1
|
Gul S, Gallo R, Bertolino L, Patauner F, Buono S, De Rosa R, Esposito C, Galdieri N, Karruli A, Iossa D, Piscitelli E, Andini R, Corcione A, Durante-Mangoni E. Pharmacokinetic parameters of CAZ-AVI in the normal lung and in models of pneumonia: lessons for treatment optimization in critical care. J Chemother 2024; 36:465-473. [PMID: 38288996 DOI: 10.1080/1120009x.2024.2308977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 09/20/2024]
Abstract
The spread of multidrug-resistant Gram-negative bacterial infections is a significant issue for worldwide public health. Gram-negative organisms regularly develop resistance to antibiotics, especially to β-lactam antimicrobials, which can drastically restrict the number of therapies. A third-generation cephalosporin and the non-β-lactam β-lactamase inhibitor avibactam, which exhibits broad-spectrum β-lactamase inhibition in vitro, are combined to form ceftazidime-avibactam (CAZ-AVI). In this narrative review, we summarize data on pharmacokinetic (PK) parameters for CAZ-AVI in both animal and human models of pneumonia, as well as in healthy individuals. We assessed current literature performing an extensive search of the literature, using as search words 'CAZ-AVI', 'pharmacokinetics', 'pneumonia', 'lung', and 'epithelial lining fluid'. Overall, lung exposure studies of CAZ-AVI revealed that the epithelial lining fluid penetration ranges between 30% and 35% of plasma concentration. Despite the fair lung penetration of CAZ-AVI, this antimicrobial agent has a pivotal role in managing patients with multi-drug resistant Gram-negative pneumonia, however further studies are needed to better assess its PK profile.
Collapse
Affiliation(s)
- Sabiha Gul
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Raffaella Gallo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lorenzo Bertolino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fabian Patauner
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Salvatore Buono
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Rosanna De Rosa
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Clelia Esposito
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Nicola Galdieri
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Arta Karruli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Domenico Iossa
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli - Ospedale Monaldi, Napoli, Italy
| | - Eugenio Piscitelli
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Roberto Andini
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli - Ospedale Monaldi, Napoli, Italy
| | - Antonio Corcione
- Department of Critical Care Medicine, AORN Ospedali dei Colli, Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli - Ospedale Monaldi, Napoli, Italy
| |
Collapse
|
2
|
Rando E, Novy E, Sangiorgi F, De Pascale G, Fantoni M, Murri R, Roberts JA, Cotta MO. A Systematic Review of the Pharmacokinetics and Pharmacodynamics of Novel Beta-Lactams and Beta-Lactam with Beta-Lactamase Inhibitor Combinations for the Treatment of Pneumonia Caused by Carbapenem-Resistant Gram-Negative Bacteria. Int J Antimicrob Agents 2024; 64:107266. [PMID: 38971203 DOI: 10.1016/j.ijantimicag.2024.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Novel beta-lactams show activity against many multidrug-resistant Gram-negative bacteria that cause severe lung infections. Understanding pharmacokinetic/pharmacodynamic characteristics of these agents may help optimise outcomes in the treatment of pneumonia. OBJECTIVES To describe and appraise studies that report pulmonary pharmacokinetic and pharmacodynamic data of cefiderocol, ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/cilastatin/relebactam and meropenem/vaborbactam. METHODS MEDLINE (PubMed), Embase, Web of Science and Scopus libraries were used for the literature search. Pulmonary population pharmacokinetic and pharmacokinetic/pharmacodynamic studies on adult patients receiving cefiderocol, ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/cilastatin/relebactam, and meropenem/vaborbactam published in peer-reviewed journals were included. Two independent authors screened, reviewed and extracted data from included articles. A reporting guideline for clinical pharmacokinetic studies (ClinPK statement) was used for bias assessment. Relevant outcomes were included, such as population pharmacokinetic parameters and probability of target attainment of dosing regimens. RESULTS Twenty-four articles were included. There was heterogeneity in study methods and reporting of results, with diversity across studies in adhering to the ClinPK statement checklist. Ceftolozane/tazobactam was the most studied agent. Only two studies collected epithelial lining fluid samples from patients with pneumonia. All the other phase I studies enrolled healthy subjects. Significant population heterogeneity was evident among available population pharmacokinetic models. Probabilities of target attainment rates above 90% using current licensed dosing regiments were reported in most studies. CONCLUSIONS Although lung pharmacokinetics was rarely described, this review observed high target attainment using plasma pharmacokinetic data for all novel beta-lactams. Future studies should describe lung pharmacokinetics in patient populations at risk of carbapenem-resistant pathogen infections.
Collapse
Affiliation(s)
- Emanuele Rando
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Emmanuel Novy
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Department of Anaesthesiology, Critical Care and Perioperative Medicine, Nancy University Hospital, Nancy, France; SIMPA, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Flavio Sangiorgi
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienza dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Fantoni
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Rita Murri
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia; Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Menino Osbert Cotta
- Department of Anaesthesiology, Critical Care and Perioperative Medicine, Nancy University Hospital, Nancy, France; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
| |
Collapse
|
3
|
Huynh D, Tung N, Dam Q, Tran T, Hulten KG, Harrison CJ, Kaplan SL, Nguyen A, Do TH, Setty A, Le J. Amoxicillin and penicillin G dosing in pediatric community-acquired pneumococcal pneumonia in the era of conjugate pneumococcal vaccines. Pharmacotherapy 2024; 44:606-614. [PMID: 36571459 DOI: 10.1002/phar.2756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Parenteral penicillin G (PENG) and oral amoxicillin (AMOX) are recommended as treatment for pediatric community-acquired pneumonia (CAP). With recent epidemiologic penicillin susceptibility data for Streptococcus pneumoniae, the most common etiology of CAP, the objective of this study was to evaluate optimal dosing regimens of PENG and AMOX based on population pharmacokinetics linked to current susceptibility data. METHODS Using NONMEM v7.3, Monte Carlo simulations (N = 10,000) were conducted for AMOX 15 mg/kg/dose PO every 8 h (standard-dose), AMOX 45 mg/kg/dose PO every 12 h (high-dose), and PENG 62,500 units/kg/day IV every 6 h using six virtual subjects with ages spanning 3 months to 15 years old. The probability of target attainment (PTA) was determined for both serum and epithelial lining fluid (ELF) to achieve free drug concentrations above the minimum inhibitory concentration (%fT>MIC) across the population of pneumococci for 30%-50% of the dosing interval. RESULTS In 2018, all 21 (100%) pneumococcal isolates were susceptible to both PENG and AMOX based on Clinical and Laboratory Standards Institute (CLSI; MIC at 2 mg/L) breakpoints, and 15 of 21 (71%) were susceptible based on EUCAST (MIC at 0.5 mg/L) breakpoints. As compared to CLSI, EUCAST breakpoints consistently achieved higher PTA for all antibiotic regimens. At 50% fT>MIC in the serum at the susceptible MICs, standard-dose AMOX achieved >4% PTA (CLSI) and >86% PTA (EUCAST); high-dose AMOX achieved >73% PTA (CLSI) and >99% PTA (EUCAST); and PENG achieved 0% PTA (using CLSI) and 100% PTA (using EUCAST). Standard-dose AMOX, high-dose AMOX, and PENG achieved >71%, >93%, and 100% PTA, respectively, in the serum at 30%-50% fT>MIC when each patient was stochastically linked to an MIC based on the frequency distribution of national susceptibility data. The PTA was consistently lower in ELF as compared with serum for all regimens. CONCLUSION Based on the recent rates of resistance, antibiotic doses evaluated provide appropriate exposure for pediatric CAP based on the serum and ELF data associated with predicted clinical and microbiologic success for pneumococcus. High-dose AMOX may still be required to treat pediatric CAP, especially if using CLSI breakpoints. Ongoing surveillance for resistance is essential.
Collapse
Affiliation(s)
- Dustin Huynh
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California, USA
| | - Norint Tung
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California, USA
| | - Quang Dam
- Miller Children's and Women's Hospital of Long Beach, Long Beach, California, USA
| | - Tri Tran
- School of Medicine, University of California Riverside, Riverside, California, USA
| | - Kristina G Hulten
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher J Harrison
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
- Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Sheldon L Kaplan
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Allison Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California, USA
| | - Tyler H Do
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California, USA
| | - Amartya Setty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California, USA
| | - Jennifer Le
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California, USA
- Miller Children's and Women's Hospital of Long Beach, Long Beach, California, USA
| |
Collapse
|
4
|
Hermans E, Meersschaut J, Van Herteryck I, Devreese M, Walle JV, De Paepe P, De Cock PA. Have We Neglected to Study Target-Site Drug Exposure in Children? A Systematic Review of the Literature. Clin Pharmacokinet 2024; 63:439-468. [PMID: 38551787 DOI: 10.1007/s40262-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Drug dosing should ideally be based on the drug concentrations at the target site, which, for most drugs, corresponds to the tissue. The exact influence of growth and development on drug tissue distribution is unclear. This systematic review compiles the current knowledge on the tissue distribution of systemically applied drugs in children, with the aim to identify priorities in tissue pharmacokinetic (PK) research in this population. METHODS A systematic literature search was performed in the MEDLINE and Embase databases. RESULTS Forty-two relevant articles were identified, of which 71% investigated antibiotics, while drug classes from the other studies were anticancer drugs, antifungals, anthelmintics, sedatives, thyreostatics, immunomodulators, antiarrhythmics, and exon skipping therapy. The majority of studies (83%) applied tissue biopsy as the sampling technique. Tonsil and/or adenoid tissue was most frequently examined (70% of all included patients). The majority of studies had a small sample size (median 9, range 1-93), did not include the youngest age categories (neonates and infants), and were of low reporting quality. Due to the heterogeneous data from different study compounds, dosing schedules, populations, and target tissues, the possibility for comparison of PK data between studies was limited. CONCLUSION The influence of growth and development on drug tissue distribution continues to be a knowledge gap, due to the paucity of tissue PK data in children, especially in the younger age categories. Future research in this field should be encouraged as techniques to safely investigate drug tissue disposition in children are available.
Collapse
Affiliation(s)
- Eline Hermans
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- Department of Pediatrics, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Jozefien Meersschaut
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Isis Van Herteryck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Johan Vande Walle
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
- Department of Pediatric Nephrology, SafePeDrug, Erknet Center, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Peter De Paepe
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
- Department of Emergency Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Pieter A De Cock
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pharmacy, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pediatric Intensive Care, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Rinderknecht CH, Ning M, Wu C, Wilson MS, Gampe C. Designing inhaled small molecule drugs for severe respiratory diseases: an overview of the challenges and opportunities. Expert Opin Drug Discov 2024; 19:493-506. [PMID: 38407117 DOI: 10.1080/17460441.2024.2319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Inhaled drugs offer advantages for the treatment of respiratory diseases over oral drugs by delivering the drug directly to the lung, thus improving the therapeutic index. There is an unmet medical need for novel therapies for lung diseases, exacerbated by a multitude of challenges for the design of inhaled small molecule drugs. AREAS COVERED The authors review the challenges and opportunities for the design of inhaled drugs for respiratory diseases with a focus on new target discovery, medicinal chemistry, and pharmacokinetic, pharmacodynamic, and toxicological evaluation of drug candidates. EXPERT OPINION Inhaled drug discovery is facing multiple unique challenges. Novel biological targets are scarce, as is the guidance for medicinal chemistry teams to design compounds with inhalation-compatible features. It is exceedingly difficult to establish a PK/PD relationship given the complexity of pulmonary PK and the impact of physical properties of the drug substance on PK. PK, PD and toxicology studies are technically challenging and require large amounts of drug substance. Despite the current challenges, the authors foresee that the design of inhaled drugs will be facilitated in the future by our increasing understanding of pathobiology, emerging medicinal chemistry guidelines, advances in drug formulation, PBPK models, and in vitro toxicology assays.
