1
|
Childress E, Capstick RA, Crocker KE, Ledyard ML, Bender AM, Maurer MA, Billard NB, Cho HP, Rodriguez AL, Niswender CM, Peng W, Rook JM, Chang S, Blobaum AL, Boutaud O, Thompson Gray A, Jones CK, Conn PJ, Felts AS, Lindsley CW, Temple KJ. Discovery of 4-(5-Membered)Heteroarylether-6-methylpicolinamide Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5. ACS Med Chem Lett 2024; 15:2210-2219. [PMID: 39691522 PMCID: PMC11647725 DOI: 10.1021/acsmedchemlett.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
This Letter details our efforts to develop novel, non-acetylene-containing metabotropic glutamate receptor subtype 5 (mGlu5) negative allosteric modulators (NAMs) with improved pharmacological properties. This endeavor involved replacing the ether-linked pyrimidine moiety, a metabolic liability, with various 5-membered heterocycles. From this exercise, we identified VU6043653, a highly brain penetrant and selective mGlu5 NAM which displayed moderate potency against both human and rat mGlu5. Moreover, VU6043653 has overall improved pharmacological and drug metabolism and pharmacokinetic profiles when compared to its predecessor compounds. Most notably, VU6043653 exhibits low predicted human hepatic clearance, a clean cytochrome P450 profile, and minimal inhibition of the dopamine transporter.
Collapse
Affiliation(s)
- Elizabeth
S. Childress
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Rory A. Capstick
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Katherine E. Crocker
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Miranda L. Ledyard
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Mallory A. Maurer
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Natasha B. Billard
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Weimin Peng
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerri M. Rook
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Analisa Thompson Gray
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Andrew S. Felts
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kayla J. Temple
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Eshak F, Pion L, Scholler P, Nevoltris D, Chames P, Rondard P, Pin JP, Acher FC, Goupil-Lamy A. Epitope Identification of an mGlu5 Receptor Nanobody Using Physics-Based Molecular Modeling and Deep Learning Techniques. J Chem Inf Model 2024; 64:4436-4461. [PMID: 38423996 DOI: 10.1021/acs.jcim.3c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The world has witnessed a revolution in therapeutics with the development of biological medicines such as antibodies and antibody fragments, notably nanobodies. These nanobodies possess unique characteristics including high specificity and modulatory activity, making them promising candidates for therapeutic applications. Identifying their binding mode is essential for their development. Experimental structural techniques are effective to get such information, but they are expensive and time-consuming. Here, we propose a computational approach, aiming to identify the epitope of a nanobody that acts as an agonist and a positive allosteric modulator at the rat metabotropic glutamate receptor 5. We employed multiple structure modeling tools, including various artificial intelligence algorithms for epitope mapping. The computationally identified epitope was experimentally validated, confirming the success of our approach. Additional dynamics studies provided further insights on the modulatory activity of the nanobody. The employed methodologies and approaches initiate a discussion on the efficacy of diverse techniques for epitope mapping and later nanobody engineering.
Collapse
Affiliation(s)
- Floriane Eshak
- SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Léo Pion
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Damien Nevoltris
- Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Patrick Chames
- Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | | | - Anne Goupil-Lamy
- BIOVIA Science Council, Dassault Systèmes, 78140 Vélizy-Villacoublay, France
| |
Collapse
|
3
|
Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacol Sin 2021; 42:1354-1367. [PMID: 33122823 PMCID: PMC8285414 DOI: 10.1038/s41401-020-00541-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are promising targets for multiple psychiatric and neurodegenerative disorders. Understanding the subtype selectivity of mGlu1 and mGlu5 allosteric sites is essential for the rational design of novel modulators with single- or dual-target mechanism of action. In this study, starting from the deposited mGlu1 and mGlu5 crystal structures, we utilized computational modeling approaches integrating docking, molecular dynamics simulation, and efficient post-trajectory analysis to reveal the subtype-selective mechanism of mGlu1 and mGlu5 to 10 diverse drug scaffolds representing known negative allosteric modulators (NAMs) in the literature. The results of modeling identified six pairs of non-conserved residues and four pairs of conserved ones as critical features to distinguish the selective NAMs binding to the corresponding receptors. In addition, nine pairs of residues are beneficial to the development of novel dual-target NAMs of group I metabotropic glutamate receptors. Furthermore, the binding modes of a reported dual-target NAM (VU0467558) in mGlu1 and mGlu5 were predicted to verify the identified residues that play key roles in the receptor selectivity and the dual-target binding. The results of this study can guide rational structure-based design of novel NAMs, and the approach can be generally applicable to characterize the features of selectivity for other G-protein-coupled receptors.
