and therapeutic applications of zinc(ii)-dipicolylamine molecular probes for anionic biomembranes. Chem Commun (Camb) 2016; 52:8787-801. [PMID: 27302091 PMCID: PMC4949593 DOI: 10.1039/c6cc03669d] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This feature article describes the development of synthetic zinc(ii)-dipicolylamine (ZnDPA) receptors as selective targeting agents for anionic membranes in cell culture and living subjects. There is a strong connection between anionic cell surface charge and disease, and ZnDPA probes have been employed extensively for molecular imaging and targeted therapeutics. Fluorescence and nuclear imaging applications include detection of diseases such as cancer, neurodegeneration, arthritis, and microbial infection, and also quantification of cell death caused by therapy. Therapeutic applications include selective targeting of cytotoxic agents and drug delivery systems, photodynamic inactivation, and modulation of the immune system. The article concludes with a summary of expected future directions.
Collapse
Affiliation(s)
- Douglas R Rice
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| |
Collapse
|
12
|
Automatic quantitative analysis of experimental primary and secondary retinal neurodegeneration: implications for optic neuropathies. Cell Death Discov 2016. [DOI: 10.1038/cddiscovery.2016.31 ecollection 2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Davis BM, Guo L, Brenton J, Langley L, Normando EM, Cordeiro MF. Automatic quantitative analysis of experimental primary and secondary retinal neurodegeneration: implications for optic neuropathies. Cell Death Discov 2016; 2:16031. [PMID: 27551521 PMCID: PMC4979431 DOI: 10.1038/cddiscovery.2016.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 01/03/2023] Open
Abstract
Secondary neurodegeneration is thought to play an important role in the pathology of neurodegenerative disease, which potential therapies may target. However, the quantitative assessment of the degree of secondary neurodegeneration is difficult. The present study describes a novel algorithm from which estimates of primary and secondary degeneration are computed using well-established rodent models of partial optic nerve transection (pONT) and ocular hypertension (OHT). Brn3-labelled retinal ganglion cells (RGCs) were identified in whole-retinal mounts from which RGC density, nearest neighbour distances and regularity indices were determined. The spatial distribution and rate of RGC loss were assessed and the percentage of primary and secondary degeneration in each non-overlapping segment was calculated. Mean RGC number (82 592±681) and RGC density (1695±23.3 RGC/mm(2)) in naïve eyes were comparable with previous studies, with an average decline in RGC density of 71±17 and 23±5% over the time course of pONT and OHT models, respectively. Spatial analysis revealed greatest RGC loss in the superior and central retina in pONT, but significant RGC loss in the inferior retina from 3 days post model induction. In comparison, there was no significant difference between superior and inferior retina after OHT induction, and RGC loss occurred mainly along the superior/inferior axis (~30%) versus the nasal-temporal axis (~15%). Intriguingly, a significant loss of RGCs was also observed in contralateral eyes in experimental OHT. In conclusion, a novel algorithm to automatically segment Brn3a-labelled retinal whole-mounts into non-overlapping segments is described, which enables automated spatial and temporal segmentation of RGCs, revealing heterogeneity in the spatial distribution of primary and secondary degenerative processes. This method provides an attractive means to rapidly determine the efficacy of neuroprotective therapies with implications for any neurodegenerative disorder affecting the retina.
Collapse
Affiliation(s)
- B M Davis
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK
| | - L Guo
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK
| | - J Brenton
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK
| | - L Langley
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK
| | - E M Normando
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| | - M F Cordeiro
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
14
|
Roth S. Inhaled Anesthesia, Apoptosis, and the Developing Retina: A Window into the Brain? Anesth Analg 2016; 121:1117-8. [PMID: 26484449 DOI: 10.1213/ane.0000000000000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Steven Roth
- From the Departments of Anesthesiology and Ophthalmology, University of Illinois, Chicago, Illinois
| |
Collapse
|
15
|
Advances in retinal ganglion cell imaging. Eye (Lond) 2015; 29:1260-9. [PMID: 26293138 DOI: 10.1038/eye.2015.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 12/18/2022] Open
Abstract
Glaucoma is one of the leading causes of blindness worldwide and will affect 79.6 million people worldwide by 2020. It is caused by the progressive loss of retinal ganglion cells (RGCs), predominantly via apoptosis, within the retinal nerve fibre layer and the corresponding loss of axons of the optic nerve head. One of its most devastating features is its late diagnosis and the resulting irreversible visual loss that is often predictable. Current diagnostic tools require significant RGC or functional visual field loss before the threshold for detection of glaucoma may be reached. To propel the efficacy of therapeutics in glaucoma, an earlier diagnostic tool is required. Recent advances in retinal imaging, including optical coherence tomography, confocal scanning laser ophthalmoscopy, and adaptive optics, have propelled both glaucoma research and clinical diagnostics and therapeutics. However, an ideal imaging technique to diagnose and monitor glaucoma would image RGCs non-invasively with high specificity and sensitivity in vivo. It may confirm the presence of healthy RGCs, such as in transgenic models or retrograde labelling, or detect subtle changes in the number of unhealthy or apoptotic RGCs, such as detection of apoptosing retinal cells (DARC). Although many of these advances have not yet been introduced to the clinical arena, their successes in animal studies are enthralling. This review will illustrate the challenges of imaging RGCs, the main retinal imaging modalities, the in vivo techniques to augment these as specific RGC-imaging tools and their potential for translation to the glaucoma clinic.