Collapse
Affiliation(s)
| | - Miaoran Ning
- Drug Metabolism and Pharmacokinetics, gRED, Genentech, South San Francisco, CA, USA
| | - Connie Wu
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | - Mark S Wilson
- Discovery Immunology, gRED, Genentech, South San Francisco, CA, USA
| | - Christian Gampe
- Discovery Chemistry, gRED, Genentech, South San Francisco, CA, USA
| |
Collapse
|
6
|
Rodvold KA, Shorr AF. Lessons Are Still Being Learned about Intrapulmonary Antibiotic Concentrations. Am J Respir Crit Care Med 2024; 209:777-778. [PMID: 38300143 PMCID: PMC10995571 DOI: 10.1164/rccm.202312-2338ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Keith A Rodvold
- Colleges of Pharmacy and Medicine University of Illinois Chicago Chicago, Illinois
| | - Andrew F Shorr
- Pulmonary and Critical Care Medicine Medstar Washington Hospital Center Washington, District of Columbia
| |
Collapse
|
7
|
Dhanani J, Roberts JA, Monsel A, Torres A, Kollef M, Rouby JJ. Understanding the nebulisation of antibiotics: the key role of lung microdialysis studies. Crit Care 2024; 28:49. [PMID: 38373973 PMCID: PMC10875779 DOI: 10.1186/s13054-024-04828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Nebulisation of antibiotics is a promising treatment for ventilator-associated pneumonia (VAP) caused by multidrug-resistant organisms. Ensuring effective antibiotic concentrations at the site of infection in the interstitial space fluid is crucial for clinical outcomes. Current assessment methods, such as epithelial lining fluid and tissue homogenates, have limitations in providing longitudinal pharmacokinetic data. MAIN BODY Lung microdialysis, an invasive research technique predominantly used in animals, involves inserting probes into lung parenchyma to measure antibiotic concentrations in interstitial space fluid. Lung microdialysis offers unique advantages, such as continuous sampling, regional assessment of antibiotic lung concentrations and avoidance of bronchial contamination. However, it also has inherent limitations including the cost of probes and assay development, the need for probe calibration and limited applicability to certain antibiotics. As a research tool in VAP, lung microdialysis necessitates specialist techniques and resource-intensive experimental designs involving large animals undergoing prolonged mechanical ventilation. However, its potential impact on advancing our understanding of nebulised antibiotics for VAP is substantial. The technique may enable the investigation of various factors influencing antibiotic lung pharmacokinetics, including drug types, delivery devices, ventilator settings, interfaces and disease conditions. Combining in vivo pharmacokinetics with in vitro pharmacodynamic simulations can become feasible, providing insights to inform nebulised antibiotic dose optimisation regimens. Specifically, it may aid in understanding and optimising the nebulisation of polymyxins, effective against multidrug-resistant Gram-negative bacteria. Furthermore, lung microdialysis holds promise in exploring novel nebulisation therapies, including repurposed antibiotic formulations, bacteriophages and immunomodulators. The technique's potential to monitor dynamic biochemical changes in pneumonia, such as cytokines, metabolites and inflammation/infection markers, opens avenues for developing theranostic tools tailored to critically ill patients with VAP. CONCLUSION In summary, lung microdialysis can be a potential transformative tool, offering real-time insights into nebulised antibiotic pharmacokinetics. Its potential to inform optimal dosing regimen development based on precise target site concentrations and contribute to development of theranostic tools positions it as key player in advancing treatment strategies for VAP caused by multidrug-resistant organisms. The establishment of international research networks, exemplified by LUMINA (lung microdialysis applied to nebulised antibiotics), signifies a proactive step towards addressing complexities and promoting multicentre experimental studies in the future.
Collapse
Affiliation(s)
- Jayesh Dhanani
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Brisbane, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Brisbane, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Antoine Monsel
- Unité Mixte de Recherche (UMR)-S 959, Immunology-Immunopathology-Immunotherapy, Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne University, GRC 29, Assistance Publique Hôpitaux de Paris (AP-HP), DMU DREAM, Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France
| | - Antoni Torres
- Department of Pneumology, Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), SGR 911- Ciber de Enfermedades Respiratorias (Ciberes), University of Barcelona, Barcelona, Spain
| | - Marin Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jean-Jacques Rouby
- Sorbonne University, GRC 29, Assistance Publique Hôpitaux de Paris (AP-HP), DMU DREAM, Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
8
|
Martin-Loeches I, Bruno CJ, DeRyke CA. Perspectives on the use of ceftolozane/tazobactam: a review of clinical trial data and real-world evidence. Future Microbiol 2024; 19:465-480. [PMID: 38252038 PMCID: PMC11216532 DOI: 10.2217/fmb-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) are common healthcare-associated infections linked to high morbidity and mortality. Gram-negative pathogens, such as Pseudomonas aeruginosa, exhibit multidrug resistance and are recognized as major public health concerns, particularly among critically ill patients with HABP/VABP. Ceftolozane/tazobactam is a novel combination antibacterial agent comprising ceftolozane (a potent antipseudomonal cephalosporin) and tazobactam (a β-lactamase inhibitor). Phase III trials have demonstrated non-inferiority of ceftolozane/tazobactam to comparators, leading to the approval of ceftolozane/tazobactam for the treatment of complicated urinary tract infections, complicated intra-abdominal infections, and nosocomial pneumonia. In this article, we review the clinical trial evidence and key real-world effectiveness data of ceftolozane/tazobactam for the treatment of serious healthcare-associated Gram-negative infections, focusing on patients with HABP/VABP.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, D08 NHY1, Ireland
| | | | | |
Collapse
|
9
|
Bissantz C, Zampaloni C, David-Pierson P, Dieppois G, Guenther A, Trauner A, Winther L, Stubbings W. Translational PK/PD for the Development of Novel Antibiotics-A Drug Developer's Perspective. Antibiotics (Basel) 2024; 13:72. [PMID: 38247631 PMCID: PMC10812724 DOI: 10.3390/antibiotics13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Antibiotic development traditionally involved large Phase 3 programs, preceded by Phase 2 studies. Recognizing the high unmet medical need for new antibiotics and, in some cases, challenges to conducting large clinical trials, regulators created a streamlined clinical development pathway in which a lean clinical efficacy dataset is complemented by nonclinical data as supportive evidence of efficacy. In this context, translational Pharmacokinetic/Pharmacodynamic (PK/PD) plays a key role and is a major contributor to a "robust" nonclinical package. The classical PK/PD index approach, proven successful for established classes of antibiotics, is at the core of recent antibiotic approvals and the current antibacterial PK/PD guidelines by regulators. Nevertheless, in the case of novel antibiotics with a novel Mechanism of Action (MoA), there is no prior experience with the PK/PD index approach as the basis for translating nonclinical efficacy to clinical outcome, and additional nonclinical studies and PK/PD analyses might be considered to increase confidence. In this review, we discuss the value and limitations of the classical PK/PD approach and present potential risk mitigation activities, including the introduction of a semi-mechanism-based PK/PD modeling approach. We propose a general nonclinical PK/PD package from which drug developers might choose the studies most relevant for each individual candidate in order to build up a "robust" nonclinical PK/PD understanding.
Collapse
Affiliation(s)
- Caterina Bissantz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Claudia Zampaloni
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Pascale David-Pierson
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Guennaelle Dieppois
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Guenther
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrej Trauner
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Lotte Winther
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - William Stubbings
- Product Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| |
Collapse
|
10
|
Hyun DG, Seo J, Lee SY, Ahn JH, Hong SB, Lim CM, Koh Y, Huh JW. Extended Versus Intermittent Meropenem Infusion in the Treatment of Nosocomial Pneumonia: A Retrospective Single-Center Study. Antibiotics (Basel) 2023; 12:1542. [PMID: 37887243 PMCID: PMC10604670 DOI: 10.3390/antibiotics12101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The efficacy of extended meropenem infusions in patients with nosocomial pneumonia is not well defined. Therefore, we compared the clinical outcomes of extended versus intermittent meropenem infusions in the treatment of nosocomial pneumonia. We performed a retrospective analysis of extended versus intermittent meropenem infusions in adult patients who had been treated for nosocomial pneumonia at a medical ICU between 1 May 2018 and 30 April 2020. The primary outcome was mortality at 14 days. Overall, 64 patients who underwent an extended infusion and 97 with an intermittent infusion were included in this study. At 14 days, 10 (15.6%) patients in the extended group and 22 (22.7%) in the intermittent group had died (adjusted hazard ratio (HR), 0.55; 95% confidence interval (CI): 0.23-1.31; p = 0.174). In the subgroup analysis, significant differences in mortality at day 14 were observed in patients following empirical treatment with meropenem (adjusted HR, 0.17; 95% CI: 0.03-0.96; p = 0.045) and in Gram-negative pathogens identified by blood or sputum cultures (adjusted HR, 0.01; 95% CI: 0.01-0.83; p = 0.033). Extended infusion of meropenem compared with intermittent infusion as a treatment option for nosocomial pneumonia may have a potential advantage in specific populations.
Collapse
Affiliation(s)
- Dong-gon Hyun
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jarim Seo
- Department of Pharmacy, Asan Medical Centre, Seoul 05505, Republic of Korea
| | - Su Yeon Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jee Hwan Ahn
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| |
Collapse
|
11
|
Rodvold KA, Bader J, Bruss JB, Hamed K. Pharmacokinetics of SPR206 in Plasma, Pulmonary Epithelial Lining Fluid, and Alveolar Macrophages following Intravenous Administration to Healthy Adult Subjects. Antimicrob Agents Chemother 2023; 67:e0042623. [PMID: 37338378 PMCID: PMC10353446 DOI: 10.1128/aac.00426-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
SPR206 is a next-generation polymyxin being developed for the treatment of multidrug-resistant (MDR) Gram-negative infections. This Phase 1 bronchoalveolar lavage (BAL) study was conducted to evaluate SPR206's safety and pharmacokinetics in plasma, pulmonary epithelial lining fluid (ELF), and alveolar macrophages (AM) in healthy volunteers. Subjects received a 100 mg intravenous (IV) dose of SPR206 infused over 1 h every 8 h for 3 consecutive doses. Each subject underwent 1 bronchoscopy with BAL at 2, 3, 4, 6, or 8 h after the start of the third IV infusion. SPR206 concentrations in plasma, BAL, and cell pellet were measured with a validated LC-MS/MS assay. Thirty-four subjects completed the study and 30 completed bronchoscopies. Mean SPR206 peak concentrations (Cmax) in plasma, ELF, and AM were 4395.0, 735.5, and 860.6 ng/mL, respectively. Mean area under the concentration-time curve (AUC0-8) for SPR206 in plasma, ELF, and AM was 20120.7, 4859.8, and 6026.4 ng*h/mL, respectively. The mean ELF to unbound plasma concentration ratio was 0.264, and mean AM to unbound plasma concentration ratio was 0.328. Mean SPR206 concentrations in ELF achieved lung exposures above the MIC for target Gram-negative pathogens for the entire 8-h dosing interval. Overall, SPR206 was well tolerated; 22 subjects (64.7%) reported at least 1 treatment-emergent adverse event (TEAE). Of the 40 reported TEAEs, 34 (85.0%) were reported as mild in severity. The most frequent TEAEs were oral paresthesia (10 subjects [29.4%]) and nausea (2 subjects [5.9%]). This study demonstrates pulmonary penetration of SPR206 and supports further development of SPR206 for the treatment of patients with serious infections caused by MDR Gram-negative pathogens.
Collapse
Affiliation(s)
| | - Justin Bader
- Spero Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jon B. Bruss
- Spero Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Kamal Hamed
- Spero Therapeutics, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Bhavnani SM, Hammel JP, Lakota EA, Trang M, Bader JC, Bulik CC, VanScoy BD, Rubino CM, Huband MD, Friedrich L, Steenbergen JN, Ambrose PG. Pharmacokinetic-Pharmacodynamic Target Attainment Analyses Evaluating Omadacycline Dosing Regimens for the Treatment of Patients with Community-Acquired Bacterial Pneumonia Arising from Streptococcus pneumoniae and Haemophilus influenzae. Antimicrob Agents Chemother 2023; 67:e0221321. [PMID: 36946741 PMCID: PMC10112269 DOI: 10.1128/aac.02213-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Omadacycline, a novel aminomethylcycline with in vitro activity against Gram-positive and -negative organisms, including Streptococcus pneumoniae and Haemophilus influenzae, is approved in the United States to treat patients with community-acquired bacterial pneumonia (CABP). Using nonclinical pharmacokinetic-pharmacodynamic (PK-PD) targets for efficacy and in vitro surveillance data for omadacycline against S. pneumoniae and H. influenzae, and a population pharmacokinetic model, PK-PD target attainment analyses were undertaken using total-drug epithelial lining fluid (ELF) and free-drug plasma exposures to evaluate omadacycline 100 mg intravenously (i.v.) every 12 h or 200 mg i.v. every 24 h (q24h) on day 1, followed by 100 mg i.v. q24h on day 2 and 300 mg orally q24h on days 3 to 5 for patients with CABP. Percent probabilities of PK-PD target attainment on days 1 and 2 by MIC were assessed using the following four approaches for selecting PK-PD targets: (i) median, (ii) second highest, (iii) highest, and (iv) randomly assigned total-drug ELF and free-drug plasma ratio of the area under the concentration-time curve to the MIC (AUC/MIC ratio) targets associated with a 1-log10 CFU reduction from baseline. Percent probabilities of PK-PD target attainment based on total-drug ELF AUC/MIC ratio targets on days 1 and 2 were ≥91.1% for S. pneumoniae for all approaches but the highest target and ≥99.2% for H. influenzae for all approaches at MIC90s (0.12 and 1 μg/mL for S. pneumoniae and H. influenzae, respectively). Lower percent probabilities of PK-PD target attainment based on free-drug plasma AUC/MIC ratio targets were observed for randomly assigned and the highest free-drug plasma targets for S. pneumoniae and for all targets for H. influenzae. These data provided support for approved omadacycline dosing regimens to treat patients with CABP and decisions for the interpretive criteria for the in vitro susceptibility testing of omadacycline against these pathogens.
