1
|
Mei X, Yin C, Pan Y, Chen L, Wu C, Li X, Feng Z. The role of ectopic P granules protein 5 homolog (EPG5) in DHPG-induced pain sensitization in mice. J Neurochem 2023; 165:196-210. [PMID: 36748629 DOI: 10.1111/jnc.15779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Nociplastic pain is a severe health problem, while its mechanisms are still unclear. (R, S)-3,5-Dihydroxyphenylglycine (DHPG) is a group I metabotropic glutamate receptor (mGluR) agonist that can cause central sensitization, which plays a role in nociplastic pain. In this study, after intrathecal injection of 25 nmol DHPG for three consecutive days, whole proteins were extracted from the L4~6 lumbar spinal cord of mice 2 h after intrathecal administration on the third day for proteomics analysis. Based on the results, 15 down-regulated and 20 up-regulated proteins were identified in mice. Real-time quantitative PCR (RT-qPCR) and western blotting (WB) revealed that the expression of ectopic P granules protein 5 homolog (EPG5) mRNA and protein were significantly up-regulated compared with the control group, which was consistent with the proteomics results. Originally identified in the genetic screening of Caenorhabditis elegans, EPG5 is mainly involved in regulating autophagy in the body, and in our study, it was mainly expressed in spinal neurons, as revealed by immunohistochemistry staining. After the intrathecal injection of 8 μL adeno-associated virus (AAV)-EPG5 short hairpin RNA (shRNA) to knock down spinal EPG5, the hyperalgesia caused by DHPG was relieved. Altogether, these results suggest that EPG5 plays an important role in DHPG-induced pain sensitization in mice.
Collapse
Affiliation(s)
- Xiangyang Mei
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Lei Chen
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Wu
- Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangyao Li
- Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol Immunol 2020; 117:37-53. [PMID: 31733447 PMCID: PMC7112542 DOI: 10.1016/j.molimm.2019.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release. EVs are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins in serum and serum-EVs are described for the first time in camelids, using the llama (Lama glama L. 1758) as a model animal. We report a poly-dispersed population of llama serum EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In serum, 103 deiminated proteins were overall identified, including key immune and metabolic mediators including complement components, immunoglobulin-based nanobodies, adiponectin and heat shock proteins. In serum, 60 deiminated proteins were identified that were not in EVs, and 25 deiminated proteins were found to be unique to EVs, with 43 shared deiminated protein hits between both serum and EVs. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in llama serum. PAD homologues were identified in llama serum by Western blotting, via cross reaction with human PAD antibodies, and detected at an expected 70 kDa size. This is the first report of deiminated proteins in serum and EVs of a camelid species, highlighting a hitherto unrecognized post-translational modification in key immune and metabolic proteins in camelids, which may be translatable to and inform a range of human metabolic and inflammatory pathologies.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
3
|
Habrian CH, Levitz J, Vyklicky V, Fu Z, Hoagland A, McCort-Tranchepain I, Acher F, Isacoff EY. Conformational pathway provides unique sensitivity to a synaptic mGluR. Nat Commun 2019; 10:5572. [PMID: 31804469 PMCID: PMC6895203 DOI: 10.1038/s41467-019-13407-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors that operate at synapses. Macroscopic and single molecule FRET to monitor structural rearrangements in the ligand binding domain (LBD) of the mGluR7/7 homodimer revealed it to have an apparent affinity ~4000-fold lower than other mGluRs and a maximal activation of only ~10%, seemingly too low for activation at synapses. However, mGluR7 heterodimerizes, and we find it to associate with mGluR2 in the hippocampus. Strikingly, the mGluR2/7 heterodimer has high affinity and efficacy. mGluR2/7 shows cooperativity in which an unliganded subunit greatly enhances activation by agonist bound to its heteromeric partner, and a unique conformational pathway to activation, in which mGluR2/7 partially activates in the Apo state, even when its LBDs are held open by antagonist. High sensitivity and an unusually broad dynamic range should enable mGluR2/7 to respond to both glutamate transients from nearby release and spillover from distant synapses.