Collapse
|
16
|
Galvao J, Elvas F, Martins T, Cordeiro MF, Ambrósio AF, Santiago AR. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration. Exp Eye Res 2015; 140:65-74. [PMID: 26297614 DOI: 10.1016/j.exer.2015.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.
Collapse
Affiliation(s)
- Joana Galvao
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Glaucoma & Retinal Neurodegeneration Research Group, University College London, London EC1V 9EL, UK.
| | - Filipe Elvas
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra 3000-548, Portugal.
| | - Tiago Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra 3000-548, Portugal.
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, University College London, London EC1V 9EL, UK; Western Eye Hospital, Imperial College, London, UK.
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra 3000-548, Portugal; CNC.IBILI, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Ana Raquel Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra 3000-548, Portugal; CNC.IBILI, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
17
|
|
18
|
Imaging retinal ganglion cells: enabling experimental technology for clinical application. Prog Retin Eye Res 2014; 44:1-14. [PMID: 25448921 DOI: 10.1016/j.preteyeres.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/04/2014] [Accepted: 10/18/2014] [Indexed: 11/21/2022]
Abstract
Recent advances in clinical ophthalmic imaging have enhanced patient care. However, the ability to differentiate retinal neurons, such as retinal ganglion cells (RGCs), would advance many areas within ophthalmology, including the screening and monitoring of glaucoma and other optic neuropathies. Imaging at the single cell level would take diagnostics to the next level. Experimental methods have provided techniques and insight into imaging RGCs, however no method has yet to be translated to clinical application. This review provides an overview of the importance of non-invasive imaging of RGCs and the clinically relevant capabilities. In addition, we report on experimental data from wild-type mice that received an in vivo intravitreal injection of a neuronal tracer that labelled RGCs, which in turn were monitored for up to 100 days post-injection with confocal scanning laser ophthalmoscopy. We were able to demonstrate efficient and consistent RGC labelling with this delivery method and discuss the issue of cell specificity. This type of experimental work is important in progressing towards clinically applicable methods for monitoring loss of RGCs in glaucoma and other optic neuropathies. We discuss the challenges to translating these findings to clinical application and how this method of tracking RGCs in vivo could provide valuable structural and functional information to clinicians.
Collapse
|
19
|
Kwong JMK, Hoang C, Dukes RT, Yee RW, Gray BD, Pak KY, Caprioli J. Bis(zinc-dipicolylamine), Zn-DPA, a new marker for apoptosis. Invest Ophthalmol Vis Sci 2014; 55:4913-21. [PMID: 25034598 DOI: 10.1167/iovs.13-13346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the labeling of apoptotic cells with a molecular probe of bis(zinc(II)-dipicolylamine) (Zn-DPA) conjugated with a fluorescent reporter in a rat model of retinal ganglion cell (RGC) degeneration induced by N-methyl-D-aspartate (NMDA). METHODS Adult Wistar rats were given unilateral intravitreal injections of 3 μL 40 mM neutralized NMDA and euthanized at 1, 2, 4, 24, and 48 hours. One hour before euthanasia, 3 μL Zn-DPA conjugated with fluorescein (Zn-DPA 480) was intravitreally injected. Prelabeling of RGC with retrograde fluorogold (FG), TUNEL, and immunohistochemistry with III β-tubulin and vimentin were performed. RESULTS Fluorescence labeling of Zn-DPA 480 was observed in the retinas from 1 hour up to 24 hours after NMDA injection, whereas the labeling was reduced at 48 hours postinjection. At both 4 and 24 hours postinjection, most Zn-DPA 480-positive cells in the RGC layer were labeled by FG and III β-tubulin. The number of TUNEL-positive cells increased from 4 to 24 hours. At 24 hours, 95.7% of Zn-DPA 480-positive cells were TUNEL positive, whereas 95.1% of TUNEL-positive cells were Zn-DPA 480 positive. The numbers of Zn-DPA 480-positive cells at 1 and 2 hours after NMDA injection were significantly higher than TUNEL. CONCLUSIONS Our findings demonstrate that intravitreal injection of fluorescent Zn-DPA 480 labels retinal neurons undergoing apoptosis and that recognition of exposed phosphatidylserine appears earlier than detection of DNA fragmentation, indicating the potential of Zn-DPA as an imaging probe for tracking degenerating retinal neurons.