Collapse
|
4
|
Grundmann M, Bender E, Schamberger J, Eitner F. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci 2021; 22:ijms22041763. [PMID: 33578942 PMCID: PMC7916689 DOI: 10.3390/ijms22041763] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.
Collapse
Affiliation(s)
- Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
- Correspondence:
| | - Eckhard Bender
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Jens Schamberger
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
| |
Collapse
|
5
|
Friesen S, Fedotova MV, Kruchinin SE, Buchner R. Hydration and dynamics of L-glutamate ion in aqueous solution. Phys Chem Chem Phys 2021; 23:1590-1600. [PMID: 33409510 DOI: 10.1039/d0cp05489e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aqueous solutions of sodium l-glutamate (NaGlu) in the concentration range 0 < c/M ≤ 1.90 at 25 °C were investigated by dielectric relaxation spectroscopy (DRS) and statistical mechanics (1D-RISM and 3D-RISM calculations) to study the hydration and dynamics of the l-glutamate (Glu-) anion. Although at c → 0 water molecules beyond the first hydration shell are dynamically affected, Glu- hydration is rather fragile and for c ⪆ 0.3 M apparently restricted to H2O molecules hydrogen bonding to the carboxylate groups. These hydrating dipoles are roughly parallel to the anion moment, leading to a significantly enhanced effective dipole moment of Glu-. However, l-glutamate dynamics is determined by the rotational diffusion of individual anions under hydrodynamic slip boundary conditions. Thus, the lifetime of the hydrate complexes, as well as of possibly formed [Na+Glu-]0 ionpairs and l-glutamate aggregates, cannot exceed the characteristic timescale for Glu- rotation.
Collapse
Affiliation(s)
- Sergej Friesen
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Marina V Fedotova
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation.
| | - Sergey E Kruchinin
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation.
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
6
|
Lans I, Díaz Ó, Dalton JAR, Giraldo J. Exploring the Activation Mechanism of the mGlu5 Transmembrane Domain. Front Mol Biosci 2020; 7:38. [PMID: 32211419 PMCID: PMC7069277 DOI: 10.3389/fmolb.2020.00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/18/2020] [Indexed: 01/14/2023] Open
Abstract
As a class C GPCR and regulator of synaptic activity, mGlu5 is an attractive drug target, potentially offering treatment for several neurologic and psychiatric disorders. As little is known about the activation mechanism of mGlu5 at a structural level, potential of mean force calculations linked to molecular dynamics simulations were performed on the mGlu5 transmembrane domain crystal structure to explore various internal mechanisms responsible for its activation. Our results suggest that the hydrophilic interactions between intracellular loop 1 and the intracellular side of TM6 have to be disrupted to reach a theoretically active-like conformation. In addition, interactions between residues that are key for mGlu5 activation (Tyr6593.44 and Ile7515.51) and mGlu5 inactivation (Tyr6593.44 and Ser8097.39) have been identified. Inasmuch as mGlu5 receptor signaling is poorly understood, potentially showing a complex network of micro-switches and subtle structure-activity relationships, the present study represents a step forward in the understanding of mGlu5 transmembrane domain activation.
