1
|
Tallis J, James RS, Eyre ELJ, Shelley SP, Hill C, Renshaw D, Hurst J. Effect of high-fat diet on isometric, concentric and eccentric contractile performance of skeletal muscle isolated from female CD-1 mice. Exp Physiol 2024; 109:1163-1176. [PMID: 38723238 PMCID: PMC11215475 DOI: 10.1113/ep091832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Despite evidence inferring muscle and contractile mode-specific effects of high-fat diet (HFD), no study has yet considered the impact of HFD directly on eccentric muscle function. The present work uniquely examined the effect of 20-week HFD on the isometric, concentric and eccentric muscle function of isolated mouse soleus (SOL) and extensor digitorum longus (EDL) muscles. CD-1 female mice were randomly split into a control (n = 16) or HFD (n = 17) group and for 20 weeks consumed standard lab chow or HFD. Following this period, SOL and EDL muscles were isolated and assessments of maximal isometric force and concentric work loop (WL) power were performed. Each muscle was then subjected to either multiple concentric or eccentric WL activations. Post-fatigue recovery, as an indicator of incurred damage, was measured via assessment of concentric WL power. In the EDL, absolute concentric power and concentric power normalised to muscle mass were reduced in the HFD group (P < 0.038). HFD resulted in faster concentric fatigue and reduced eccentric activity-induced muscle damage (P < 0.05). For the SOL, maximal isometric force was increased, and maximal eccentric power normalised to muscle mass and concentric fatigue were reduced in the HFD group (P < 0.05). HFD effects on eccentric muscle function are muscle-specific and have little relationship with changes in isometric or concentric function. HFD has the potential to negatively affect the intrinsic concentric and eccentric power-producing capacity of skeletal muscle, but a lack of a within-muscle uniform response indicates disparate mechanisms of action which require further investigation.
Collapse
Affiliation(s)
- Jason Tallis
- Centre for Physical Activity, Sport & Exercise ScienceCoventry UniversityCoventryUK
| | - Rob S. James
- Faculty of Life SciencesUniversity of BradfordBradfordUK
| | - Emma L. J. Eyre
- Centre for Physical Activity, Sport & Exercise ScienceCoventry UniversityCoventryUK
| | - Sharn P. Shelley
- Centre for Physical Activity, Sport & Exercise ScienceCoventry UniversityCoventryUK
| | - Cameron Hill
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's CampusKing's College LondonLondonUK
| | - Derek Renshaw
- Centre for Health & Life SciencesCoventry UniversityCoventryUK
| | - Josh Hurst
- Centre for Physical Activity, Sport & Exercise ScienceCoventry UniversityCoventryUK
| |
Collapse
|
2
|
Ogrodnik M, Gladyshev VN. The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. NATURE AGING 2023; 3:766-775. [PMID: 37386259 PMCID: PMC7616215 DOI: 10.1038/s43587-023-00447-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
With recent rapid progress in research on aging, there is increasing evidence that many features commonly considered to be mechanisms or drivers of aging in fact represent adaptations. Here, we examine several such features, including cellular senescence, epigenetic aging and stem cell alterations. We draw a distinction between the causes and consequences of aging and define short-term consequences as 'responses' and long-term ones as 'adaptations'. We also discuss 'damaging adaptations', which despite having beneficial effects in the short term, lead to exacerbation of the initial insult and acceleration of aging. Features commonly recognized as 'basic mechanisms of the aging process' are critically examined for the possibility of their adaptation-driven emergence from processes such as cell competition and the wound-like features of the aging body. Finally, we speculate on the meaning of these interactions for the aging process and their relevance for the development of antiaging interventions.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria.