Collapse
Affiliation(s)
- Chris H Habrian
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Joshua Levitz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10024, USA
| | - Vojtech Vyklicky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Zhu Fu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | | | | - Ehud Y Isacoff
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biology & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Stinson C, Logan SM, Bellinger LL, Rao M, Kinchington PR, Kramer PR. Estradiol Acts in Lateral Thalamic Region to Attenuate Varicella Zoster Virus Associated Affective Pain. Neuroscience 2019; 414:99-111. [PMID: 31271831 DOI: 10.1016/j.neuroscience.2019.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Varicella zoster virus (VZV) results in chicken pox and herpes zoster. Female rats show a higher level of herpes zoster associated pain than males, consistent with human studies. In this study, we addressed the novel hypothesis that sex difference in herpes zoster associated pain is due, in part, to estradiol modulating activity in the thalamus. To test this hypothesis a high and low physiological dose of estradiol was administered to castrated and ovariectomized rats and the affective pain response was measured after injection of VZV into the whisker pad. Thalamic infusion of the estrogen receptor antagonist ICI 182,780 concomitant with a high dose of estradiol addressed the role of estradiol binding to its receptor to effect pain. Phosphorylated extracellular signal-regulated protein kinase (pERK) positive cells were measured in excitatory (glutaminase positive) and inhibitory (glutamate decarboxylase 67 positive) cells of the lateral thalamic region. Our results show that a high dose of estradiol significantly reduced the pain response in both males and females. pERK significantly increased in excitatory cells after treatment with a low dose of estradiol and increased in inhibitory cells after treatment with a high dose of estradiol. Administration of ICI 182,780 significantly increased the pain response, reduced expression of GABA related genes in the thalamic region and significantly reduced the number of inhibitory cells expressing pERK. The results suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons within the thalamus and that this reduction includes an estrogen receptor dependent mechanism.
Collapse
Affiliation(s)
- Crystal Stinson
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America
| | - Shaun M Logan
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America
| | - Larry L Bellinger
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America
| | - Mahesh Rao
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America
| | - Paul R Kinchington
- Department of Ophthalmology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Room 1020 EEI building 203 Lothrop Street, Pittsburgh, PA 15213, United States of America
| | - Phillip R Kramer
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States of America.
| |
Collapse
|
5
|
Kramer PR, Rao M, Stinson C, Bellinger LL, Kinchington PR, Yee MB. Aromatase Derived Estradiol Within the Thalamus Modulates Pain Induced by Varicella Zoster Virus. Front Integr Neurosci 2018; 12:46. [PMID: 30369871 PMCID: PMC6194186 DOI: 10.3389/fnint.2018.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
Herpes zoster or shingles is the result of varicella zoster virus (VZV) infection and often results in chronic pain that lasts for months after visible symptoms subside. Testosterone often attenuates pain in males. Previous work demonstrates ovarian estrogen effects γ-aminobutyric acid (GABA) signaling in the thalamus, reducing pain but the role of testosterone within the thalamus is currently unknown. Because aromatase affects pain and is present in the thalamus we tested a hypothesis that testosterone converted to estrogen in the thalamus attenuates herpes zoster induced pain. To address this hypothesis, male Sprague-Dawley rats received whisker pad injection of either MeWo cells or MeWo cells containing VZV. To reduce aromatase derived estrogen in these animals we injected aromatase inhibitor letrozole systemically or infused it into the thalamus. To test if estrogen was working through the estrogen receptor (ER) agonist, 4, 4′, 4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was infused concomitant with letrozole. Motivational and affective pain was measured after letrozole and/or PPT treatment. Vesicular GABA transporter (VGAT) is important in pain signaling. Because estrogen effects VGAT expression we measured its transcript and protein levels after letrozole treatment. Virus injection and letrozole significantly increased the pain response but thalamic infusion of PPT reduced zoster pain. Letrozole increased the number of thalamic neurons staining for phosphorylated ERK (pERK) but decreased VGAT expression. The results suggest in male rats aromatase derived estradiol interacts with the ER to increase VGAT expression and increase neuronal inhibition in the thalamus to attenuate VZV induced pain.