Collapse
Affiliation(s)
- Isaias Lans
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Óscar Díaz
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|
7
|
Srivastava A, Das B, Yao AY, Yan R. Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future. J Alzheimers Dis 2020; 78:1345-1361. [PMID: 33325389 PMCID: PMC8439550 DOI: 10.3233/jad-201146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles. The impaired synaptic plasticity and dendritic loss at the synaptic level is an early event associated with the AD pathogenesis. The abnormal accumulation of soluble oligomeric amyloid-β (Aβ), the major toxic component in amyloid plaques, is viewed to trigger synaptic dysfunctions through binding to several presynaptic and postsynaptic partners and thus to disrupt synaptic transmission. Over time, the abnormalities in neural transmission will result in cognitive deficits, which are commonly manifested as memory loss in AD patients. Synaptic plasticity is regulated through glutamate transmission, which is mediated by various glutamate receptors. Here we review recent progresses in the study of metabotropic glutamate receptors (mGluRs) in AD cognition. We will discuss the role of mGluRs in synaptic plasticity and their modulation as a possible strategy for AD cognitive improvement.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Annie Y. Yao
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
8
|
Graziani D, Caligari S, Callegari E, De Toma C, Longhi M, Frigerio F, Dilernia R, Menegon S, Pinzi L, Pirona L, Tazzari V, Valsecchi AE, Vistoli G, Rastelli G, Riva C. Evaluation of Amides, Carbamates, Sulfonamides, and Ureas of 4-Prop-2-ynylidenecycloalkylamine as Potent, Selective, and Bioavailable Negative Allosteric Modulators of Metabotropic Glutamate Receptor 5. J Med Chem 2019; 62:1246-1273. [PMID: 30624919 DOI: 10.1021/acs.jmedchem.8b01226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative allosteric modulators (NAMs) of the metabotropic glutamate receptor 5 (mGlu5) hold great promise for the treatment of a variety of central nervous system disorders. We have recently reported that prop-2-ynylidenecycloalkylamine derivatives are potent and selective NAMs of the mGlu5 receptor. In this work, we explored the amide, carbamate, sulfonamide, and urea derivatives of prop-2-ynylidenecycloalkylamine compounds with the aim of improving solubility and metabolic stability. In silico and experimental analyses were performed on the synthesized series of compounds to investigate structure-activity relationships. Compounds 12, 32, and 49 of the carbamate, urea, and amide classes, respectively, showed the most suitable cytochrome inhibition and metabolic stability profiles. Among them, compound 12 showed excellent selectivity, solubility, and stability profiles as well as suitable in vitro and in vivo pharmacokinetic properties. It was highly absorbed in rats and dogs and was active in anxiety, neuropathic pain, and lower urinary tract models.
Collapse
Affiliation(s)
- Davide Graziani
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Silvia Caligari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Elisa Callegari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Carlo De Toma
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Matteo Longhi
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Fabio Frigerio
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Roberto Dilernia
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Sergio Menegon
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Luca Pinzi
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Lorenza Pirona
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Valerio Tazzari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Anna Elisa Valsecchi
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences , Università degli Studi di Milano , Via Mangiagalli 25 , 20133 Milan , Italy
| | - Giulio Rastelli
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Carlo Riva
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| |
Collapse
|
9
|
Fu T, Zheng G, Tu G, Yang F, Chen Y, Yao X, Li X, Xue W, Zhu F. Exploring the Binding Mechanism of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators in Clinical Trials by Molecular Dynamics Simulations. ACS Chem Neurosci 2018. [PMID: 29522307 DOI: 10.1021/acschemneuro.8b00059] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGlu5) plays a key role in synaptic information storage and memory, which is a well-known target for a variety of psychiatric and neurodegenerative disorders. In recent years, the increasing efforts have been focused on the design of allosteric modulators, and the negative allosteric modulators (NAMs) are the front-runners. Recently, the architecture of the transmembrane (TM) domain of mGlu5 receptor has been determined by crystallographic experiment. However, it has been not well understood how the pharmacophores of NAMs accommodated into the allosteric binding site. In this study, molecular dynamics (MD) simulations were performed on mGlu5 receptor bound with NAMs in preclinical or clinical development to shed light on this issue. In order to identify the key residues, the binding free energies as well as per-residue contributions for NAMs binding to mGlu5 receptor were calculated. Subsequently, the in silico site-directed mutagenesis of the key residues was performed to verify the accuracy of simulation models. As a result, the shared common features of the studied 5 clinically important NAMs (mavoglurant, dipraglurant, basimglurant, STX107, and fenobam) interacting with 11 residues in allosteric site were obtained. This comprehensive study presented a better understanding of mGlu5 receptor NAMs binding mechanism, which would be further used as a useful framework to assess and discover novel lead scaffolds for NAMs.