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Workers' Compensation Board Research Center, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Laddu D, Kim H, Phillips SA, Jun M. INERTIA: A pilot study of the impact of progressive resistance training on blood pressure control in older adults with sarcopenia. Contemp Clin Trials 2021; 108:106516. [PMID: 34311098 DOI: 10.1016/j.cct.2021.106516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Sarcopenia, and high blood pressure are highly prevalent, preventable conditions that pose significant burden for older adults and on the healthcare system. Current prevention and treatment of high blood pressure in sarcopenia, by non-pharmacological approaches remain limited and are far from optimal. Clinical trials and mechanistic studies provide encouraging evidence of a plausible therapeutic effect of progressive resistance training (PRT) on blood pressure in younger, and pre-hypertensive and hypertensive older adults. The impact of PRT on blood pressure has not been empirically tested in older adults with sarcopenia. This pilot study aims to provide effect size confidence intervals, clinical trial and intervention feasibility data, and procedural materials for a full-scale randomized controlled trial that will determine the efficacy of PRT intervention as a therapeutic strategy for blood pressure control in older adults with sarcopenia. Participants (N = 90) will be randomized to receive exercise educational materials or the PRT intervention consisting of 24 supervised exercise sessions over 12-weeks. Follow-up assessments will occur at 12-weeks and one-year later. The primary outcome is systolic blood pressure and diastolic blood pressure, analyzed separately. Microvascular mechanisms linking muscle (perfusion, strength, function) to changes in blood pressure will be explored at baseline and 12-weeks. This study will provide new evidence for the therapeutic effect of PRT as a non-pharmacological strategy for improving blood pressure. Insights gained may also inform of the potential role of muscle strength as a novel target for blood pressure control, and future exercise prescription guidelines related to muscle strengthening in high-risk older adults.
Collapse
Affiliation(s)
- Deepika Laddu
- University of Illinois at Chicago, Department of Physical Therapy, College of Applied Health Sciences, 1919 W. Taylor Street, Room 434 (MC 898), Chicago, IL 60612, United States of America.
| | - Hajwa Kim
- University of Illinois at Chicago, Center for Clinical and Translational Science, Biostatistics Core, 914 S. Wood Street, Room 233, Chicago, IL 60612, United States of America.
| | - Shane A Phillips
- University of Illinois at Chicago, Department of Physical Therapy, College of Applied Health Sciences, 1919 W. Taylor Street, Room 746 (MC 898), Chicago, IL 60612, United States.
| | - Ma Jun
- University of Illinois at Chicago, Department of Medicine, 1747 W. Roosevelt Rd, Room 586 (MC 275), Chicago, IL 60608, United States.
| |
Collapse
|
4
|
Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Biogerontology 2020; 21:475-484. [PMID: 32447556 PMCID: PMC7347670 DOI: 10.1007/s10522-020-09883-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
The loss of muscle mass and function with age, termed sarcopenia, is an inevitable process, which has a significant impact on quality of life. During ageing we observe a progressive loss of total muscle fibres and a reduction in cross-sectional area of the remaining fibres, resulting in a significant reduction in force output. The mechanisms which underpin sarcopenia are complex and poorly understood, ranging from inflammation, dysregulation of protein metabolism and denervation. However, there is significant evidence to demonstrate that modified ROS generation, redox dis-homeostasis and mitochondrial dysfunction may have an important role to play. Based on this, significant interest and research has interrogated potential ROS-targeted therapies, ranging from nutritional-based interventions such as vitamin E/C, polyphenols (resveratrol) and targeted pharmacological compounds, using molecules such as SS-31 and MitoQ. In this review we evaluate these approaches to target aberrant age-related ROS generation and the impact on muscle mass and function.
Collapse
|
5
|
Wang H, Webster P, Chen L, Fisher AL. Cell-autonomous and non-autonomous roles of daf-16 in muscle function and mitochondrial capacity in aging C. elegans. Aging (Albany NY) 2020; 11:2295-2311. [PMID: 31017874 PMCID: PMC6520005 DOI: 10.18632/aging.101914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
Sarcopenia, defined as the loss of skeletal muscle mass and strength, contributes to disability and health-related conditions with aging. In vitro studies indicate that age-related mitochondrial dysfunction could play a central role in the development and progression of sarcopenia, but because of limitations in the methods employed, how aging affects muscle mitochondrial function in vivo is not fully understood. We use muscle-targeted fluorescent proteins and the ratiometric ATP reporter, ATeam, to examine changes in muscle mitochondrial mass and morphology, and intracellular ATP levels in C. elegans. We find that the preserved muscle function in aging daf-2 mutants is associated with higher muscle mitochondrial mass, preserved mitochondrial morphology, and higher levels of intracellular ATP. These phenotypes require the daf-16/FOXO transcription factor. Via the tissue-specific rescue of daf-16, we find that daf-16 activity in either muscle or neurons is sufficient to enhance muscle mitochondrial mass, whereas daf-16 activity in the muscle is required for the enhanced muscle function and mobility of the daf-2 mutants. Finally, we show through the use of drugs known to enhance mitochondrial activity that augmenting mitochondrial function leads to improved mobility during aging. These results suggest an important role for mitochondrial function in muscle aging.