Collapse
Affiliation(s)
- Sujata M Bhavnani
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Jeffrey P Hammel
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Elizabeth A Lakota
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Michael Trang
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Justin C Bader
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Catharine C Bulik
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Brian D VanScoy
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | | | | | | | | | - Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| |
Collapse
|
13
|
Shen Y, Kuti JL. Optimizing antibiotic dosing regimens for nosocomial pneumonia: a window of opportunity for pharmacokinetic and pharmacodynamic modeling. Expert Opin Drug Metab Toxicol 2023; 19:13-25. [PMID: 36786064 DOI: 10.1080/17425255.2023.2178896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Determining antibiotic exposure in the lung and the threshold(s) needed for effective antibacterial killing is paramount during development of new antibiotics for the treatment of nosocomial pneumonia, as these exposures directly affect clinical outcomes and resistance development. The use of pharmacokinetic and pharmacodynamic modeling is recommended by regulatory agencies to evaluate antibiotic pulmonary exposure and optimize dosage regimen selection. This process has been implemented in newer antibiotic development. AREAS COVERED This review will discuss the basis for conducting pharmacokinetic and pharmacodynamic studies to support dosage regimen selection and optimization for the treatment of nosocomial pneumonia. Pharmacokinetic/pharmacodynamic data that supported recent hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia indications for ceftolozane/tazobactam, ceftazidime/avibactam, imipenem/cilastatin/relebactam, and cefiderocol will be reviewed. EXPERT OPINION Optimal drug development requires the integration of preclinical pharmacodynamic studies, healthy volunteers and ideally patient bronchoalveolar lavage pharmacokinetic studies, Monte-Carlo simulation, and clinical trials. Currently, plasma exposure has been successfully used as a surrogate for lung exposure threshold. Future studies are needed to identify the value of lung pharmacodynamic thresholds in nosocomial pneumonia antibiotic dosage optimization.
Collapse
Affiliation(s)
- Yuwei Shen
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT USA
| |
Collapse
|
14
|
Plasma and Intrapulmonary Concentrations of Tebipenem following Oral Administration of Tebipenem Pivoxil Hydrobromide to Healthy Adult Subjects. Antimicrob Agents Chemother 2022; 66:e0059022. [PMID: 35762796 PMCID: PMC9295559 DOI: 10.1128/aac.00590-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tebipenem pivoxil hydrobromide (TBP-PI-HBr) is an oral carbapenem prodrug being developed for the treatment of serious bacterial infections. The active moiety, tebipenem, has broad-spectrum activity against common Enterobacterales pathogens, including extended-spectrum-β-lactamase (ESBL)-producing multidrug-resistant strains. This study evaluated the intrapulmonary pharmacokinetics (PK) and epithelial lining fluid (ELF) and alveolar macrophage (AM) concentrations of tebipenem relative to plasma levels in nonsmoking, healthy adult subjects. Thirty subjects received oral TBP-PI-HBr at 600 mg every 8 h for five doses. Serial blood samples were collected following the last dose. Each subject underwent one standardized bronchoscopy with bronchoalveolar lavage (BAL) 1, 2, 4, 6, or 8 h after the fifth dose of TBP-PI-HBr. The tebipenem area under the concentration-time curve for the 8-h dosing interval (AUC0-8) values in plasma, ELF, and AMs were calculated using the mean concentration at each BAL sampling time. Ratios of AUC0-8 values for total ELF and AMs to those for unbound plasma were determined, using a plasma protein binding value of 42%. Mean values ± standard deviations (SD) of tebipenem maximum (Cmax) and minimum (Cmin) total plasma concentrations were 11.37 ± 3.87 mg/L and 0.043 ± 0.039 mg/L, respectively. Peak tebipenem concentrations in plasma, ELF, and AMs occurred at 1 h and then decreased over 8 h. Ratios of tebipenem AUC0-8 values for ELF and AMs to those for unbound plasma were 0.191 and 0.047, respectively. Four (13.3%) subjects experienced adverse events (diarrhea, fatigue, papule, and coronavirus disease 2019 [COVID-19]); all resolved, and none were severe or serious. Tebipenem is distributed into the lungs of healthy adults, which supports the further evaluation of TBP-PI-HBr for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. (This study has been registered at ClinicalTrials.gov under identifier NCT04710407.).
Collapse
|
15
|
Kawaguchi N, Katsube T, Echols R, Wajima T, Nicolau DP. Intrapulmonary Pharmacokinetic Modeling and Simulation of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients With Pneumonia and Healthy Subjects. J Clin Pharmacol 2022; 62:670-680. [PMID: 34648652 PMCID: PMC9306831 DOI: 10.1002/jcph.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Cefiderocol is a siderophore cephalosporin for the treatment of infections caused by gram-negative bacteria including carbapenem-resistant strains. The aim of this study was to develop an intrapulmonary pharmacokinetic (PK) model of cefiderocol and assess the PK profile in lungs. An intrapulmonary PK model of cefiderocol was developed using the concentration data in plasma and epithelial lining fluid (ELF) from 7 patients with pneumonia requiring mechanical ventilation and 20 healthy subjects. Subsequently, the model was applied to assess the ELF exposure of 125 patients with nosocomial pneumonia. Monte Carlo simulations were performed to calculate the probability of target attainment for the percentage of time for which free ELF concentrations exceed the minimum inhibitory concentration (MIC) over the dosing interval (%fT>MIC,ELF ). The developed model adequately described ELF concentrations and suggested the delayed distribution in ELF for patients with pneumonia compared to healthy subjects. Lung penetration ratio of cefiderocol in patients with pneumonia was calculated to be 34%, which was 1.4-fold that in healthy subjects. The estimated %fT>MIC,ELF was 100% in most of patients with nosocomial pneumonia, and no PK/pharmacodynamic relationship with %fT>MIC,ELF was found for microbiological or clinical outcome. The probability of target attainment for 100% fT>MIC,ELF was ≥ 99.5% against MICs ≤2 μg/mL and ≥87.0% against MICs ≤4 μg/mL regardless of renal function. The median of simulated ELF trough concentrations at steady state was >4 μg/mL regardless of renal function. These results reveal the adequacy of cefiderocol exposure in plasma and ELF at the recommended dosing regimens adjusted on the basis of renal function in critically ill patients with pneumonia.
Collapse
Affiliation(s)
- Nao Kawaguchi
- Clinical Pharmacology & PharmacokineticsShionogi & Co., Ltd.OsakaJapan
| | - Takayuki Katsube
- Clinical Pharmacology & PharmacokineticsShionogi & Co., Ltd.OsakaJapan
| | - Roger Echols
- Infectious Disease Drug Development Consulting, LLCEastonConnecticutUSA
| | - Toshihiro Wajima
- Clinical Pharmacology & PharmacokineticsShionogi & Co., Ltd.OsakaJapan
- Clinical PharmacologyIDEC IncShinjuku‐kuTokyoJapan
| | - David P. Nicolau
- Center for Anti‐Infective Research and DevelopmentHartford HospitalHartfordConnecticutUSA
| |
Collapse
|
16
|
Qu W, Dong M, Pan Y, Xie S, Yuan Z, Huang L. Preparation of Aditoprim Injection against Streptococcus suis in Pigs and a Dose Regimen Based on Pharmacokinetic-Pharmacodynamic Modeling. Pharmaceutics 2022; 14:pharmaceutics14040730. [PMID: 35456564 PMCID: PMC9028088 DOI: 10.3390/pharmaceutics14040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
In order to effectively treat the infection of Streptococcus suis and reduce the emergence of drug-resistant bacteria, an aditoprim (ADP) injection was developed in this study. The pharmaceutical property investigation results demonstrated that ADP injection was a clear yellow liquid with 10 g ADP distributing in every 100 mL solution uniformly. Its pH value and drug content were around 6.20 and 99.35~100.40%, respectively. And quality assessment preliminarily indicated its reliable quality and stability. Additionally, the bronchoalveolar lavage fluid method was first applied to evaluate accurate ADP concentration at infection site in this study. Through pharmacodynamic assay, the MIC, MBC and MPC of ADP against Streptococcus suis CVCC 607 was 2 μg/mL, 4 μg/mL and 12.8 μg/mL, respectively. The bacteria growth inhibition curves showed that ADP was a concentration-dependent antibacterial drug, and the PK-PD model parameter of AUC/MIC was selected. The pharmacokinetic parameters of alveolar fluid evaluated by WinNonlin software revealed similar pharmacokinetic process of ADP in healthy pigs and infected pigs. Combined with pharmacokinetics-pharmacodynamics (PK-PD) modeling, the dosage regimen of 3~5 days with an interval of 12 h at 4.10 mg/kg or 5.91 mg/kg could be adopted to treat the infection of Streptococcus suis. Consequently, this ADP injection with a multi-dose protocol would be a promising antimicrobial product for efficient treatment of S. suis infection of pigs.
Collapse
Affiliation(s)
- Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengxiao Dong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87287140-8108
| |
Collapse
|
17
|
Drwiega EN, Rodvold KA. Authors' Reply to De Sutter, De Waele, and Vermeulen: "Penetration of Antibacterial Agents into Pulmonary Epithelial Lining Fluid: An Update". Clin Pharmacokinet 2022; 61:337-338. [PMID: 34982408 PMCID: PMC8724654 DOI: 10.1007/s40262-021-01101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/03/2022]
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, Room 164, University of Illinois Chicago, m/c 886, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Keith A Rodvold
- College of Pharmacy, Room 164, University of Illinois Chicago, m/c 886, 833 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Martin-Loeches I, Timsit JF, Kollef MH, Wunderink RG, Shime N, Nováček M, Kivistik Ü, Réa-Neto Á, Bruno CJ, Huntington JA, Lin G, Jensen EH, Motyl M, Yu B, Gates D, Butterton JR, Rhee EG. Clinical and microbiological outcomes, by causative pathogen, in the ASPECT-NP randomized, controlled, Phase 3 trial comparing ceftolozane/tazobactam and meropenem for treatment of hospital-acquired/ventilator-associated bacterial pneumonia. J Antimicrob Chemother 2022; 77:1166-1177. [PMID: 35022730 DOI: 10.1093/jac/dkab494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES In the ASPECT-NP trial, ceftolozane/tazobactam was non-inferior to meropenem for treating nosocomial pneumonia; efficacy outcomes by causative pathogen were to be evaluated. METHODS Mechanically ventilated participants with hospital-acquired/ventilator-associated bacterial pneumonia were randomized to 3 g ceftolozane/tazobactam (2 g ceftolozane/1 g tazobactam) q8h or 1 g meropenem q8h. Lower respiratory tract (LRT) cultures were obtained ≤36 h before first dose; pathogen identification and susceptibility were confirmed at a central laboratory. Prospective secondary per-pathogen endpoints included 28 day all-cause mortality (ACM), and clinical and microbiological response at test of cure (7-14 days after the end of therapy) in the microbiological ITT (mITT) population. RESULTS The mITT population comprised 511 participants (264 ceftolozane/tazobactam, 247 meropenem). Baseline LRT pathogens included Klebsiella pneumoniae (34.6%), Pseudomonas aeruginosa (25.0%) and Escherichia coli (18.2%). Among baseline Enterobacterales isolates, 171/456 (37.5%) were ESBL positive. For Gram-negative baseline LRT pathogens, susceptibility rates were 87.0% for ceftolozane/tazobactam and 93.3% for meropenem. For Gram-negative pathogens, 28 day ACM [52/259 (20.1%) and 62/240 (25.8%)], clinical cure rates [157/259 (60.6%) and 137/240 (57.1%)] and microbiological eradication rates [189/259 (73.0%) and 163/240 (67.9%)] were comparable with ceftolozane/tazobactam and meropenem, respectively. Per-pathogen microbiological eradication for Enterobacterales [145/195 (74.4%) and 129/185 (69.7%); 95% CI: -4.37 to 13.58], ESBL-producing Enterobacterales [56/84 (66.7%) and 52/73 (71.2%); 95% CI: -18.56 to 9.93] and P. aeruginosa [47/63 (74.6%) and 41/65 (63.1%); 95% CI: -4.51 to 19.38], respectively, were also comparable. CONCLUSIONS In mechanically ventilated participants with nosocomial pneumonia owing to Gram-negative pathogens, ceftolozane/tazobactam was comparable with meropenem for per-pathogen 28 day ACM and clinical and microbiological response.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- St James's Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland.,Universitat de Barcelona, IDIBAPS, CIBERes, Barcelona, Spain
| | | | - Marin H Kollef
- Washington University School of Medicine, 4523 Clayton Ave, Campus Box 8052, St. Louis, MO 63110, USA
| | - Richard G Wunderink
- Northwestern University Feinberg School of Medicine, 303 East Superior St, Simpson Querrey 5th Floor, Suite 5-301, Chicago, IL 60611, USA
| | - Nobuaki Shime
- Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Martin Nováček
- General Hospital of Kolin, Zizkova 146, Kolin 3, 280 00, Czech Republic
| | - Ülo Kivistik
- North Estonia Medical Centre Foundation, Sütiste tee 19, Tallinn, Harjumaa 13419, Estonia
| | - Álvaro Réa-Neto
- Universidade Federal do Paraná, Rua XV de Novembro, 1299 - Centro, Curitiba - PR, 80060-000, Brazil
| | | | | | - Gina Lin
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Erin H Jensen
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Mary Motyl
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Brian Yu
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Davis Gates
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Joan R Butterton
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Elizabeth G Rhee
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| |
Collapse
|
19
|
Aulin LBS, Tandar ST, van Zijp T, van Ballegooie E, van der Graaf PH, Saleh MAA, Välitalo P, van Hasselt JGC. Physiologically Based Modelling Framework for Prediction of Pulmonary Pharmacokinetics of Antimicrobial Target Site Concentrations. Clin Pharmacokinet 2022; 61:1735-1748. [PMID: 36401151 PMCID: PMC9676785 DOI: 10.1007/s40262-022-01186-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Prediction of antimicrobial target-site pharmacokinetics is of relevance to optimize treatment with antimicrobial agents. A physiologically based pharmacokinetic (PBPK) model framework was developed for prediction of pulmonary pharmacokinetics, including key pulmonary infection sites (i.e. the alveolar macrophages and the epithelial lining fluid). METHODS The modelling framework incorporated three lung PBPK models: a general passive permeability-limited model, a drug-specific permeability-limited model and a quantitative structure-property relationship (QSPR)-informed perfusion-limited model. We applied the modelling framework to three fluoroquinolone antibiotics. Incorporation of experimental drug-specific permeability data was found essential for accurate prediction. RESULTS In the absence of drug-specific transport data, our QSPR-based model has generic applicability. Furthermore, we evaluated the impact of drug properties and pathophysiologically related changes on pulmonary pharmacokinetics. Pulmonary pharmacokinetics were highly affected by physiological changes, causing a shift in the main route of diffusion (i.e. paracellular or transcellular). Finally, we show that lysosomal trapping can cause an overestimation of cytosolic concentrations for basic compounds when measuring drug concentrations in cell homogenate. CONCLUSION The developed lung PBPK model framework constitutes a promising tool for characterization of pulmonary exposure of systemically administrated antimicrobials.