Collapse
Affiliation(s)
- Tingting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gao Tu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ, Ferenczy GG, Keserű GM. Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures. J Med Chem 2018; 62:207-222. [DOI: 10.1021/acs.jmedchem.7b01722] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- John A. Christopher
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - Miles Congreve
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S. Doré
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C. Errey
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H. Marshall
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Jonathan S. Mason
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Prakash Rucktooa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | | | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| |
Collapse
|
11
|
Cross JB. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2017; 1705:233-264. [PMID: 29188566 DOI: 10.1007/978-1-4939-7465-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Virtual screening (VS) has become an integral part of the drug discovery process and is a valuable tool for finding novel chemical starting points for GPCR targets. Ligand-based VS makes use of biochemical data for known, active compounds and has been applied successfully to many diverse GPCRs. Recent progress in GPCR X-ray crystallography has made it possible to incorporate detailed structural information into the VS process. This chapter outlines the latest VS techniques along with examples that highlight successful applications of these methods. Best practices for increasing the likelihood of VS success, as well as ongoing challenges, are also discussed.
Collapse
Affiliation(s)
- Jason B Cross
- University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
12
|
Dalton JAR, Pin JP, Giraldo J. Analysis of positive and negative allosteric modulation in metabotropic glutamate receptors 4 and 5 with a dual ligand. Sci Rep 2017; 7:4944. [PMID: 28694498 PMCID: PMC5504000 DOI: 10.1038/s41598-017-05095-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/25/2017] [Indexed: 12/24/2022] Open
Abstract
As class C GPCRs and regulators of synaptic activity, human metabotropic glutamate receptors (mGluRs) 4 and 5 are prime targets for allosteric modulation, with mGlu5 inhibition or mGlu4 stimulation potentially treating conditions like chronic pain and Parkinson’s disease. As an allosteric modulator that can bind both receptors, 2-Methyl-6-(phenylethynyl)pyridine (MPEP) is able to negatively modulate mGlu5 or positively modulate mGlu4. At a structural level, how it elicits these responses and how mGluRs undergo activation is unclear. Here, we employ homology modelling and 30 µs of atomistic molecular dynamics (MD) simulations to probe allosteric conformational change in mGlu4 and mGlu5, with and without docked MPEP. Our results identify several structural differences between mGlu4 and mGlu5, as well as key differences responsible for MPEP-mediated positive and negative allosteric modulation, respectively. A novel mechanism of mGlu4 activation is revealed, which may apply to all mGluRs in general. This involves conformational changes in TM3, TM4 and TM5, separation of intracellular loop 2 (ICL2) from ICL1/ICL3, and destabilization of the ionic-lock. On the other hand, mGlu5 experiences little disturbance when MPEP binds, maintaining its inactive state with reduced conformational fluctuation. In addition, when MPEP is absent, a lipid molecule can enter the mGlu5 allosteric pocket.