Collapse
Affiliation(s)
- Hongning Wang
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA
| | - Phillip Webster
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA.,Department of Cell Systems and Anatomy, UTHSCSA, San Antonio, TX 78229, USA
| | - Alfred L Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA.,GRECC, South Texas VA Healthcare System, San Antonio, TX 78229, USA.,Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Huang Y, Zhu X, Chen K, Lang H, Zhang Y, Hou P, Ran L, Zhou M, Zheng J, Yi L, Mi M, Zhang Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY) 2020; 11:2217-2240. [PMID: 30988232 PMCID: PMC6519996 DOI: 10.18632/aging.101910] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Background: The concept of sarcopenic obesity refers to low muscle mass coupled with high adiposity in older adults. Sarcopenic obesity is a new medical challenge that imposes tremendous financial burdens on healthcare authorities worldwide. This study investigated the effects of resveratrol on high-fat diet-induced sarcopenic obesity in aged rats and palmitate acid-induced muscle atrophy in L6 myotubes and explored the underlying mechanisms. Results: In vivo, resveratrol prevented muscle loss and myofiber size decrease, improved grip strength and abolished excessive fat accumulation. In vitro, resveratrol inhibited the palmitate acid-mediated reductions in myosin heavy chain content and myotube diameter. Moreover, resveratrol ameliorated mitochondrial dysfunction and oxidative stress, leading to an improvement in protein metabolism and contributing to the prevention of muscle atrophy. Furthermore, the protective effects of resveratrol on mitochondrial function, oxidative stress and muscle atrophy were abolished by PKA siRNA, LKB1 siRNA and AMPK siRNA transfection in vitro. Conclusions: Resveratrol prevented high-fat diet-induced muscle atrophy in aged rats by reversing mitochondrial dysfunction and oxidative stress, which was partially mediated by the PKA/LKB1/AMPK pathway. These findings indicate that resveratrol might have potential uses for the prevention and treatment of sarcopenic obesity.
Collapse
Affiliation(s)
- Yujie Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Xiaohui Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Yong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Jiawei Zheng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| |
Collapse
|
7
|
Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr Res 2020; 74:10-22. [DOI: 10.1016/j.nutres.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
8
|
Nemes R, Koltai E, Taylor AW, Suzuki K, Gyori F, Radak Z. Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle. Antioxidants (Basel) 2018; 7:antiox7070085. [PMID: 29976853 PMCID: PMC6071245 DOI: 10.3390/antiox7070085] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are important cellular regulators of key physiological processes in skeletal muscle. In this review, we explain how RONS regulate muscle contraction and signaling, and why they are important for membrane remodeling, protein turnover, gene expression, and epigenetic adaptation. We discuss how RONS regulate carbohydrate uptake and metabolism of skeletal muscle, and how they indirectly regulate fat metabolism through silent mating type information regulation 2 homolog 3 (SIRT3). RONS are causative/associative signaling molecules, which cause sarcopenia or muscle hypertrophy. Regular exercise influences redox biology, metabolism, and anabolic/catabolic pathways in skeletal muscle in an intensity dependent manner.
Collapse
Affiliation(s)
- Roland Nemes
- Faculty of Sports and Health Studies, Hosei University, Tokyo 194-0298, Japan.