Collapse
Affiliation(s)
- Phillip R Kramer
- Department of Biomedical Science, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Mahesh Rao
- Department of Biomedical Science, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Crystal Stinson
- Department of Biomedical Science, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Larry L Bellinger
- Department of Biomedical Science, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, Eye and Ear Foundation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael B Yee
- Department of Ophthalmology and of Molecular Microbiology and Genetics, Eye and Ear Foundation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Cieślik P, Woźniak M, Kaczorowska K, Brański P, Burnat G, Chocyk A, Bobula B, Gruca P, Litwa E, Pałucha-Poniewiera A, Wąsik A, Pilc A, Wierońska J. Negative Allosteric Modulators of mGlu 7 Receptor as Putative Antipsychotic Drugs. Front Mol Neurosci 2018; 11:316. [PMID: 30294258 PMCID: PMC6158327 DOI: 10.3389/fnmol.2018.00316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
The data concerning antipsychotic-like activity of negative allosteric modulators (NAMs)/antagonists of mGlu7 receptors are limited. The only available ligands for this receptor are MMPIP and ADX71743. In the present studies, we used stable cell line expressing mGlu7 receptor and it was shown that both compounds dose-dependently potentiated forskolin elevated cAMP concentration in the T-REx 293 cells, showing their inverse agonist properties. Subsequently, pharmacokinetic studies were performed. Both compounds were given intraperitoneally (i.p.) at the dose of 10 mg/kg and reached Cmax 0.25-0.5 h after administration, and then they declined rapidly, ADX71743 being almost undetectable 2 h after administration, while the concentration of MMPIP was still observed, suggesting that the concentration of MMPIP was more stable. Finally, we investigated the role of both mGlu7 receptor NAMs in animal models of schizophrenia. Behavioral tests commonly used in antipsychotic drug discovery were conducted. Both tested compounds dose-dependently inhibited MK-801-induced hyperactivity (MMPIP at 15 mg/kg; ADX at 5 and 15 mg/kg) and DOI-induced head twitches (MMPIP at 5, 10, 15 mg/kg; ADX at 2.5, 5, 10 mg/kg). Moreover, the same effects were noticed in novel object recognition test, where MMPIP (5, 10, 15 mg/kg) and ADX71743 (1, 5, 15 mg/kg) reversed MK-801-induced disturbances. In the social interaction test, antipsychotic activity was observed only for ADX71743 (5, 15 mg/kg). ADX71743 at the dose 2.5 mg/kg reversed MK-801-induced disruption in prepulse inhibition while MMPIP at 10 mg/kg reversed MK-801-induced disruption in spatial delayed alternation. The present studies showed that mGlu7 receptor may be considered as a putative target for antipsychotic drugs, though more studies are needed due to limited number of available ligands.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Joanna Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
7
|
Strand J, Stinson C, Bellinger LL, Peng Y, Kramer PR. G i protein functions in thalamic neurons to decrease orofacial nociceptive response. Brain Res 2018; 1694:63-72. [PMID: 29763576 PMCID: PMC6026072 DOI: 10.1016/j.brainres.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/27/2018] [Accepted: 05/12/2018] [Indexed: 01/01/2023]
Abstract
Orofacial pain includes neuronal pathways that project from the trigeminal nucleus to and through the thalamus. What role the ventroposterior thalamic complex (VP) has on orofacial pain transmission is not understood. To begin to address this question an inhibitory G protein (Gi) designer receptor exclusively activated by a designer drug (DREADD) was transfected in cells of the VP using adeno-associated virus isotype 8. Virus infected cells were identified by a fluorescent tag and immunostaining. Cells were silenced after injecting the designer drug clozapine-n-oxide, which binds the designer receptor activating Gi. Facial rubbing and local field potentials (LFP) in the VP were then recorded in awake, free moving Sprague Dawley rats after formalin injection of the masseter muscle to induce nociception. Formalin injection significantly increased LFP and the nociceptive behavioral response. Activation of DREADD Gi with clozapine-n-oxide significantly reduced LFP in the VP and reduced the orofacial nociceptive response. Because DREADD silencing can result from Gi-coupled inwardly-rectifying potassium channels (GIRK), the GIRK channel blocker tertiapin-Q was injected. Injection of GIRK blocker resulted in an increase in the nociceptive response and increased LFP activity. Immunostaining of the VP for glutamate vesicular transporter (VGLUT2) and gamma-aminobutyric acid vesicular transporter (VGAT) indicated a majority of the virally transfected cells were excitatory (VGLUT2 positive) and a minority were inhibitory (VGAT positive). We conclude first, that inhibition of the excitatory neurons within the VP reduced electrical activity and the orofacial nociceptive response and that the effect on excitatory neurons overwhelmed any change resulting from inhibitor neurons. Second, inhibition of LFP and nociception was due, in part, to GIRK activation.