Collapse
Affiliation(s)
- James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Network Biomedical Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Jean-Philippe Pin
- Institute of Functional Genomics, Université de Montpellier, Unité Mixte de Recherche 5302 CNRS, Montpellier, France.,Unité de recherche U1191, INSERM, Montpellier, France
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Network Biomedical Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
13
|
Gómez-Santacana X, Dalton JA, Rovira X, Pin JP, Goudet C, Gorostiza P, Giraldo J, Llebaria A. Positional isomers of bispyridine benzene derivatives induce efficacy changes on mGlu 5 negative allosteric modulation. Eur J Med Chem 2017; 127:567-576. [DOI: 10.1016/j.ejmech.2017.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/21/2022]
|
14
|
Pin JP, Bettler B. Organization and functions of mGlu and GABAB receptor complexes. Nature 2016; 540:60-68. [DOI: 10.1038/nature20566] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023]
|
15
|
Janero DR, Thakur GA. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opin Drug Discov 2016; 11:1223-1237. [PMID: 27712124 DOI: 10.1080/17460441.2016.1245289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands. These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential. Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints. Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity. In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs. Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.
Collapse
Affiliation(s)
- David R Janero
- a Center for Drug Discovery; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences; Department of Chemistry and Chemical Biology, College of Science; and Health Sciences Entrepreneurs , Northeastern University , Boston , MA , USA
| | - Ganesh A Thakur
- b Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
16
|
Cid JM, Tresadern G, Vega JA, de Lucas AI, Del Cerro A, Matesanz E, Linares ML, García A, Iturrino L, Pérez-Benito L, Macdonald GJ, Oehlrich D, Lavreysen H, Peeters L, Ceusters M, Ahnaou A, Drinkenburg W, Mackie C, Somers M, Trabanco AA. Discovery of 8-Trifluoromethyl-3-cyclopropylmethyl-7-[(4-(2,4-difluorophenyl)-1-piperazinyl)methyl]-1,2,4-triazolo[4,3-a]pyridine (JNJ-46356479), a Selective and Orally Bioavailable mGlu2 Receptor Positive Allosteric Modulator (PAM). J Med Chem 2016; 59:8495-507. [PMID: 27579727 DOI: 10.1021/acs.jmedchem.6b00913] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Positive allosteric modulators of the metabotropic glutamate 2 receptor have generated great interest in the past decade. There is mounting evidence of their potential as therapeutic agents in the treatment of multiple central nervous system disorders. We have previously reported substantial efforts leading to potent and selective mGlu2 PAMs. However, finding compounds with the optimal combination of in vitro potency and good druglike properties has remained elusive, in part because of the hydrophobic nature of the allosteric binding site. Herein, we report on the lead optimization process to overcome the poor solubility inherent to the advanced lead 6. Initial prototypes already showed significant improvements in solubility while retaining good functional activity but displayed new liabilities associated with metabolism and hERG inhibition. Subsequent subtle modifications efficiently addressed those issues leading to the identification of compound 27 (JNJ-46356479). This new lead represents a more balanced profile that offers a significant improvement on the druglike attributes compared to previously reported leads.