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary.
| | - Albert W Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 1H1, Canada.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| | - Ferenc Gyori
- Institute of Sport Science, University of Szeged, H-6726 Szeged, Hungary.
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary.
- Institute of Sport Science, University of Szeged, H-6726 Szeged, Hungary.
| |
Collapse
|
9
|
Lettieri-Barbato D, Cannata SM, Casagrande V, Ciriolo MR, Aquilano K. Time-controlled fasting prevents aging-like mitochondrial changes induced by persistent dietary fat overload in skeletal muscle. PLoS One 2018; 13:e0195912. [PMID: 29742122 PMCID: PMC5942780 DOI: 10.1371/journal.pone.0195912] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/02/2018] [Indexed: 01/07/2023] Open
Abstract
A large body of evidence suggests that persistent dietary fat overload causes mitochondrial dysfunction and systemic metabolic gridlock. Mitochondrial and lipid metabolism in skeletal muscle (SkM) are severely affected upon persistent high fat diet (HFD) leading to premature tissue aging. Here, we designed weekly cycles of fasting (called as time-controlled fasting, TCF) and showed that they were effective in limiting mitochondrial damage and metabolic disturbances induced by HFD. Specifically, TCF was able to prevent the decline of adipose triglyceride lipase (Atgl), maintain efficient mitochondrial respiration in SkM as well as improve blood glucose and lipid profile. Atgl was found to be the mediator of such preventive effects as its downregulation or up-regulation in C2C12 myotubes triggers mitochondrial alteration or protects against the deleterious effects of high fat levels respectively. In conclusion, TCF could represent an effective strategy to limit mitochondrial impairment and metabolic inflexibility that are typically induced by modern western diets or during aging.
Collapse
Affiliation(s)
| | | | | | - Maria Rosa Ciriolo
- University of Rome Tor Vergata, Dept. Biology, Rome, Italy
- IRCCS San Raffaele La Pisana, Rome, Italy
| | - Katia Aquilano
- University of Rome Tor Vergata, Dept. Biology, Rome, Italy
- * E-mail: (KA); (DL)
| |
Collapse
|
10
|
Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, Chyu MC, Yang RS, Shen CL. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res 2018; 49:23-36. [DOI: 10.1016/j.nutres.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 12/21/2022]
|
11
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
12
|
Muscling in on mitochondrial sexual dimorphism; role of mitochondrial dimorphism in skeletal muscle health and disease. Clin Sci (Lond) 2017; 131:1919-1922. [PMID: 28687629 DOI: 10.1042/cs20160940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/02/2023]
Abstract
Mitochondria are no longer solely regarded as the cellular powerhouse; instead, they are now implicated in mediating a wide-range of cellular processes, in the context of health and disease. A recent article in Clinical Science, Ventura-Clapier et al. highlights the role of sexual dimorphism in mitochondrial function in health and disease. However, we feel the authors have overlooked arguably one of the most mitochondria-rich organs in skeletal muscle. Many studies have demonstrated that mitochondria have a central role in mediating the pathogenesis of myopathologies. However, the impact of sexual dimorphism in this context is less clear, with several studies reporting conflicting observations. For instance in ageing studies, a rodent model reported female muscles have higher antioxidant capacity compared with males; in contrast, human studies demonstrate no sex difference in mitochondrial bioenergetics and oxidative damage. These divergent observations highlight the importance of considering models and methods used to examine mitochondrial function, when interpreting these data. The use of either isolated or intact mitochondrial preparations in many studies appears likely to be a source of discord, when comparing many studies. Overall, it is now clear that more research is needed to determine if sexual dimorphism is a contributing factor in the development of myopathologies.