Collapse
Affiliation(s)
- Jennifer Strand
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Crystal Stinson
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Larry L Bellinger
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Yuan Peng
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Phillip R Kramer
- Texas A&M University College of Dentistry, Dallas, TX 75246, United States.
| |
Collapse
|
8
|
Volpi C, Fallarino F, Mondanelli G, Macchiarulo A, Grohmann U. Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Expert Opin Drug Discov 2018; 13:411-423. [DOI: 10.1080/17460441.2018.1443076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Goudet C, Rovira X, Llebaria A. Shedding light on metabotropic glutamate receptors using optogenetics and photopharmacology. Curr Opin Pharmacol 2018; 38:8-15. [DOI: 10.1016/j.coph.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 11/27/2022]
|
10
|
Knezevic NN, Yekkirala A, Yaksh TL. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics. Anesth Analg 2017; 125:1714-1732. [PMID: 29049116 PMCID: PMC5679134 DOI: 10.1213/ane.0000000000002442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- From the *Department of Anesthesiology, Advocate Illinois Masonic Medical Center Chicago, Illinois; Departments of †Anesthesiology and ‡Surgery, University of Illinois, Chicago, Illinois; §Department of Neurobiology, Harvard Medical School, and Boston Children's Hospital, Boston, Massachusetts; ‖Blue Therapeutics, Harvard Innovation Launch Lab, Allston, Massachusetts; and Departments of ¶Anesthesiology and #Pharmacology, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
11
|
Kramer PR, Strand J, Stinson C, Bellinger LL, Kinchington PR, Yee MB, Umorin M, Peng YB. Role for the Ventral Posterior Medial/Posterior Lateral Thalamus and Anterior Cingulate Cortex in Affective/Motivation Pain Induced by Varicella Zoster Virus. Front Integr Neurosci 2017; 11:27. [PMID: 29089872 PMCID: PMC5651084 DOI: 10.3389/fnint.2017.00027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/22/2017] [Indexed: 01/17/2023] Open
Abstract
Varicella zoster virus (VZV) infects the face and can result in chronic, debilitating pain. The mechanism for this pain is unknown and current treatment is often not effective, thus investigations into the pain pathway become vital. Pain itself is multidimensional, consisting of sensory and affective experiences. One of the primary brain substrates for transmitting sensory signals in the face is the ventral posterior medial/posterior lateral thalamus (VPM/VPL). In addition, the anterior cingulate cortex (ACC) has been shown to be vital in the affective experience of pain, so investigating both of these areas in freely behaving animals was completed to address the role of the brain in VZV-induced pain. Our lab has developed a place escape avoidance paradigm (PEAP) to measure VZV-induced affective pain in the orofacial region of the rat. Using this assay as a measure of the affective pain experience a significant response was observed after VZV injection into the whisker pad and after VZV infusion into the trigeminal ganglion. Local field potentials (LFPs) are the summed electrical current from a group of neurons. LFP in both the VPM/VPL and ACC was attenuated in VZV injected rats after inhibition of neuronal activity. This inhibition of VPM/VPL neurons was accomplished using a designer receptor exclusively activated by a designer drug (DREADD). Immunostaining showed that cells within the VPM/VPL expressed thalamic glutamatergic vesicle transporter-2, NeuN and DREADD suggesting inhibition occurred primarily in excitable neurons. From these results we conclude: (1) that VZV associated pain does not involve a mechanism exclusive to the peripheral nerve terminals, and (2) can be controlled, in part, by excitatory neurons within the VPM/VPL that potentially modulate the affective experience by altering activity in the ACC.