Collapse
Affiliation(s)
- Linda B. S. Aulin
- grid.5132.50000 0001 2312 1970Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Sebastian T. Tandar
- grid.5132.50000 0001 2312 1970Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Torben van Zijp
- grid.5132.50000 0001 2312 1970Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Etienne van Ballegooie
- grid.5132.50000 0001 2312 1970Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Piet H. van der Graaf
- grid.5132.50000 0001 2312 1970Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands ,Certara QSP, Canterbury, UK
| | - Mohammed A. A. Saleh
- grid.5132.50000 0001 2312 1970Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Pyry Välitalo
- grid.9668.10000 0001 0726 2490University of Eastern Finland, Kuopio, Finland ,grid.490668.50000 0004 0495 5912Finnish Medicines Agency, Kuopio, Finland
| | - J. G. Coen van Hasselt
- grid.5132.50000 0001 2312 1970Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
20
|
Tanner L, Mashabela GT, Omollo CC, de Wet TJ, Parkinson CJ, Warner DF, Haynes RK, Wiesner L. Intracellular Accumulation of Novel and Clinically Used TB Drugs Potentiates Intracellular Synergy. Microbiol Spectr 2021; 9:e0043421. [PMID: 34585951 PMCID: PMC8557888 DOI: 10.1128/spectrum.00434-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic repertoire for tuberculosis (TB) remains limited despite the existence of many TB drugs that are highly active in in vitro models and possess clinical utility. Underlying the lack of efficacy in vivo is the inability of TB drugs to penetrate microenvironments inhabited by the causative agent, Mycobacterium tuberculosis, including host alveolar macrophages. Here, we determined the ability of the phenoxazine PhX1 previously shown to be active against M. tuberculosis in vitro to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. We also investigated the extent of permeation into uninfected and M. tuberculosis-infected human macrophage-like Tamm-Horsfall protein 1 (THP-1) cells directly and by comparing to results obtained in vitro in synergy assays. Our data indicate that PhX1 (4,750 ± 127.2 ng/ml) penetrates more effectively into THP-1 cells than do the clinically used anti-TB agents, rifampin (3,050 ± 62.9 ng/ml), moxifloxacin (3,374 ± 48.7 ng/ml), bedaquiline (4,410 ± 190.9 ng/ml), and linezolid (770 ± 14.1 ng/ml). Compound efficacy in infected cells correlated with intracellular accumulation, reinforcing the perceived importance of intracellular penetration as a key drug property. Moreover, we detected synergies deriving from redox-stimulatory combinations of PhX1 or clofazimine with the novel prenylated amino-artemisinin WHN296. Finally, we used compound synergies to elucidate the relationship between compound intracellular accumulation and efficacy, with PhX1/WHN296 synergy levels shown to predict drug efficacy. Collectively, our data support the utility of the applied assays in identifying in vitro active compounds with the potential for clinical development. IMPORTANCE This study addresses the development of novel therapeutic compounds for the eventual treatment of drug-resistant tuberculosis. Tuberculosis continues to progress, with cases of Mycobacterium tuberculosis (M. tuberculosis) resistance to first-line medications increasing. We assess new combinations of drugs with both oxidant and redox properties coupled with a third partner drug, with the focus here being on the potentiation of M. tuberculosis-active combinations of compounds in the intracellular macrophage environment. Thus, we determined the ability of the phenoxazine PhX1, previously shown to be active against M. tuberculosis in vitro, to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. In addition, the extent of permeation into human macrophage-like THP-1 cells and H37Rv-infected THP-1 cells was measured via mass spectrometry and compared to in vitro two-dimensional synergy and subsequent intracellular efficacy. Collectively, our data indicate that development of new drugs will be facilitated using the methods described herein.
Collapse
Affiliation(s)
- Lloyd Tanner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gabriel T. Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Charles C. Omollo
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy J. de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Penetration of Antibacterial Agents into Pulmonary Epithelial Lining Fluid: An Update. Clin Pharmacokinet 2021; 61:17-46. [PMID: 34651282 PMCID: PMC8516621 DOI: 10.1007/s40262-021-01061-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 01/22/2023]
Abstract
A comprehensive review of drug penetration into pulmonary epithelial lining fluid (ELF) was previously published in 2011. Since then, an extensive number of studies comparing plasma and ELF concentrations of antibacterial agents have been published and are summarized in this review. The majority of the studies included in this review determined ELF concentrations of antibacterial agents using bronchoscopy and bronchoalveolar lavage, and this review focuses on intrapulmonary penetration ratios determined with area under the concentration-time curve from healthy human adult studies or pharmacokinetic modeling of various antibacterial agents. If available, pharmacokinetic/pharmacodynamic parameters determined from preclinical murine infection models that evaluated ELF concentrations are also provided. There are also a limited number of recently published investigations of intrapulmonary penetration in critically ill patients with lower respiratory tract infections, where greater variability in ELF concentrations may exist. The significance of these changes may impact the intrapulmonary penetration in the setting of infection, and further studies relating ELF concentrations to clinical response are needed. Phase I drug development programs now include assessment of initial pharmacodynamic target values for pertinent organisms in animal models, followed by evaluation of antibacterial penetration into the human lung to assist in dosage selection for clinical trials in infected patients. The recent focus has been on β-lactam agents, including those in combination with β-lactamase inhibitors, particularly due to the rise of multidrug-resistant infections. This manifests as a large portion of the review focusing on cephalosporins and carbapenems, with or without β-lactamase inhibitors, in both healthy adult subjects and critically ill patients with lower respiratory tract infections. Further studies are warranted in critically ill patients with lower respiratory tract infections to evaluate the relationship between intrapulmonary penetration and clinical and microbiological outcomes. Our clinical research experience with these studies, along with this literature review, has allowed us to outline key steps in developing and evaluating dosage regimens to treat extracellular bacteria in lower respiratory tract infections.
Collapse
|
22
|
Katsube T, Nicolau DP, Rodvold KA, Wunderink RG, Echols R, Matsunaga Y, Menon A, Portsmouth S, Wajima T. Intrapulmonary pharmacokinetic profile of cefiderocol in mechanically ventilated patients with pneumonia. J Antimicrob Chemother 2021; 76:2902-2905. [PMID: 34383901 PMCID: PMC8521398 DOI: 10.1093/jac/dkab280] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Lung penetration of cefiderocol, a novel siderophore cephalosporin approved for treatment of nosocomial pneumonia, has previously been evaluated in healthy subjects. This study assessed the intrapulmonary pharmacokinetic profile of cefiderocol at steady state in hospitalized, mechanically ventilated pneumonia patients. METHODS Patients received cefiderocol 2 g (or ≤1.5 g if renally impaired), administered IV q8h as a 3 h infusion, or 2 g q6h if patients had augmented renal function (estimated CLCR > 120 mL/min). After multiple doses, each patient underwent a single bronchoalveolar lavage (BAL) procedure either at the end of the infusion or at 2 h after the end of infusion. Plasma samples were collected at 1, 3, 5 and 7 h after the start of infusion. After correcting for BAL dilution, cefiderocol concentrations in epithelial lining fluid (ELF) for each patient and the ELF/unbound plasma concentration ratio (RC, E/P) were calculated. Safety was assessed up to 7 days after the last cefiderocol dose. RESULTS Seven patients received cefiderocol. Geometric mean ELF concentration of cefiderocol was 7.63 mg/L at the end of infusion and 10.40 mg/L at 2 h after the end of infusion. RC, E/P was 0.212 at the end of infusion and 0.547 at 2 h after the end of infusion, suggesting delayed lung distribution. There were no adverse drug reactions. CONCLUSIONS The results suggest that cefiderocol penetrates the ELF in critically ill pneumonia patients with concentrations that are sufficient to treat Gram-negative bacteria with an MIC of ≤4 mg/L.
Collapse
Affiliation(s)
| | - David P Nicolau
- Centre for Anti-Infective Research & Development, Hartford
Hospital, Hartford, CT, USA
| | - Keith A Rodvold
- College of Pharmacy, University of Illinois at Chicago, Chicago,
IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University
Feinberg School of Medicine, Chicago, IL, USA
| | - Roger Echols
- Infectious Disease Drug Development Consulting, LLC, Easton, CT,
USA
| | | | | | | | | |
Collapse
|
23
|
Nebulized antibiotics for ventilator-associated pneumonia: methodological framework for future multicenter randomized controlled trials. Curr Opin Infect Dis 2021; 34:156-168. [PMID: 33605620 DOI: 10.1097/qco.0000000000000720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Although experimental evidence supports the use of nebulized antibiotics in ventilator-associated pneumonia (VAP), two recent multicenter randomized controlled trials (RCTs) have failed to demonstrate any benefit in VAP caused by Gram-negative bacteria (GNB). This review examines the methodological requirements concerning future RCTs. RECENT FINDINGS High doses of nebulized antibiotics are required to reach the infected lung parenchyma. Breath-synchronized nebulizers do not allow delivery of high doses. Mesh nebulizers perform better than jet nebulizers. Epithelial lining fluid concentrations do not reflect interstitial lung concentrations in patients receiving nebulized antibiotics. Specific ventilator settings for optimizing lung deposition require sedation to avoid patient's asynchrony with the ventilator. SUMMARY Future RCTs should compare a 3-5 day nebulization of amikacin or colistimethate sodium (CMS) to a 7-day intravenous administration of a new cephalosporine/ß-lactamase inhibitor. Inclusion criteria should be a VAP or ventilator-associated tracheobronchitis caused by documented extensive-drug or pandrug resistant GNB. If the GNB remains susceptible to aminoglycosides, nebulized amikacin should be administered at a dose of 40 mg/kg/day. If resistant to aminoglycosides, nebulized CMS should be administered at a dose of 15 millions international units (IU)/day. In VAP caused by pandrug-resistant GNB, 15 millions IU/day nebulized CMS (substitution therapy) should be compared with a 9 millions IU/day intravenous CMS.
Collapse
|
24
|
Chalmers JD, van Ingen J, van der Laan R, Herrmann JL. Liposomal drug delivery to manage nontuberculous mycobacterial pulmonary disease and other chronic lung infections. Eur Respir Rev 2021; 30:30/161/210010. [PMID: 34289985 PMCID: PMC9488898 DOI: 10.1183/16000617.0010-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nontuberculous mycobacterial (NTM) pulmonary disease is a chronic respiratory infection associated with declining lung function, radiological deterioration and significantly increased morbidity and mortality. Patients often have underlying lung conditions, particularly bronchiectasis and COPD. NTM pulmonary disease is difficult to treat because mycobacteria can evade host defences and antimicrobial therapy through extracellular persistence in biofilms and sequestration into macrophages. Management of NTM pulmonary disease remains challenging and outcomes are often poor, partly due to limited penetration of antibiotics into intracellular spaces and biofilms. Efficient drug delivery to the site of infection is therefore a key objective of treatment, but there is high variability in lung penetration by antibiotics. Inhalation is the most direct route of delivery and has demonstrated increased efficacy of antibiotics like amikacin compared with systemic administration. Liposomes are small, artificial, enclosed spherical vesicles, in which drug molecules can be encapsulated to provide controlled release, with potentially improved pharmacokinetics and reduced toxicity. They are especially useful for drugs where penetration of cell membranes is essential. Inhaled delivery of liposomal drug solutions can therefore facilitate direct access to macrophages in the lung where the infecting NTM may reside. A range of liposomal drugs are currently being evaluated in respiratory diseases. Liposome-encapsulated antibiotics can optimise respiratory disease treatment. Amikacin liposomal inhalation suspension is effective in nontuberculous mycobacterial pulmonary disease that has failed to convert following oral guideline-based therapy.https://bit.ly/3f3ixIu
Collapse
Affiliation(s)
- James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Jakko van Ingen
- Dept of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection and Inflammation, Montigny-le-Bretonneux, France.,APHP, Groupe Hospitalo-Universitaire Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| |
Collapse
|
25
|
Caro L, Nicolau DP, De Waele JJ, Kuti JL, Larson KB, Gadzicki E, Yu B, Zeng Z, Adedoyin A, Rhee EG. Lung penetration, bronchopulmonary pharmacokinetic/pharmacodynamic profile and safety of 3 g of ceftolozane/tazobactam administered to ventilated, critically ill patients with pneumonia. J Antimicrob Chemother 2021; 75:1546-1553. [PMID: 32211756 PMCID: PMC7225904 DOI: 10.1093/jac/dkaa049] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Ceftolozane/tazobactam is approved for hospital-acquired/ventilator-associated bacterial pneumonia at double the dose (i.e. 2 g/1 g) recommended for other indications. We evaluated the bronchopulmonary pharmacokinetic/pharmacodynamic profile of this 3 g ceftolozane/tazobactam regimen in ventilated pneumonia patients. Methods This was an open-label, multicentre, Phase 1 trial (clinicaltrials.gov: NCT02387372). Mechanically ventilated patients with proven/suspected pneumonia received four to six doses of 3 g of ceftolozane/tazobactam (adjusted for renal function) q8h. Serial plasma samples were collected after the first and last doses. One bronchoalveolar lavage sample per patient was collected at 1, 2, 4, 6 or 8 h after the last dose and epithelial lining fluid (ELF) drug concentrations were determined. Pharmacokinetic parameters were estimated by non-compartmental analysis and pharmacodynamic analyses were conducted to graphically evaluate achievement of target exposures (plasma and ELF ceftolozane concentrations >4 mg/L and tazobactam concentrations >1 mg/L; target in plasma: ≥30% and ≥20% of the dosing interval, respectively). Results Twenty-six patients received four to six doses of study drug; 22 were included in the ELF analyses. Ceftolozane and tazobactam Tmax (6 and 2 h, respectively) were delayed in ELF compared with plasma (1 h). Lung penetration, expressed as the ratio of mean drug exposure (AUC) in ELF to plasma, was 50% (ceftolozane) and 62% (tazobactam). Mean ceftolozane and tazobactam ELF concentrations remained >4 mg/L and >1 mg/L, respectively, for 100% of the dosing interval. There were no deaths or adverse event-related study discontinuations. Conclusions In ventilated pneumonia patients, 3 g of ceftolozane/tazobactam q8h yielded ELF exposures considered adequate to cover ceftolozane/tazobactam-susceptible respiratory pathogens.