Collapse
|
13
|
Alternate Mediterranean diet score is positively associated with skeletal muscle mass index in middle-aged adults. Br J Nutr 2017; 117:1181-1188. [PMID: 28514984 DOI: 10.1017/s0007114517001118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Researches have suggested Mediterranean diet might lower the risk of chronic diseases, but data on skeletal muscle mass (SMM) are limited. This community-based cross-sectional study examined the association between the alternate Mediterranean diet score (aMDS) and SMM in 2230 females and 1059 males aged 40-75 years in Guangzhou, China. General information and habitual dietary information were assessed in face-to-face interviews conducted during 2008-2010 and 3 years later. The aMDS was calculated by summing the dichotomous points for the items of higher intakes of whole grain, vegetables, fruits, legumes, nuts, fish and ratio of MUFA:SFA, lower red meat and moderate ethanol consumption. The SMM of the whole body, limbs, arms and legs were measured using dual-energy X-ray absorptiometry during 2011-2013. After adjusting for potential covariates, higher aMDS was positively associated with skeletal muscle mass index (SMI, SMM/height2, kg/m2) at all of the studied sites in males (all P trend<0·05). The multiple covariate-adjusted SMI means were 2·70 % (whole body), 2·65 % (limbs), 2·50 % (arms) and 2·70 % (legs) higher in the high (v. low) category aMDS in males (all P<0·05). In females, the corresponding values were 1·35 % (P trend=0·03), 1·05, 0·52 and 1·20 %, (P trend>0·05). Age-stratified analyses showed that the favourable associations tended to be more pronounced in the younger subjects aged less than the medians of 59·2 and 62·2 years in females and males (P interaction>0·10). In conclusion, the aMDS shows protective associations with SMM in Chinese adults, particularly in male and younger subjects.
Collapse
|
14
|
McCormick R, Goljanek-Whysall K. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:265-308. [PMID: 28838540 DOI: 10.1016/bs.ircmb.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the biggest organs of the body with important mechanistic and metabolic functions. Muscle homeostasis is controlled by environmental, genetic, and epigenetic factors. Indeed, MiRNAs, small noncoding RNAs robust regulators of gene expression, have and have been shown to regulate muscle homeostasis on several levels: through controlling myogenesis, muscle growth (hypertrophy) and atrophy, as well as interactions of muscle with other tissues. Given the large number of MiRNA target genes and the important role of MiRNAs in most physiological processes and various diseases, MiRNAs may have an enormous potential as therapeutic targets against numerous disorders, including pathologies of muscle. The purpose of this review is to present the current knowledge of the role of MiRNAs in skeletal muscle homeostasis and pathologies and the potential of MiRNAs as therapeutics for skeletal muscle wasting, with particular focus on the age- and disease-related loss of muscle mass and function.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Katarzyna Goljanek-Whysall
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
15
|
Effect of the Lipoxygenase Inhibitor Baicalein on Muscles in Ovariectomized Rats. J Nutr Metab 2016; 2016:3703216. [PMID: 28050282 PMCID: PMC5165164 DOI: 10.1155/2016/3703216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023] Open
Abstract
Sarcopenia, a loss of muscle mass accompanying osteoporosis, leads to falls and fall-related injuries. Baicalein, as a phytochemical agent, has an antioxidative and anti-inflammatory effect in muscle. In this study, sixty-one female Sprague Dawley rats were divided into five groups: four groups were ovariectomized (OVX) and one control group was nonovariectomized (NON-OVX). Eight weeks after ovariectomy, three disparate concentrations (1 mg/kg body weight (BW), 10 mg/kg BW, and 100 mg/kg BW) of baicalein were applied subcutaneously daily in three OVX groups. Mm. soleus, gastrocnemius, and longissimus were extracted; their diameter, area, relation to body, and muscle weights as well as number of capillaries per fibre were recorded. In Mm. soleus and gastrocnemius, the baicalein effect (increasing number of capillaries per fibre) was proportional to the dose applied. The fibre diameters and area under baicalein treatment were significantly greater compared to OVX and NON-OVX groups. In M. longissimus, we observed a shift to type IIa fibres. Serum creatine kinase levels were significantly lower in highest baicalein concentration group. We conclude that baicalein can stimulate angiogenesis, though not fibre type-specific, in skeletal muscle and reduce the estrogen-related loss of fibre diameter and area in the skeletal muscle in rats. Therefore, a protective effect of baicalein on muscle cells can be assumed.