Collapse
Affiliation(s)
- Jose María Cid
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Gary Tresadern
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Juan Antonio Vega
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Ana Isabel de Lucas
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Alcira Del Cerro
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Encarnación Matesanz
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - María Lourdes Linares
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Aránzazu García
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Laura Iturrino
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Laura Pérez-Benito
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona , Bellaterra 08193, Spain
| | - Gregor J Macdonald
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Hilde Lavreysen
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Luc Peeters
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Marc Ceusters
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Abdellah Ahnaou
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | | | - Claire Mackie
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Marijke Somers
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Andrés A Trabanco
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| |
Collapse
|
17
|
Gregory KJ, Velagaleti R, Thal DM, Brady RM, Christopoulos A, Conn PJ, Lapinsky DJ. Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators. ACS Chem Biol 2016; 11:1870-9. [PMID: 27115427 DOI: 10.1021/acschembio.6b00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of current drug targets. In particular, small-molecule allosteric modulators offer substantial potential for selectively "tuning" GPCR activity. However, there remains a critical need for experimental strategies that unambiguously determine direct allosteric ligand-GPCR interactions, to facilitate both chemical biology studies and rational structure-based drug design. We now report the development and use of first-in-class clickable allosteric photoprobes for a GPCR based on metabotropic glutamate receptor 5 (mGlu5) negative allosteric modulator (NAM) chemotypes. Select acetylenic mGlu5 NAM lead compounds were rationally modified to contain either a benzophenone or an aryl azide as a photoreactive functional group, enabling irreversible covalent attachment to mGlu5 via photoactivation. Additionally, a terminal alkyne or an aliphatic azide was incorporated as a click chemistry handle, allowing chemoselective attachment of fluorescent moieties to the irreversibly mGlu5-bound probe via tandem photoaffinity labeling-bioorthogonal conjugation. These clickable photoprobes retained submicromolar affinity for mGlu5 and negative cooperativity with glutamate, interacted with the "common allosteric-binding site," displayed slow binding kinetics, and could irreversibly label mGlu5 following UV exposure. We depleted the number of functional mGlu5 receptors using an irreversibly bound NAM to elucidate and delineate orthosteric agonist affinity and efficacy. Finally, successful conjugation of fluorescent dyes via click chemistry was demonstrated for each photoprobe. In the future, these clickable photoprobes are expected to aid our understanding of the structural basis of mGlu5 allosteric modulation. Furthermore, tandem photoaffinity labeling-bioorthogonal conjugation is expected to be a broadly applicable experimental strategy across the entire GPCR superfamily.
Collapse
Affiliation(s)
- Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Ranganadh Velagaleti
- Division
of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, United States
| | - David M. Thal
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Ryan M. Brady
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - P. Jeffrey Conn
- Vanderbilt
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David J. Lapinsky
- Division
of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
18
|
Computer-aided design of negative allosteric modulators of metabotropic glutamate receptor 5 (mGluR5): Comparative molecular field analysis of aryl ether derivatives. Bioorg Med Chem Lett 2016; 26:1140-4. [PMID: 26826734 DOI: 10.1016/j.bmcl.2016.01.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/27/2023]
Abstract
The metabotropic glutamate receptors (mGlu receptors) have emerged as attractive targets for number of neurological and psychiatric disorders. Recently, mGluR5 negative allosteric modulators (NAMs) have gained considerable attention in pharmacological research. Comparative molecular field analysis (CoMFA) was performed on 73 analogs of aryl ether which were reported as mGluR5 NAMs. The study produced a statistically significant model with high correlation coefficient and good predictive abilities.
Collapse
|
19
|
Dalton JAR, Lans I, Rovira X, Malhaire F, Gómez-Santacana X, Pittolo S, Gorostiza P, Llebaria A, Goudet C, Pin JP, Giraldo J. Shining Light on an mGlu5 Photoswitchable NAM: A Theoretical Perspective. Curr Neuropharmacol 2016; 14:441-54. [PMID: 26391742 PMCID: PMC4983757 DOI: 10.2174/1570159x13666150407231417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/06/2015] [Accepted: 04/04/2015] [Indexed: 02/07/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
20
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Cooke RM, Brown AJ, Marshall FH, Mason JS. Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 2015; 20:1355-64. [DOI: 10.1016/j.drudis.2015.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/27/2015] [Accepted: 08/17/2015] [Indexed: 01/31/2023]
|
22
|
Jiang L, Li Y, Qiao L, Chen X, He Y, Zhang Y, Li G. Discovery of potential negative allosteric modulators of mGluR5 from natural products using pharmacophore modeling, molecular docking, and molecular dynamics simulation studies. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mGluR5, which belongs to the G-protein-coupled receptor superfamily, is believed to be associated with many human diseases, such as a wide range of neurological disorders, gastroesophageal reflux disease, and cancer. Comparing with compounds that target on the orthosteric binding site, significant roles have been established for mGluR5 negative allosteric modulators (NAMs) due to their higher subtype selectivity and more suitable pharmacokinetic profiles. Nevertheless, to date, none of them have come to market for various reasons. In this study, a 3D quantitative pharmacophore model was generated by using the HypoGen module in Discovery Studio 4.0. With several validation methods ultilized, the optimal pharmacophore model Hypo2 was selected to discover potential mGluR5 NAMs from natural products. Two hundred and seventeen potential NAMs were obtained after being filtered by Lipinski’s rule (≥4). Then, molecular docking was used to refine the pharmacophore-based screening results and analyze the binding mode of NAMs and mGluR5. Three compounds, aglaiduline, 5-O-ethyl-hirsutanonol, and yakuchinone A, with good ADMET properties, acceptable Fit value and estimated value, and high docking score, were reserved for a molecular dynamics simulation study. All of them have stability of ligand binding. From our computational results, there might exhibit drug-like negative allosteric moderating effects on mGluR5 in these natural products. This work provides a reliable method for discovering mGluR5 NAMs from natural products.