Collapse
Affiliation(s)
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | | | | | - Brian Yu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhen Zeng
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | |
Collapse
|
26
|
Kidd JM, Abdelraouf K, Nicolau DP. Efficacy of human-simulated bronchopulmonary exposures of cefepime, zidebactam and the combination (WCK 5222) against MDR Pseudomonas aeruginosa in a neutropenic murine pneumonia model. J Antimicrob Chemother 2021; 75:149-155. [PMID: 31641765 DOI: 10.1093/jac/dkz414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES WCK 5222 combines cefepime with zidebactam, a β-lactam enhancer that binds PBP2 and inhibits class A and C β-lactamases. The efficacy of human-simulated bronchopulmonary exposures of WCK 5222 against MDR Pseudomonas aeruginosa was investigated in a neutropenic murine pneumonia model. METHODS Nineteen MDR isolates of P. aeruginosa (cefepime MICs ≥64 mg/L) were studied. MICs of zidebactam and WCK 5222 ranged from 4 to 512 mg/L and from 4 to 32 mg/L, respectively. Dosing regimens of cefepime and zidebactam alone and in combination that achieved epithelial lining fluid (ELF) exposures in mice approximating human ELF exposures after doses of 2 g of cefepime/1 g of zidebactam every 8 h (1 h infusion) were utilized; controls were vehicle-dosed. Lungs were intranasally inoculated with 107-108 cfu/mL bacterial suspensions. Mice were dosed subcutaneously 2 h after inoculation for 24 h, then lungs were harvested. RESULTS In vitro MIC was predictive of in vivo response to WCK 5222 treatment. Mean±SD changes in bacterial density at 24 h compared with 0 h controls (6.72±0.50 log10 cfu/lungs) for 13 isolates with WCK 5222 MICs ≤16 mg/L were 1.17±1.00, -0.99±1.45 and -2.21±0.79 log10 cfu/lungs for cefepime, zidebactam and WCK 5222, respectively. Against these isolates, zidebactam yielded >1 log10 cfu/lungs reductions in 8/13, while activity was enhanced with WCK 5222, producing >2 log10 cfu/lungs reductions in 10/13 and >1 log10 cfu/lungs reductions in 12/13. Among isolates with WCK 5222 MICs of 32 mg/L, five out of six showed a bacteriostatic response. CONCLUSIONS Human-simulated bronchopulmonary exposure of WCK 5222 is effective against MDR P. aeruginosa at MIC ≤16 mg/L in a murine pneumonia model. These data support the clinical development of WCK 5222 for pseudomonal lung infections.
Collapse
Affiliation(s)
- James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| |
Collapse
|
27
|
Short-Term Effects of Appropriate Empirical Antimicrobial Treatment with Ceftolozane/Tazobactam in a Swine Model of Nosocomial Pneumonia. Antimicrob Agents Chemother 2021; 65:AAC.01899-20. [PMID: 33168605 DOI: 10.1128/aac.01899-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
The rising frequency of multidrug-resistant and extensively drug-resistant (MDR/XDR) pathogens is making more frequent the inappropriate empirical antimicrobial therapy (IEAT) in nosocomial pneumonia, which is associated with increased mortality. We aim to determine the short-term benefits of appropriate empirical antimicrobial treatment (AEAT) with ceftolozane/tazobactam (C/T) compared with IEAT with piperacillin/tazobactam (TZP) in MDR Pseudomonas aeruginosa pneumonia. Twenty-one pigs with pneumonia caused by an XDR P. aeruginosa strain (susceptible to C/T but resistant to TZP) were ventilated for up to 72 h. Twenty-four hours after bacterial challenge, animals were randomized to receive 2-day treatment with either intravenous saline (untreated) or 25 to 50 mg of C/T per kg body weight (AEAT) or 200 to 225 mg of TZP per kg (IEAT) every 8 h. The primary outcome was the P. aeruginosa burden in lung tissue and the histopathology injury. P. aeruginosa burden in tracheal secretions and bronchoalveolar lavage (BAL) fluid, the development of antibiotic resistance, and inflammatory markers were secondary outcomes. Overall, P. aeruginosa lung burden was 5.30 (range, 4.00 to 6.30), 4.04 (3.64 to 4.51), and 4.04 (3.05 to 4.88) log10CFU/g in the untreated, AEAT, and IEAT groups, respectively (P = 0.299), without histopathological differences (P = 0.556). In contrast, in tracheal secretions (P < 0.001) and BAL fluid (P = 0.002), bactericidal efficacy was higher in the AEAT group. An increased MIC to TZP was found in 3 animals, while resistance to C/T did not develop. Interleukin-1β (IL-1β) was significantly downregulated by AEAT in comparison to other groups (P = 0.031). In a mechanically ventilated swine model of XDR P. aeruginosa pneumonia, appropriate initial treatment with C/T decreased respiratory secretions' bacterial burden, prevented development of resistance, achieved the pharmacodynamic target, and may have reduced systemic inflammation. However, after only 2 days of treatment, P. aeruginosa tissue concentrations were moderately affected.
Collapse
|
28
|
Intrapulmonary Pharmacokinetics of Cefepime and Enmetazobactam in Healthy Volunteers: Towards New Treatments for Nosocomial Pneumonia. Antimicrob Agents Chemother 2020; 65:AAC.01468-20. [PMID: 33077666 DOI: 10.1128/aac.01468-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023] Open
Abstract
Cefepime-enmetazobactam is a novel β-lactam-β-lactamase inhibitor combination with broad-spectrum antimicrobial activity against a range of multidrug-resistant Enterobacteriaceae This agent is being developed for a range of serious hospital infections. An understanding of the extent of partitioning of β-lactam-β-lactamase inhibitor combinations into the human lung is required to better understand the potential role of cefepime-enmetazobactam for the treatment of nosocomial pneumonia. A total of 20 healthy volunteers were used to study the intrapulmonary pharmacokinetics of a regimen of 2 g cefepime-1 g enmetazobactam every 8 h intravenously (2 g/1 g q8h i.v.). Each volunteer contributed multiple plasma samples and a single epithelial lining fluid (ELF) sample, obtained by bronchoalveolar lavage. Concentrations of cefepime and enmetazobactam were quantified using liquid chromatography-tandem mass spectrometry. The pharmacokinetic data were modeled using a population methodology, and Monte Carlo simulations were performed to assess the attainment of pharmacodynamic targets defined in preclinical models. The concentration-time profiles of both agents in plasma and ELF were similar. The mean ± standard deviation percentage of partitioning of total drug concentrations of cefepime and enmetazobactam between plasma and ELF was 60.59% ± 28.62% and 53.03% ± 21.05%, respectively. Using pharmacodynamic targets for cefepime of greater than the MIC and free enmetazobactam concentrations of >2 mg/liter in ELF of 20% of the dosing interval, a regimen of cefepime-enmetazobactam of 2 g/0.5 g q8h i.v. infused over 2 h resulted in a probability of target attainment of ≥90% for Enterobacteriaceae with cefepime-enmetazobactam MICs of ≤8 mg/liter. This result provides a rationale to further consider cefepime-enmetazobactam for the treatment of nosocomial pneumonia caused by multidrug-resistant Enterobacteriaceae.
Collapse
|
29
|
Dhanani JA, Goodman S, Ahern B, Cohen J, Fraser JF, Barnett A, Diab S, Bhatt M, Roberts JA. Comparative lung distribution of radiolabeled tobramycin between nebulized and intravenous administration in a mechanically-ventilated ovine model, an observational study. Int J Antimicrob Agents 2020; 57:106232. [PMID: 33232733 DOI: 10.1016/j.ijantimicag.2020.106232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ventilator-associated pneumonia is common and is treated using nebulized antibiotics. Although adequate pulmonary biodistribution is important for antibiotic effect, there is a lack of data for both intravenous (IV) and nebulized antibiotic administration during mechanical ventilation. OBJECTIVE To describe the comparative pulmonary regional distribution of IV and nebulized technetium-99m-labeled tobramycin (99mTc-tobramycin) 400 mg in a mechanically-ventilated ovine model. METHODS The study was performed in a mechanically-ventilated ovine model. 99mTc-tobramycin 400 mg was obtained using a radiolabeling process. Computed tomography (CT) was performed. Ten sheep were given 99mTc-tobramycin 400 mg via either an IV (five sheep) or nebulized (five sheep) route. Planar images (dorsal, ventral, left lateral and right lateral) were obtained using a gamma camera. Blood samples were obtained every 15 min for 1 h (4 time points) and lung, liver, both kidney, and urine samples were obtained post-mortem. RESULTS Ten sheep were anesthetized and mechanically ventilated. Whole-lung deposition of nebulized 99mTc-tobramycin 400 mg was significantly lower than with IV (8.8% vs. 57.1%, P<0.001). For both administration routes, there was significantly lower deposition in upper lung zones compared with the rest of the lungs. Dorsal deposition was significantly higher with nebulized 99mTc-tobramycin 400 mg compared with IV (68.9% vs. 58.9%, P=0.003). Lung concentrations of 99mTc-tobramycin were higher with IV compared with nebulized administration. There were significantly higher concentrations of 99mTc-tobramycin in blood, liver and urine with IV administration compared with nebulized. CONCLUSIONS Nebulization resulted in lower whole and regional lung deposition of 99mTc-tobramycin compared with IV administration and appeared to be associated with low blood and extra-pulmonary organ concentrations.
Collapse
Affiliation(s)
- Jayesh A Dhanani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia; Critical Care Research Group, The University of Queensland, Brisbane, Australia.
| | - Steven Goodman
- Department of Nuclear Medicine and Specialised PET Services Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Benjamin Ahern
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Australia
| | - Jeremy Cohen
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - John F Fraser
- Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Adrian Barnett
- Institute of Health and Biomedical Innovation & School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - Sara Diab
- Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Manoj Bhatt
- Department of Nuclear Medicine and Specialised PET Services Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia; Department of Pharmacy, Royal Brisbane & Women's Hospital, Brisbane, Australia
| |
Collapse
|
30
|
Outcomes in Participants with Renal Impairment from a Phase 3 Clinical Trial for Ceftolozane/Tazobactam Treatment of Nosocomial Pneumonia (ASPECT-NP). Antimicrob Agents Chemother 2020; 64:AAC.00731-20. [PMID: 32988827 DOI: 10.1128/aac.00731-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023] Open
Abstract
In the phase 3 ASPECT-NP trial (NCT02070757), ceftolozane/tazobactam (C/T) was noninferior to meropenem for treatment of Gram-negative ventilated hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (vHABP/VABP). Here, we report outcomes in participants from ASPECT-NP with renal impairment (RI). Participants were categorized by their baseline renal function as follows: normal renal function (NRF; creatinine clearance [CLCR], ≥80 ml/min), mild RI (CLCR, >50 to <80 ml/min), moderate RI (CLCR, ≥30 to ≤50 ml/min), and severe RI (CLCR, ≥15 to <30 ml/min). Dosing of both study drugs was adjusted based on renal function. The following C/T doses were administered every 8 h: NRF or mild RI, 3 g; moderate RI, 1.5 g; and severe RI, 0.75 g. The primary and key secondary endpoints were day 28 all-cause mortality (ACM) and clinical response at the test-of-cure visit in the intention-to-treat (ITT) population, respectively. In the ITT population, day 28 ACM rates for the C/T arm versus the meropenem arm were 17.6% versus 19.1% (NRF), 36.6% versus 28.6% (mild RI), 31.4% versus 38.5% (moderate RI), and 35.3% versus 61.9% (severe RI). Rates of clinical cure in the ITT population for the C/T arm versus the meropenem arm were 58.1% versus 58.5% (NRF), 54.9% versus 45.5% (mild RI), 37.1% versus 42.3% (moderate RI), and 41.2% versus 47.6% (severe RI). Small sample sizes in the RI groups resulted in large 95% confidence intervals (CIs), limiting conclusive interpretation of the analysis. Both drugs were well tolerated across all renal function groups. Overall, these results support the use of the study dosing regimens of C/T for treatment of vHABP/VABP in patients with RI. (This study has been registered at ClinicalTrials.gov under identifier NCT02070757.).