Collapse
|
16
|
Suddle A, Klimach S. Lactate and adrenergic signalling in trauma. Ann R Coll Surg Engl 2016; 98:238. [PMID: 26890845 PMCID: PMC5226180 DOI: 10.1308/rcsann.2016.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- A Suddle
- Brighton and Sussex Medical School , UK
| | - S Klimach
- Brighton and Sussex Medical School , UK
| |
Collapse
|
17
|
Emanuele Bianchi V, Falcioni G. Reactive oxygen species, health and longevity. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
18
|
Zuo L, Pannell BK. Redox Characterization of Functioning Skeletal Muscle. Front Physiol 2015; 6:338. [PMID: 26635624 PMCID: PMC4649055 DOI: 10.3389/fphys.2015.00338] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS). These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease.
Collapse
Affiliation(s)
- Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine Columbus, OH, USA ; Interdisciplinary Biophysics Graduate Program, The Ohio State University Columbus, OH, USA
| | - Benjamin K Pannell
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine Columbus, OH, USA
| |
Collapse
|
19
|
Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies – potential role of ER stress pathways. Curr Opin Rheumatol 2015; 27:580-5. [DOI: 10.1097/bor.0000000000000212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Kalinkovich A, Livshits G. Sarcopenia--The search for emerging biomarkers. Ageing Res Rev 2015; 22:58-71. [PMID: 25962896 DOI: 10.1016/j.arr.2015.05.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the life quality of elder people. In view of increasing life expectancy, sarcopenia renders a heavy burden on the health care system. However, although there is a consensus that sarcopenia is a multifactorial syndrome, its etiology, underlying mechanisms, and even definition remain poorly delineated, thus, preventing development of a precise treatment strategy. The main aim of our review is to critically analyze potential sarcopenia biomarkers in light of the molecular mechanisms of their involvement in sarcopenia pathogenesis. Normal muscle mass and function maintenance are proposed to be dependent on the dynamic balance between the positive regulators of muscle growth such as bone morphogenetic proteins (BMPs), brain-derived neurotrophic factor (BDNF), follistatin (FST) and irisin, and negative regulators including TGFβ, myostatin, activins A and B, and growth and differentiation factor-15 (GDF-15). We hypothesize that the shift in this balance to muscle growth inhibitors, along with increased expression of the C- terminal agrin fragment (CAF) associated with age-dependent neuromuscular junction (NMJ) dysfunction, as well as skeletal muscle-specific troponin T (sTnT), a key component of contractile machinery, is a main mechanism underlying sarcopenia pathogenesis. Thus, this review proposes and emphasizes that these molecules are the emerging sarcopenia biomarkers.
Collapse
|
21
|
White WE, Yaqoob MM, Harwood SM. Aging and uremia: Is there cellular and molecular crossover? World J Nephrol 2015; 4:19-30. [PMID: 25664244 PMCID: PMC4317625 DOI: 10.5527/wjn.v4.i1.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/28/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Many observers have noted that the morphological changes that occur in chronic kidney disease (CKD) patients resemble those seen in the geriatric population, with strikingly similar morbidity and mortality profiles and rates of frailty in the two groups, and shared characteristics at a pathophysiological level especially in respect to the changes seen in their vascular and immune systems. However, whilst much has been documented about the shared physical characteristics of aging and uremia, the molecular and cellular similarities between the two have received less attention. In order to bridge this perceived gap we have reviewed published research concerning the common molecular processes seen in aging subjects and CKD patients, with specific attention to altered proteostasis, mitochondrial dysfunction, post-translational protein modification, and senescence and telomere attrition. We have also sought to illustrate how the cell death and survival pathways apoptosis, necroptosis and autophagy are closely interrelated, and how an understanding of these overlapping pathways is helpful in order to appreciate the shared molecular basis behind the pathophysiology of aging and uremia. This analysis revealed many common molecular characteristics and showed similar patterns of cellular dysfunction. We conclude that the accelerated aging seen in patients with CKD is underpinned at the molecular level, and that a greater understanding of these molecular processes might eventually lead to new much needed therapeutic strategies of benefit to patients with renal disease.
Collapse
|
22
|
|