Collapse
Affiliation(s)
- Ludi Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Liansheng Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xi Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yusu He
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yanling Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Gongyu Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
23
|
Emerging Approaches to GPCR Ligand Screening for Drug Discovery. Trends Mol Med 2015; 21:687-701. [DOI: 10.1016/j.molmed.2015.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/07/2023]
|
24
|
Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG, Wiggin GR, Congreve M. Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 2015. [PMID: 26225459 DOI: 10.1021/acs.jmedchem.5b00892] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragment screening of a thermostabilized mGlu5 receptor using a high-concentration radioligand binding assay enabled the identification of moderate affinity, high ligand efficiency (LE) pyrimidine hit 5. Subsequent optimization using structure-based drug discovery methods led to the selection of 25, HTL14242, as an advanced lead compound for further development. Structures of the stabilized mGlu5 receptor complexed with 25 and another molecule in the series, 14, were determined at resolutions of 2.6 and 3.1 Å, respectively.
Collapse
Affiliation(s)
- John A Christopher
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Sarah J Aves
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Kirstie A Bennett
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S Doré
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C Errey
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Ali Jazayeri
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H Marshall
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Maria J Serrano-Vega
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Benjamin G Tehan
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Giselle R Wiggin
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Miles Congreve
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| |
Collapse
|
25
|
Insights into the interaction of negative allosteric modulators with the metabotropic glutamate receptor 5: Discovery and computational modeling of a new series of ligands with nanomolar affinity. Bioorg Med Chem 2015; 23:3040-58. [DOI: 10.1016/j.bmc.2015.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 11/22/2022]
|
26
|
GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1-2 September 2014. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:883-903. [PMID: 25772061 PMCID: PMC4495723 DOI: 10.1007/s00210-015-1111-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 01/14/2023]
Abstract
G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs biased pharmacology, structural biology, modelling and scoring have resulted in a resurgence of interest in GPCRs as drug targets. Therefore, an international conference, sponsored by the Royal Society, with world-renowned researchers from industry and academia was recently held to discuss recent progress and highlight key areas of future research needed to accelerate GPCR drug discovery. Several key points emerged. Firstly, structures for all three major classes of GPCRs have now been solved and there is increasing coverage across the GPCR phylogenetic tree. This is likely to be substantially enhanced with data from x-ray free electron sources as they move beyond proof of concept. Secondly, the concept of biased signalling or functional selectivity is likely to be prevalent in many GPCRs, and this presents exciting new opportunities for selectivity and the control of side effects, especially when combined with increasing data regarding allosteric modulation. Thirdly, there will almost certainly be some GPCRs that will remain difficult targets because they exhibit complex ligand dependencies and have many metastable states rendering them difficult to resolve by crystallographic methods. Subtle effects within the packing of the transmembrane helices are likely to mask and contribute to this aspect, which may play a role in species dependent behaviour. This is particularly important because it has ramifications for how we interpret pre-clinical data. In summary, collaborative efforts between industry and academia have delivered significant progress in terms of structure and understanding of GPCRs and will be essential for resolving problems associated with the more difficult targets in the future.
Collapse
|