Collapse
|
31
|
Mole S, Harry A, Fowler A, Hotee S, Warburton J, Waite S, Beerahee M, Behm DJ, Badorrek P, Müller M, Faulenbach C, Lazaar AL, Hohlfeld JM. Investigating the effect of TRPV4 inhibition on pulmonary-vascular barrier permeability following segmental endotoxin challenge. Pulm Pharmacol Ther 2020; 64:101977. [PMID: 33189900 DOI: 10.1016/j.pupt.2020.101977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) is associated with increased pulmonary-vascular permeability. In the lung, transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable cation channel, is a regulator of endothelial permeability and pulmonary edema. We performed a Phase I, placebo-controlled, double-blind, randomized, parallel group, proof-of-mechanism study to investigate the effects of TRPV4 channel blocker, GSK2798745, on pulmonary-vascular barrier permeability using a model of lipopolysaccharide (LPS)-induced lung inflammation. METHODS Healthy participants were randomized 1:1 to receive 2 single doses of GSK2798745 or placebo, 12 h apart. Two hours after the first dose, participants underwent bronchoscopy and segmental LPS instillation. Total protein concentration and neutrophil counts were measured in bronchoalveolar lavage (BAL) samples collected before and 24 h after LPS challenge, as markers of barrier permeability and inflammation, respectively. The primary endpoint was baseline adjusted total protein concentration in BAL at 24 h after LPS challenge. A Bayesian framework was used to estimate the posterior probability of any percentage reduction (GSK2798745 relative to placebo). Safety endpoints included the incidence of adverse events (AEs), vital signs, 12-lead electrocardiogram, clinical laboratory and haematological evaluations, and spirometry. RESULTS Forty-seven participants were dosed and 45 completed the study (22 on GSK2798745 and 23 on placebo). Overall, GSK2798745 was well tolerated. Small reductions in mean baseline adjusted BAL total protein (~9%) and neutrophils (~7%) in the LPS-challenged segment were observed in the GSK2798745 group compared with the placebo group; however, the reductions did not meet pre-specified success criteria of at least a 95% posterior probability that the percentage reduction in the mean 24-h post LPS BAL total protein level (GSK2798745 relative to placebo) exceeded zero. Median plasma concentrations of GSK2798745 were predicted to inhibit TRPV4 on lung vascular endothelial cells by ~70-85% during the 24 h after LPS challenge; median urea-corrected BAL concentrations of GSK2798745 were 3.0- to 8.7-fold higher than those in plasma. CONCLUSIONS GSK2798745 did not affect segmental LPS-induced elevation of BAL total protein or neutrophils, despite blood and lung exposures that were predicted to be efficacious. CLINICALTRIALS. GOV IDENTIFIER NCT03511105.
Collapse
Affiliation(s)
- Sarah Mole
- GlaxoSmithKline, Gunnells Wood Road, Stevenage, UK.
| | - Anya Harry
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Andy Fowler
- GlaxoSmithKline, Stockley Park, West Uxbridge, Middlesex, UB11 1BT, UK
| | - Sarah Hotee
- GlaxoSmithKline, Gunnells Wood Road, Stevenage, UK
| | | | - Sarah Waite
- GlaxoSmithKline, Stockley Park, West Uxbridge, Middlesex, UB11 1BT, UK
| | | | - David J Behm
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Philipp Badorrek
- Fraunhofer-Institut Fuer Toxikologie und Experimentelle Medizin [ITEM], Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Meike Müller
- Fraunhofer-Institut Fuer Toxikologie und Experimentelle Medizin [ITEM], Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Cornelia Faulenbach
- Fraunhofer-Institut Fuer Toxikologie und Experimentelle Medizin [ITEM], Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Aili L Lazaar
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Jens M Hohlfeld
- Fraunhofer-Institut Fuer Toxikologie und Experimentelle Medizin [ITEM], Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany; Hannover Medical School and German Centre for Lung Research, Medizinische Hochschule Hannover OE6876, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
32
|
Toutain PL, Pelligand L, Lees P, Bousquet-Mélou A, Ferran AA, Turnidge JD. The pharmacokinetic/pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal. J Vet Pharmacol Ther 2020; 44:172-200. [PMID: 33089523 DOI: 10.1111/jvp.12917] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) modelling is the initial step in the semi-mechanistic approach for optimizing dosage regimens for systemically acting antimicrobial drugs (AMDs). Numerical values of PK/PD indices are used to predict dose and dosing interval on a rational basis followed by confirmation in clinical trials. The value of PK/PD indices lies in their universal applicability amongst animal species. Two PK/PD indices are routinely used in veterinary medicine, the ratio of the area under the curve of the free drug plasma concentration to the minimum inhibitory concentration (MIC) (fAUC/MIC) and the time that free plasma concentration exceeds the MIC over the dosing interval (fT > MIC). The basic concepts of PK/PD modelling of AMDs were established some 20 years ago. Earlier studies have been reviewed previously and are not reconsidered in this review. This review describes and provides a critical appraisal of more recent, advanced PK/PD approaches, with particular reference to their application in veterinary medicine. Also discussed are some hypotheses and new areas for future developments.First, a brief overview of PK/PD principles is presented as the basis for then reviewing more advanced mechanistic considerations on the precise nature of selected indices. Then, several new approaches to selecting PK/PD indices and establishing their numerical values are reviewed, including (a) the modelling of time-kill curves and (b) the use of population PK investigations. PK/PD indices can be used for dose determination, and they are required to establish clinical breakpoints for antimicrobial susceptibility testing. A particular consideration is given to the precise nature of MIC, because it is pivotal in establishing PK/PD indices, explaining that it is not a "pharmacodynamic parameter" in the usual sense of this term.
Collapse
Affiliation(s)
- Pierre-Louis Toutain
- INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France.,Royal Veterinary College, University of London, London, UK
| | | | - Peter Lees
- Royal Veterinary College, University of London, London, UK
| | | | - Aude A Ferran
- INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - John D Turnidge
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
33
|
Bhavnani SM, Hammel JP, Lakota EA, Safir MC, VanScoy BD, Nagira Y, Rubino CM, Sato N, Koresawa T, Kondo K, Ambrose PG. Pharmacokinetic-Pharmacodynamic Target Attainment Analyses To Support Dose Selection for ME1100, an Arbekacin Inhalation Solution. Antimicrob Agents Chemother 2020; 64:e02367-19. [PMID: 32661000 PMCID: PMC7508573 DOI: 10.1128/aac.02367-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/03/2020] [Indexed: 11/20/2022] Open
Abstract
ME1100 (arbekacin inhalation solution) is an inhaled aminoglycoside that is being developed to treat patients with hospital-acquired and ventilator-associated bacterial pneumonia (HABP and VABP, respectively). Pharmacokinetic-pharmacodynamic (PK-PD) target attainment analyses were undertaken to evaluate ME1100 regimens for the treatment of patients with HABP/VABP. The data used included a population pharmacokinetic (PPK) 4-compartment model with 1st-order elimination, nonclinical PK-PD targets from one-compartment in vitro and/or in vivo infection models, and in vitro surveillance data. Using the PPK model, total-drug epithelial lining fluid (ELF) concentration-time profiles were generated for simulated patients with varying creatinine clearance (CLcr) (ml/min/1.73 m2) values. Percent probabilities of PK-PD target attainment by MIC were determined based on the ratio of total-drug ELF area under the concentration-time curve (AUC) to MIC (AUC/MIC ratio) targets associated with 1- and 2-log10 CFU reductions from baseline for Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus Percent probabilities of PK-PD target attainment based on PK-PD targets for a 1-log10 CFU reduction from baseline at MIC values above the MIC90 value for K. pneumoniae (8 μg/ml), P. aeruginosa (4 μg/ml), and S. aureus (0.5 μg/ml) were ≥99.8% for ME1100 600 mg twice daily (BID) in simulated patients with CLcr values >80 to ≤120 ml/min/1.73 m2 ME1100 600 mg BID, 450 mg BID, and 600 mg once daily in simulated patients with CLcr values >50 to ≤80, >30 to ≤50, and 0 to ≤30 ml/min/1.73 m2, respectively, provided arbekacin exposures that best matched those for 600 mg BID in simulated patients with normal renal function. These data provide support for ME1100 as a treatment for patients with HABP/VABP.
Collapse
Affiliation(s)
- Sujata M Bhavnani
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Jeffrey P Hammel
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Elizabeth A Lakota
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - M Courtney Safir
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Brian D VanScoy
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Yu Nagira
- Meiji Seika Pharma Co., Ltd., Tokyo, Japan
| | | | - Nobuo Sato
- Meiji Seika Pharma Co., Ltd., Tokyo, Japan
| | | | | | - Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| |
Collapse
|
34
|
Parker SL, Abdul-Aziz MH, Roberts JA. The role of antibiotic pharmacokinetic studies performed post-licensing. Int J Antimicrob Agents 2020; 56:106165. [PMID: 32941948 DOI: 10.1016/j.ijantimicag.2020.106165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Post-licensing pharmacometric studies can provide a better understanding of the pharmacokinetic (PK) alterations in special patient populations and may lead to better clinical outcomes. Some patient populations exhibit markedly different pathophysiology to general ward patients or healthy individuals. This may be developmental (paediatric patients), a manifestation of an underlying disease pathology (patients with obesity or haematological malignancies) or due to medical interventions (critically ill patients receiving extracorporeal therapies). This paper outlines the factors that affect the PK of special patient populations and describes some novel methods of antimicrobial administration that may increase antimicrobial concentrations at the site of infection and improve treatment of severe infection.
Collapse
Affiliation(s)
- Suzanne L Parker
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.
| | | | - Jason A Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia; Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Department of Pharmacy, Royal Brisbane & Women's Hospital, Brisbane, Australia
| |
Collapse
|
35
|
Siu J, Klingler L, Wang Y, Hung CT, Jeong SH, Smith S, Tingle MD, Wagner Mackenzie B, Biswas K, Douglas RG. Oral antibiotics used in the treatment of chronic rhinosinusitis have limited penetration into the sinonasal mucosa: a randomized trial. Xenobiotica 2020; 50:1443-1450. [PMID: 32840412 DOI: 10.1080/00498254.2020.1814973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the widespread prescription of antibiotics for patients with chronic rhinosinusitis (CRS), the extent to which drug distribution to the sinonasal mucosa occurs remains largely undefined. Twenty subjects undergoing functional endoscopic sinus surgery (FESS) for CRS were randomized to one of two groups: 1) doxycycline (100 mg daily for seven days) 2) roxithromycin (300 mg daily for seven days). Drug levels were measured using liquid chromatography-tandem mass spectrometry in sinonasal mucus, sinonasal tissues and serum at steady state. Doxycycline concentrations measured in the mucus were significantly lower compared to that in the serum (mean mucus/serum ratio = 0.16, p < 0.001) and the tissue (mean mucus/tissue ratio = 0.18, p < 0.0001). Roxithromycin concentrations in the mucus were also significantly lower compared to that in the serum (mean mucus/serum ratio = 0.37, p = 0.002) and the tissue (mean mucus/tissue ratio = 0.60, p < 0.001). Although the efficacy of doxycycline and roxithromycin in sinonasal mucus in vivo cannot be predicted solely from reported minimum inhibitory concentrations, given the added complexity of bacterial biofilm antimicrobial tolerance, these results suggest that low mucosal penetration of antibiotics may be one of the factors contributing to the limited efficacy of these agents in the treatment of CRS.
Collapse
Affiliation(s)
- Joey Siu
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Lilian Klingler
- Research and Development, Zenith Technology Corporation Limited, Dunedin, New Zealand
| | - Yi Wang
- Research and Development, Zenith Technology Corporation Limited, Dunedin, New Zealand
| | - Cheung-Tak Hung
- Research and Development, Zenith Technology Corporation Limited, Dunedin, New Zealand
| | - Soo Hee Jeong
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | | | - Malcolm Drummond Tingle
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | | | - Kristi Biswas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
36
|
Bojko B, Looby N, Olkowicz M, Roszkowska A, Kupcewicz B, Reck Dos Santos P, Ramadan K, Keshavjee S, Waddell TK, Gómez-Ríos G, Tascon M, Goryński K, Cypel M, Pawliszyn J. Solid phase microextraction chemical biopsy tool for monitoring of doxorubicin residue during in vivo lung chemo-perfusion. J Pharm Anal 2020; 11:37-47. [PMID: 33717610 PMCID: PMC7930785 DOI: 10.1016/j.jpha.2020.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Development of a novel in vivo lung perfusion (IVLP) procedure allows localized delivery of high-dose doxorubicin (DOX) for targeting residual micrometastatic disease in the lungs. However, DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window. A small dimension nitinol wire coated with a sorbent of biocompatible morphology (Bio-SPME) has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites. The in vivo Bio-SPME-IVLP experiments were performed on pig model over various (150 and 225 mg/m2) drug doses, and during human clinical trial. Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL (respectively) dose of DOX during a 3-h IVLP. In both pig and human cases, DOX tissue levels presented similar trends during IVLP. Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure. In addition to DOX levels, Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening, providing information about lung status during drug administration. Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach. Bio-SPME also extracted various endogenous molecules, thus providing a real-time snapshot of the physiology of the cells, which might assist in the tailoring of personalized treatment strategy.