Collapse
Affiliation(s)
- Jacky M K Kwong
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Celia Hoang
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Reshil T Dukes
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Richard W Yee
- Cizik Eye Clinic, Hermann University Eye Associates, Houston, Texas, United States
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania, United States
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania, United States
| | - Joseph Caprioli
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
20
|
Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci 2014; 34:3793-806. [PMID: 24599476 DOI: 10.1523/jneurosci.3153-13.2014] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies.
Collapse
|
21
|
Davis BM, Normando EM, Guo L, Turner LA, Nizari S, O'Shea P, Moss SE, Somavarapu S, Cordeiro MF. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1575-84. [PMID: 24596245 DOI: 10.1002/smll.201303433] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/31/2013] [Indexed: 05/25/2023]
Abstract
Effective delivery to the retina is presently one of the most challenging areas in drug development in ophthalmology, due to anatomical barriers preventing entry of therapeutic substances. Intraocular injection is presently the only route of administration for large protein therapeutics, including the anti-Vascular Endothelial Growth Factors Lucentis (ranibizumab) and Avastin (bevacizumab). Anti-VEGFs have revolutionised the management of age-related macular degeneration and have increasing indications for use as sight-saving therapies in diabetes and retinal vascular disease. Considerable resources have been allocated to develop non-invasive ocular drug delivery systems. It has been suggested that the anionic phospholipid binding protein annexin A5, may have a role in drug delivery. In the present study we demonstrate, using a combination of in vitro and in vivo assays, that the presence of annexin A5 can significantly enhance uptake and transcytosis of liposomal drug carrier systems across corneal epithelial barriers. This system is employed to deliver physiologically significant concentrations of Avastin to the posterior of the rat eye (127 ng/g) and rabbit retina (18 ng/g) after topical application. Our observations provide evidence to suggest annexin A5 mediated endocytosis can enhance the delivery of associated lipidic drug delivery vehicles across biological barriers, which may have therapeutic implications.
Collapse
Affiliation(s)
- Benjamin M Davis
- UCL Institute of Ophthalmology, University College London, Bath Street, London, EC1V 9EL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Capozzi ME, Gordon AY, Penn JS, Jayagopal A. Molecular imaging of retinal disease. J Ocul Pharmacol Ther 2013; 29:275-86. [PMID: 23421501 DOI: 10.1089/jop.2012.0279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Imaging of the eye plays an important role in ocular therapeutic discovery and evaluation in preclinical models and patients. Advances in ophthalmic imaging instrumentation have enabled visualization of the retina at an unprecedented resolution. These developments have contributed toward early detection of the disease, monitoring of disease progression, and assessment of the therapeutic response. These powerful technologies are being further harnessed for clinical applications by configuring instrumentation to detect disease biomarkers in the retina. These biomarkers can be detected either by measuring the intrinsic imaging contrast in tissue, or by the engineering of targeted injectable contrast agents for imaging of the retina at the cellular and molecular level. Such approaches have promise in providing a window on dynamic disease processes in the retina such as inflammation and apoptosis, enabling translation of biomarkers identified in preclinical and clinical studies into useful diagnostic targets. We discuss recently reported and emerging imaging strategies for visualizing diverse cell types and molecular mediators of the retina in vivo during health and disease, and the potential for clinical translation of these approaches.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8808, USA
| | | | | | | |
Collapse
|