Collapse
Affiliation(s)
- Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Jennifer Strand
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Crystal Stinson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Larry L Bellinger
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Paul R Kinchington
- Department of Ophthalmology and Molecular Microbiology and Genetics, Eye and Ear Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael B Yee
- Department of Ophthalmology and Molecular Microbiology and Genetics, Eye and Ear Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mikhail Umorin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Yuan B Peng
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
12
|
Dalton JAR, Pin JP, Giraldo J. Analysis of positive and negative allosteric modulation in metabotropic glutamate receptors 4 and 5 with a dual ligand. Sci Rep 2017; 7:4944. [PMID: 28694498 PMCID: PMC5504000 DOI: 10.1038/s41598-017-05095-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/25/2017] [Indexed: 12/24/2022] Open
Abstract
As class C GPCRs and regulators of synaptic activity, human metabotropic glutamate receptors (mGluRs) 4 and 5 are prime targets for allosteric modulation, with mGlu5 inhibition or mGlu4 stimulation potentially treating conditions like chronic pain and Parkinson’s disease. As an allosteric modulator that can bind both receptors, 2-Methyl-6-(phenylethynyl)pyridine (MPEP) is able to negatively modulate mGlu5 or positively modulate mGlu4. At a structural level, how it elicits these responses and how mGluRs undergo activation is unclear. Here, we employ homology modelling and 30 µs of atomistic molecular dynamics (MD) simulations to probe allosteric conformational change in mGlu4 and mGlu5, with and without docked MPEP. Our results identify several structural differences between mGlu4 and mGlu5, as well as key differences responsible for MPEP-mediated positive and negative allosteric modulation, respectively. A novel mechanism of mGlu4 activation is revealed, which may apply to all mGluRs in general. This involves conformational changes in TM3, TM4 and TM5, separation of intracellular loop 2 (ICL2) from ICL1/ICL3, and destabilization of the ionic-lock. On the other hand, mGlu5 experiences little disturbance when MPEP binds, maintaining its inactive state with reduced conformational fluctuation. In addition, when MPEP is absent, a lipid molecule can enter the mGlu5 allosteric pocket.
Collapse
Affiliation(s)
- James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Network Biomedical Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Jean-Philippe Pin
- Institute of Functional Genomics, Université de Montpellier, Unité Mixte de Recherche 5302 CNRS, Montpellier, France.,Unité de recherche U1191, INSERM, Montpellier, France
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Network Biomedical Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
13
|
Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 2017; 114:E3546-E3554. [PMID: 28396447 DOI: 10.1073/pnas.1619652114] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling occurs in complex spatiotemporal patterns that are difficult to probe using standard pharmacological and genetic approaches. A powerful approach for dissecting GPCRs is to use light-controlled pharmacological agents that are tethered covalently and specifically to genetically engineered receptors. However, deficits in our understanding of the mechanism of such photoswitches have limited application of this approach and its extension to other GPCRs. In this study, we have harnessed the power of bioorthogonal tethering to SNAP and CLIP protein tags to create a family of light-gated metabotropic glutamate receptors (mGluRs). We define the mechanistic determinants of photoswitch efficacy, including labeling efficiency, dependence on photoswitch structure, length dependence of the linker between the protein tag and the glutamate ligand, effective local concentration of the glutamate moiety, and affinity of the receptor for the ligand. We improve the scheme for photoswitch synthesis as well as photoswitch efficiency, and generate seven light-gated group II/III mGluRs, including variants of mGluR2, 3, 6, 7, and 8. Members of this family of light-controlled receptors can be used singly or in specifically labeled, independently light-controlled pairs for multiplexed control of receptor populations.
Collapse
|
14
|
Zhuo M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain. Neuropharmacology 2017; 112:228-234. [DOI: 10.1016/j.neuropharm.2016.08.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
|
15
|
Yaksh TL, Fisher CJ, Hockman TM, Wiese AJ. Current and Future Issues in the Development of Spinal Agents for the Management of Pain. Curr Neuropharmacol 2017; 15:232-259. [PMID: 26861470 PMCID: PMC5412694 DOI: 10.2174/1570159x14666160307145542] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety.