Collapse
Affiliation(s)
- Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | - Nikita Looby
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Mariola Olkowicz
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland
| | - Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | | | - Khaled Ramadan
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | - Shaf Keshavjee
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | | | - German Gómez-Ríos
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Marcos Tascon
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Krzysztof Goryński
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | - Marcelo Cypel
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| |
Collapse
|
37
|
Zhang L, Wicha WW, Bhavnani SM, Rubino CM. Prediction of lefamulin epithelial lining fluid penetration after intravenous and oral administration using Phase 1 data and population pharmacokinetics methods. J Antimicrob Chemother 2020; 74:iii27-iii34. [PMID: 30949708 PMCID: PMC6449575 DOI: 10.1093/jac/dkz088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Lefamulin is a semi-synthetic intravenous and oral pleuromutilin antibiotic with activity against pathogens commonly associated with community-acquired bacterial pneumonia. Using data from two Phase 1 studies, a population pharmacokinetics (PPK) model for lefamulin in plasma and epithelial lining fluid (ELF) was constructed. METHODS Plasma pharmacokinetic (PK) data from a crossover, bioavailability, food-effect study and plasma and ELF PK data from a tissue penetration study in normal healthy volunteers were used to construct a PPK model for lefamulin. Model development involved refinement of a previous PPK model for intravenous and oral administration, followed by application of the model to plasma and ELF data from the tissue penetration study. The ELF penetration ratio of lefamulin was determined using model-based simulations. RESULTS The PPK analysis data set contained 1103 plasma and 12 ELF lefamulin concentrations from 32 subjects. A three-compartment model with non-linear protein binding and two parallel absorption processes provided precise and unbiased estimated plasma concentration-time profiles. The absorption rate was slower and bioavailability was decreased after a high-fat/high-calorie meal. ELF data were well described using first-order rate constants into and out of the ELF compartment. The median predicted lefamulin total-drug ELF AUC0-24/free-drug plasma AUC0-24 ratio was ∼5:1 after intravenous or oral administration. CONCLUSIONS The final PPK model allowed precise characterization of plasma and ELF exposures after intravenous and oral administration. The high ELF penetration ratio suggests that the penetration of lefamulin into the effect site is rapid and extensive, irrespective of route of administration.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | | | | | | |
Collapse
|
38
|
Děrgel M, Voborník M, Pojar M, Karalko M, Gofus J, Radochová V, Studená Š, Maláková J, Turek Z, Chládek J, Manďák J. Lung Collapse during Mini-Thoracotomy Reduces Penetration of Cefuroxime to the Tissue: Interstitial Microdialysis Study in Animal Models. Surg Infect (Larchmt) 2020; 22:283-291. [PMID: 32633629 DOI: 10.1089/sur.2019.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Single-lung ventilation facilitates surgical exposure during minimally invasive cardiac surgery. However, a deeper knowledge of antibiotic distribution within a collapsed lung is necessary for effective antibiotic prophylaxis of pneumonia. Patients and Methods: The pharmacokinetics/pharmacodynamics (PK/PD) of cefuroxime were compared between the plasma and interstitial fluid (ISF) of collapsed and ventilated lungs in 10 anesthetized pigs, which were ventilated through a double-lumen endotracheal cannula. Cefuroxime (20 mg/kg) was administered in single 30-minute intravenous infusion. Samples of blood and lung microdialysate were collected until six hours post-dose. Ultrafiltration, in vivo retrodialysis, and high-performance liquid chromatography-tandem mass spectrometry were used to determine plasma and ISF concentrations of free drug. The concentrations were examined with non-compartmental analysis and compartmental modeling. Results: The concentration of free cefuroxime in ISF was lower in the non-ventilated lung than the ventilated one, evidenced by a lung penetration factor of 47% versus 63% (p < 0.05), the ratio between maximum concentrations (65%, p < 0.05), and the ratio between the areas under the concentration-time curve (78%, p = 0.12). The time needed to reach a minimum inhibitory concentration (MIC) was 30%-40% longer for a collapsed lung than for a ventilated one. In addition, a delay of 10-40 minutes was observed for lung ISF compared with plasma. The mean residence time values (ISF collapsed lung > ISF ventilated lung > plasma) could explain the absence of practically important differences in the time interval with the concentration of cefuroxime exceeding the MICs of sensitive strains (≤4 mg/L). Conclusion: The concentration of cefuroxime in the ISF of a collapsed porcine lung is lower than in a ventilated one; furthermore, its equilibration with plasma is delayed. Administration of the first cefuroxime dose earlier or at a higher rate may be warranted, as well as dose intensification of the perioperative prophylaxis of pneumonia caused by pathogens with higher MICs.
Collapse
Affiliation(s)
- Martin Děrgel
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Martin Voborník
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Marek Pojar
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Mikita Karalko
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jan Gofus
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Věra Radochová
- Animal Research Facility, Faculty of Military Health Sciences, University of Defense, Třebešská, Králové, Czech Republic
| | - Šárka Studená
- Department of Pharmacology, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jana Maláková
- Institute of Clinical Biochemistry and Diagnoses, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Zdeněk Turek
- Department of Anesthesiology, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jaroslav Chládek
- Department of Pharmacology, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jiří Manďák
- Department of Cardiac Surgery, Resuscitation and Intensive Medicine, Charles University, Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
39
|
Lakota EA, Van Wart SA, Trang M, Tzanis E, Bhavnani SM, Safir MC, Friedrich L, Steenbergen JN, Ambrose PG, Rubino CM. Population Pharmacokinetic Analyses for Omadacycline Using Phase 1 and 3 Data. Antimicrob Agents Chemother 2020; 64:e02263-19. [PMID: 32340986 PMCID: PMC7318031 DOI: 10.1128/aac.02263-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/04/2020] [Indexed: 01/01/2023] Open
Abstract
Omadacycline, a novel aminomethylcycline antibiotic with activity against Gram-positive and -negative organisms, including tetracycline-resistant pathogens, received FDA approval in October 2018 for the treatment of patients with acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). A previously developed population pharmacokinetic (PK) model based on phase 1 intravenous and oral PK data was refined using data from infected patients. Data from 10 phase 1 studies used to develop the previous model were pooled with data from three additional phase 1 studies, a phase 1b uncomplicated urinary tract infection study, one phase 3 CABP study, and two phase 3 ABSSSI studies. The final population PK model was a three-compartment model with first-order absorption using transit compartments to account for absorption delay following oral dosing and first-order elimination. Epithelial lining fluid (ELF) concentrations were modeled as a subcompartment of the first peripheral compartment. A food effect on oral bioavailability was included in the model. Sex was the only significant covariate identified, with 15.6% lower clearance for females than males. Goodness-of-fit diagnostics indicated a precise and unbiased fit to the data. The final model, which was robust in its ability to predict plasma and ELF exposures following omadacycline administration, was also able to predict the central tendency and variability in concentration-time profiles using an external phase 3 ABSSSI data set. A population PK model, which described omadacycline PK in healthy subjects and infected patients, was developed and subsequently used to support pharmacokinetic-pharmacodynamic (PK-PD) and PK-PD target attainment assessments.
Collapse
Affiliation(s)
- Elizabeth A Lakota
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Scott A Van Wart
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Michael Trang
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Evan Tzanis
- Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA
| | - Sujata M Bhavnani
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - M Courtney Safir
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | | | | | - Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | | |
Collapse
|
40
|
Pharmacodynamics of Cefepime Combined with the Novel Extended-Spectrum-β-Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia Caused by ESBL-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.00180-20. [PMID: 32253209 DOI: 10.1128/aac.00180-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023] Open
Abstract
Klebsiella pneumoniae strains that produce extended-spectrum beta lactamases (ESBLs) are a persistent public health threat. There are relatively few therapeutic options, and there is undue reliance on carbapenems. Alternative therapeutic options are urgently required. A combination of cefepime and the novel beta lactamase inhibitor enmetazobactam is being developed for the treatment of serious infections caused by ESBL-producing organisms. The pharmacokinetics-pharmacodynamics (PK-PD) of cefepime-enmetazobactam against ESBL-producing K. pneumoniae was studied in a neutropenic murine pneumonia model. Dose-ranging studies were performed. Dose fractionation studies were performed to define the relevant PD index for the inhibitor. The partitioning of cefepime and enmetazobactam into the lung was determined by comparing the area under the concentration-time curve (AUC) in plasma and epithelial lining fluid. The magnitude of drug exposure for cefepime-enmetazobactam required for logarithmic killing in the lung was defined using 3 ESBL-producing strains. Cefepime, given as 100 mg/kg of body weight every 8 h intravenously (q8h i.v.), had minimal antimicrobial effect. When this background regimen of cefepime was combined with enmetazobactam, a half-maximal effect was induced with enmetazobactam at 4.71 mg/kg q8h i.v. The dose fractionation study suggested both fT > threshold and fAUC:MIC are relevant PD indices. The AUCELF:AUCplasma ratio for cefepime and enmetazobactam was 73.4% and 61.5%, respectively. A ≥2-log kill in the lung was achieved with a plasma and ELF cefepime fT > MIC of ≥20% and enmetazobactam fT > 2 mg/liter of ≥20% of the dosing interval. These data and analyses provide the underpinning evidence for the combined use of cefepime and enmetazobactam for nosocomial pneumonia.
Collapse
|
41
|
VanScoy BD, Lakota EA, Conde H, McCauley J, Friedrich L, Steenbergen JN, Ambrose PG, Bhavnani SM. Pharmacokinetic-Pharmacodynamic Characterization of Omadacycline against Haemophilus influenzae Using a One-Compartment In Vitro Infection Model. Antimicrob Agents Chemother 2020; 64:e02265-19. [PMID: 32284378 PMCID: PMC7269464 DOI: 10.1128/aac.02265-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/29/2020] [Indexed: 02/08/2023] Open
Abstract
Omadacycline is a novel aminomethylcycline with activity against Gram-positive and -negative organisms, including Haemophilus influenzae, which is one of the leading causes of community-acquired bacterial pneumonia (CABP). The evaluation of antimicrobial agents against H. influenzae using standard murine infection models is challenging due to the low pathogenicity of this species in mice. Therefore, 24-h dose-ranging studies using a one-compartment in vitro infection model were undertaken with the goal of characterizing the magnitude of the ratio of the area under the concentration-time curve (AUC) to the MIC (AUC/MIC ratio) associated with efficacy for a panel of five H. influenzae isolates. These five isolates, for which MIC values were 1 or 2 mg/liter, were exposed to omadacycline total-drug epithelial lining fluid (ELF) concentration-time profiles based on those observed in healthy volunteers following intravenous omadacycline administration. Relationships between change in log10 CFU/ml from baseline at 24 h and the total-drug ELF AUC/MIC ratios for each isolate and for the isolates pooled were evaluated using Hill-type models and nonlinear least-squares regression. As evidenced by the high coefficients of determination (r2) of 0.88 to 0.98, total-drug ELF AUC/MIC ratio described the data well for each isolate and the isolates pooled. The median total-drug ELF AUC/MIC ratios associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 6.91, 8.91, and 11.1, respectively. These data were useful to support the omadacycline dosing regimens selected for the treatment of patients with CABP, as well as susceptibility breakpoints for H. influenzae.
Collapse
Affiliation(s)
- Brian D VanScoy
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Elizabeth A Lakota
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Haley Conde
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Jennifer McCauley
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | | | | | - Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Sujata M Bhavnani
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| |
Collapse
|
42
|
Novelli A, Del Giacomo P, Rossolini GM, Tumbarello M. Meropenem/vaborbactam: a next generation β-lactam β-lactamase inhibitor combination. Expert Rev Anti Infect Ther 2020; 18:643-655. [PMID: 32297801 DOI: 10.1080/14787210.2020.1756775] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION infections due to carbapenem-resistant Enterobacterales (CRE) constitute a worldwide threat and are associated with significant mortality, especially in fragile patients, and costs. Meropenem-vaborbactam (M/V) is a combination of a group 2 carbapenem with a novel cyclic boronic acid-based β-lactamase inhibitor which has shown good efficacy against KPC carbapenemase-producing Klebsiella pneumoniae, which are amongst the most prevalent types of CRE. AREAS COVERED This article reviews the microbiological and pharmacological profile and current clinical experience and safety of M/V in the treatment of infections caused by CRE. EXPERT OPINION M/V is a promising drug for the treatment of infections due to KPC-producing CRE (KPC-CRE). It exhibited an almost complete coverage of KPC-CRE isolates from large surveillance studies and a low propensity for resistance selection, retaining activity also against strains producing KPC mutants resistant to ceftazidime-avibactam. Both meropenem and vaborbactam have a favorable pharmacokinetic profile, with similar kinetic properties, a good intrapulmonary penetration, and are efficiently cleared during continuous venovenous hemofiltration (CVVH). According to available data, M/V monotherapy is associated with higher clinical cure rates and lower rates of adverse events, especially in terms of nephrotoxicity, if compared to 'older' combination therapies.
Collapse
Affiliation(s)
- Andrea Novelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence , Florence, Italy
| | - Paola Del Giacomo
- UOC Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence and Clinical Microbiology and Virology Unit, Florence Careggi University Hospital , Florence, Italy
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy.,Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore , Rome, Italy
| |
Collapse
|
43
|
Vazquez Guillamet C, Kollef MH. Acinetobacter Pneumonia: Improving Outcomes With Early Identification and Appropriate Therapy. Clin Infect Dis 2019; 67:1455-1462. [PMID: 29741597 DOI: 10.1093/cid/ciy375] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
In an era of increasing antimicrobial resistance, Acinetobacter distinguishes itself as one of the most resistant Gram-negative bacteria responsible for significant morbidity and mortality. New solutions are needed to combat the detrimental effects of increasing rates of antimicrobial resistance. Using empiric broad-spectrum antibiotics in patients deemed at risk for infections caused by multidrug-resistant pathogens may protect against attributable mortality, but this temporary solution furthers the risk of antimicrobial resistance. In this article we will review relevant strategies to aid with early identification and appropriate treatment of Acinetobacter pneumonia while preserving antibiotic susceptibility.
Collapse
Affiliation(s)
- Cristina Vazquez Guillamet
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of New Mexico School of Medicine, Albuquerque.,Division of Infectious Diseases, University of New Mexico School of Medicine, Albuquerque
| | - Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
44
|
Kollef MH, Nováček M, Kivistik Ü, Réa-Neto Á, Shime N, Martin-Loeches I, Timsit JF, Wunderink RG, Bruno CJ, Huntington JA, Lin G, Yu B, Butterton JR, Rhee EG. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): a randomised, controlled, double-blind, phase 3, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2019; 19:1299-1311. [PMID: 31563344 DOI: 10.1016/s1473-3099(19)30403-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nosocomial pneumonia due to antimicrobial-resistant pathogens is associated with high mortality. We assessed the efficacy and safety of the combination antibacterial drug ceftolozane-tazobactam versus meropenem for treatment of Gram-negative nosocomial pneumonia. METHODS We conducted a randomised, controlled, double-blind, non-inferiority trial at 263 hospitals in 34 countries. Eligible patients were aged 18 years or older, were undergoing mechanical ventilation, and had nosocomial pneumonia (either ventilator-associated pneumonia or ventilated hospital-acquired pneumonia). Patients were randomly assigned (1:1) with block randomisation (block size four), stratified by type of nosocomial pneumonia and age (<65 years vs ≥65 years), to receive either 3 g ceftolozane-tazobactam or 1 g meropenem intravenously every 8 h for 8-14 days. The primary endpoint was 28-day all-cause mortality (at a 10% non-inferiority margin). The key secondary endpoint was clinical response at the test-of-cure visit (7-14 days after the end of therapy; 12·5% non-inferiority margin). Both endpoints were assessed in the intention-to-treat population. Investigators, study staff, patients, and patients' representatives were masked to treatment assignment. Safety was assessed in all randomly assigned patients who received study treatment. This trial was registered with ClinicalTrials.gov, NCT02070757. FINDINGS Between Jan 16, 2015, and April 27, 2018, 726 patients were enrolled and randomly assigned, 362 to the ceftolozane-tazobactam group and 364 to the meropenem group. Overall, 519 (71%) patients had ventilator-associated pneumonia, 239 (33%) had Acute Physiology and Chronic Health Evaluation II scores of at least 20, and 668 (92%) were in the intensive care unit. At 28 days, 87 (24·0%) patients in the ceftolozane-tazobactam group and 92 (25·3%) in the meropenem group had died (weighted treatment difference 1·1% [95% CI -5·1 to 7·4]). At the test-of-cure visit 197 (54%) patients in the ceftolozane-tazobactam group and 194 (53%) in the meropenem group were clinically cured (weighted treatment difference 1·1% [95% CI -6·2 to 8·3]). Ceftolozane-tazobactam was thus non-inferior to meropenem in terms of both 28-day all-cause mortality and clinical cure at test of cure. Treatment-related adverse events occurred in 38 (11%) of 361 patients in the ceftolozane-tazobactam group and 27 (8%) of 359 in the meropenem group. Eight (2%) patients in the ceftolozane-tazobactam group and two (1%) in the meropenem group had serious treatment-related adverse events. There were no treatment-related deaths. INTERPRETATION High-dose ceftolozane-tazobactam is an efficacious and well tolerated treatment for Gram-negative nosocomial pneumonia in mechanically ventilated patients, a high-risk, critically ill population. FUNDING Merck & Co.
Collapse
Affiliation(s)
- Marin H Kollef
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Universitat de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pharmacokinetics and Penetration of Sitafloxacin into Alveolar Epithelial Lining Fluid in Critically Ill Thai Patients with Pneumonia. Antimicrob Agents Chemother 2019; 63:AAC.00800-19. [PMID: 31405868 DOI: 10.1128/aac.00800-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/02/2019] [Indexed: 11/20/2022] Open
Abstract
Sitafloxacin showed potent activity against various respiratory pathogens. Blood and bronchoalveolar lavage (BAL) fluid samples were obtained from 12 subjects after a single oral dose of sitafloxacin 200 mg. The mean ± SD (median) maximum ratio of epithelial lining fluid (ELF) to unbound plasma concentration was 1.02 ± 0.58 (1.33). The penetration ratios based on the mean and median area under the curve from 0 to 8 h (AUC0-8) were 0.85 and 0.79 μg · h/ml, respectively. Sitafloxacin penetrates well into ELF in critically ill Thai patients with pneumonia. (This study has been registered in the Thai Clinical Trials Registry [TCTR] under registration no. TCTR20170222001.).
Collapse
|
46
|
Nebulized Antibiotics: Epithelial Lining Fluid Concentrations Overestimate Lung Tissue Concentrations. Anesthesiology 2019; 131:229-232. [PMID: 31246608 DOI: 10.1097/aln.0000000000002824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Jaruratanasirikul S, Nitchot W, Wongpoowarak W, Samaeng M, Nawakitrangsan M. Population pharmacokinetics and Monte Carlo simulations of sulbactam to optimize dosage regimens in patients with ventilator-associated pneumonia caused by Acinetobacter baumannii. Eur J Pharm Sci 2019; 136:104940. [DOI: 10.1016/j.ejps.2019.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 11/29/2022]
|
48
|
Jager NGL, van Hest RM, Lipman J, Roberts JA, Cotta MO. Antibiotic exposure at the site of infection: principles and assessment of tissue penetration. Expert Rev Clin Pharmacol 2019; 12:623-634. [PMID: 31136211 DOI: 10.1080/17512433.2019.1621161] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Since the majority of bacterial infections occur at sites outside the bloodstream, antibiotic tissue concentrations are of significant relevance to optimize treatment. The aim of this review is to aid the clinician in choosing optimal regimens for the treatment of extravascular infections. Areas covered: We discuss the principles of antibiotic tissue penetration and assess different approaches to obtain data on this subject. Finally, we present tissue penetration data for several relevant groups of antibiotic agents in a number of extravascular sites. Data were obtained from an extensive literature search in PubMed until February 2019. Expert opinion: There is still a long way to go before reliable information about tissue penetration of antibiotics is sufficiently available to serve as a basis for the design of optimal strategies for drug and dose selection. At this moment, there is a lack of robust data on tissue penetration, where both the sampling and measurement techniques as well as the relationship between tissue concentrations and clinical outcome of antibiotic treatment have to be better defined.
Collapse
Affiliation(s)
- Nynke G L Jager
- a University of Queensland Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,b Department of Hospital Pharmacy - Clinical Pharmacology Unit, Amsterdam UMC , University of Amsterdam , Amsterdam , the Netherlands
| | - Reinier M van Hest
- b Department of Hospital Pharmacy - Clinical Pharmacology Unit, Amsterdam UMC , University of Amsterdam , Amsterdam , the Netherlands
| | - Jeffrey Lipman
- a University of Queensland Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,c Departments of Pharmacy and Intensive Care , Royal Brisbane and Women's Hospital , Brisbane , Australia
| | - Jason A Roberts
- a University of Queensland Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,c Departments of Pharmacy and Intensive Care , Royal Brisbane and Women's Hospital , Brisbane , Australia.,d Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy , The University of Queensland , Brisbane , Australia
| | - Menino O Cotta
- a University of Queensland Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,d Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy , The University of Queensland , Brisbane , Australia
| |
Collapse
|
49
|
Ruiz J, Sanjuan E, Amaro C, Gordon M, Villarreal E, Castellanos-Ortega Á, Ramirez P. In vitro study of antimicrobial activity on Klebsiella Pneumoniae biofilms in endotracheal tubes. J Chemother 2019; 31:202-208. [PMID: 30990368 DOI: 10.1080/1120009x.2019.1601801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effective treatment approaches for biofilms in endotracheal tubes (ETTs) are lacking. In this study, we evaluated the in vitro effects of five antimicrobials against biofilms formed by Klebsiella pneumoniae in ETTs. K. pneumoniae was added to minimal mucin medium prior to inoculation in microtiter plates containing ETT fragments. Biofilm susceptibility was assessed by crystal violet staining. At 24 h, the antimicrobials significantly reduced biofilm formation. At 48 h, all of the antimicrobial agents exhibited significant reductions in biofilm formation, even at concentrations above the minimum inhibitory concentration (MIC). Tigecycline and fosfomycin showed the greatest inhibition capacity, with good activity at concentrations twofold greater than the MIC. K. pneumoniae exhibited excellent biofilm formation ability, with formation in the first 24 h and significantly reduced antimicrobial activity. These results contribute to the establishment of new antibiotic breakpoints for the adequate management of infections associated with biofilm formation. Abbreviations ETT Endotracheal tube MIC Minimum inhibitory concentration MBIC Minimum biofilm inhibitory concentration OD Optical density PBS Phosphate-buffered saline VAP Ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Jesus Ruiz
- a Intensive Care Unit, Hospital Universitario y Politécnico La Fe , Valencia , Spain
| | - Eva Sanjuan
- b ERI Biotecmed , University of Valencia , Valencia , Spain
| | - Carmen Amaro
- b ERI Biotecmed , University of Valencia , Valencia , Spain
| | - Monica Gordon
- a Intensive Care Unit, Hospital Universitario y Politécnico La Fe , Valencia , Spain
| | - Esther Villarreal
- a Intensive Care Unit, Hospital Universitario y Politécnico La Fe , Valencia , Spain
| | | | - Paula Ramirez
- a Intensive Care Unit, Hospital Universitario y Politécnico La Fe , Valencia , Spain
| |
Collapse
|
50
|
Bhavnani SM, Zhang L, Hammel JP, Rubino CM, Bader JC, Sader HS, Gelone SP, Wicha WW, Ambrose PG. Pharmacokinetic/pharmacodynamic target attainment analyses to support intravenous and oral lefamulin dose selection for the treatment of patients with community-acquired bacterial pneumonia. J Antimicrob Chemother 2019; 74:iii35-iii41. [PMID: 30949705 PMCID: PMC6449570 DOI: 10.1093/jac/dkz089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Lefamulin is a semi-synthetic intravenous (iv) and oral pleuromutilin antibiotic active against community-acquired bacterial pneumonia (CABP) pathogens. Pharmacokinetic/pharmacodynamic (PK/PD) target attainment analyses were carried out to evaluate lefamulin 150 mg iv q12h and 600 mg orally q12h under fed and fasted conditions for the treatment of patients with CABP. METHODS The analyses undertaken used a population PK model based on Phase 1 PK data, non-clinical PK/PD targets for efficacy and in vitro surveillance data for Streptococcus pneumoniae (SP) and Staphylococcus aureus (SA), and Monte Carlo simulation. Percentage probabilities of PK/PD target attainment by MIC on day 1 were determined using median total-drug epithelial lining fluid (ELF) and free-drug plasma AUC:MIC ratio targets associated with 1 and 2 log10 cfu reductions from baseline. RESULTS Percentage probabilities of attaining the total-drug ELF AUC:MIC ratio target for a 1 log10 cfu reduction from baseline for SP were ≥99.2% at the MIC90 of 0.12 mg/L and 96.7%, 82.1% and 96.3% for iv and oral dosing regimens under fed and fasted conditions, respectively, at the MIC99 of 0.25 mg/L. Percentage probabilities of attaining the free-drug plasma AUC:MIC target for the same endpoint at the SP MIC99 were 100% for each regimen. For the SA MIC90 of 0.12 mg/L and AUC:MIC ratio targets for the same endpoint, percentage probabilities were 92.7%-100% for iv and oral dosing regimens. CONCLUSIONS These data provide support for lefamulin 150 mg iv q12h and 600 mg orally q12h for the treatment of patients with CABP and suggest that doses may not need to be taken under fasted conditions.
Collapse
Affiliation(s)
| | - Li Zhang
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | | | | | - Justin C Bader
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | | | | | | | - Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| |
Collapse
|