Collapse
Affiliation(s)
- Tony L. Yaksh
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Casey J. Fisher
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Tyler M. Hockman
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Ashley J. Wiese
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| |
Collapse
|
16
|
Yan D, Liu X, Guo SW. Nerve fibers and endometriotic lesions: partners in crime in inflicting pains in women with endometriosis. Eur J Obstet Gynecol Reprod Biol 2016; 209:14-24. [PMID: 27418559 DOI: 10.1016/j.ejogrb.2016.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
One of major objectives in treating endometriosis is to alleviate pain since dysmenorrhea and other types of pain top the list of complaints from women with endometriosis who seek medical attention. Indeed, endometriosis-associated pain (EAP) is the most debilitating of the disease that negatively impacts on the quality of life in affected women, contributing significantly to the burden of disease and adding to the substantial personal and societal costs. Unfortunately, the mechanisms underlying the EAP are still poorly understood. In the last two decades, one active research field in endometriosis is the investigation on the distribution and genesis of nerve fibers in eutopic and ectopic endometrium, and the attempt to use endometrial nerve fiber density for diagnostic purpose. Since EAP presumably starts with the terminal sensory nerves, in or around endometriotic lesions, that transduce noxious mediators to the central nervous system (CNS) which ultimately perceives pain, this field of research holds the promise to elucidate the molecular mechanisms underlying the EAP, thus opening new avenues for novel diagnostics and therapeutics. In this review, we shall first briefly provide some basic facts on nerve fibers, and then provide an overview of some major findings in this filed while also note some conflicting results and expose areas in need of further research. We point out that since recently accumulated evidence suggests that endometriotic lesions are wounds undergoing repeated tissue injury and repair, the relationship between endometriotic lesions and nerve fibers is not simply unidirectional, i.e. lesions promote hyperinnervations. Rather, it is bidirectional, i.e. endometriotic lesions and nerve fibers engage active cross-talks, resulting in the development of endometriosis and pain. That is, nerve fibers and endometriotic lesions are actually partners in crime in inflicting pains in women with endometriosis, aided and abetted possibly by other culprits, some yet to be identified. We provide a list of possible perpetrators likely to be involved in this crime. Finally, we discuss possible implications when viewing the relationship from this vista.
Collapse
Affiliation(s)
- Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Ivashkin P, Lemonnier G, Tora AS, Pin JP, Goudet C, Jubault P, Pannecoucke X. Synthesis and studies on the mGluR agonist activity of FAP4 stereoisomers. Bioorg Med Chem Lett 2015; 25:2523-6. [PMID: 25958247 DOI: 10.1016/j.bmcl.2015.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022]
Abstract
The four stereoisomers of 1-amino-2-fluoro-2-(phosphonomethyl)cyclopropane-1-carboxylic acid (FAP4) were synthesized via diastereoselective Rh(II)-catalysed cyclopropanation of a phosphonylated fluoroalkene. Different isomers of FAP4 and the corresponding non-fluorinated analogs showed a similar pharmacological profile against the isoforms of metabotropic glutamate receptor (mGluR). Within the fluorinated series, (-)-(Z)-FAP4 and (-)-(E)-FAP4 demonstrated the highest agonist activity against mGlu4 (EC50 0.10 μM). Our results suggest that fluorocyclopropanes bearing an amino-acid function can be suitable for the development of potent conformationally restricted mGluR agonists.
Collapse
Affiliation(s)
- Pavel Ivashkin
- NormandieUniv., COBRA, UMR 6014 & FR 3038, Univ. Rouen, INSA Rouen, CNRS, 1 rue Tesnière, F-76821 Mont-Saint-Aignan Cedex, France
| | - Gérald Lemonnier
- NormandieUniv., COBRA, UMR 6014 & FR 3038, Univ. Rouen, INSA Rouen, CNRS, 1 rue Tesnière, F-76821 Mont-Saint-Aignan Cedex, France
| | - Amélie S Tora
- Institut de Génomique Fonctionnelle, CNRS UMR5203, Université de Montpellier, F-34094 Montpellier, France; INSERM U1191, F-34094 Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, Université de Montpellier, F-34094 Montpellier, France; INSERM U1191, F-34094 Montpellier, France
| | - Cyril Goudet
- Institut de Génomique Fonctionnelle, CNRS UMR5203, Université de Montpellier, F-34094 Montpellier, France; INSERM U1191, F-34094 Montpellier, France
| | - Philippe Jubault
- NormandieUniv., COBRA, UMR 6014 & FR 3038, Univ. Rouen, INSA Rouen, CNRS, 1 rue Tesnière, F-76821 Mont-Saint-Aignan Cedex, France.
| | - Xavier Pannecoucke
- NormandieUniv., COBRA, UMR 6014 & FR 3038, Univ. Rouen, INSA Rouen, CNRS, 1 rue Tesnière, F-76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|