1
|
Bento CA, Arnaud-Sampaio VF, Glaser T, Adinolfi E, Coutinho-Silva R, Ulrich H, Lameu C. P2X7 receptor in macrophage polarization and its implications in neuroblastoma tumor behavior. Purinergic Signal 2024:10.1007/s11302-024-10051-w. [PMID: 39425818 DOI: 10.1007/s11302-024-10051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) exhibit antitumor or protumor responses related to inflammatory (or M1) and alternative (or M2) phenotypes, respectively. The P2X7 receptor plays a key role in macrophage polarization, influencing inflammation and immunosuppression. In this study, we investigated the role of the P2X7 receptor in TAMs. Using P2X7 receptor-deficient macrophages, we analyzed gene expression profiles and their implications for neuroblastoma invasion and chemoresistance. Our results showed that P2X7 receptor deficiency altered the expression of classical polarization markers, such as nitric oxide synthase 2 (Nos2) and tumor necrosis factor-α (Tnf), as well as alternative phenotype markers, including mannose receptor C-type 1 (Mrc1) and arginase 1 (Arg1). P2X7 deficiency also influenced the expression of the ectonucleotidases Entpd1 and Nt5e and other purinergic receptors, especially P2ry2, suggesting compensatory mechanisms involved in macrophage polarization. In particular, TAMs deficient in P2X7 showed a phenotype with characteristics intermideiate between resting macrophages (M0) and M1 polarization rather than the M2-type phenotype like and wild-type TAM macrophages. In addition, P2rx7-/- TAMs regulated the expression of P2X7 receptor isoforms in neuroblastoma cells, with downregulation of the P2X7 A and B isoforms leading to a decrease in chemotherapy-induced cell death. However, TAMs expressing P2X7 downregulated only the B isoform, suggesting that TAMs play a role in modulating tumor behavior through P2X7 receptor isoform regulation. Taken together, our data underscore the regulatory function of the P2X7 receptor in orchestrating alternative macrophage polarization and in the interplay between tumor cells and TAMs. These findings help to clarify the complex interplay of purinergic signaling in cancer progression and open up avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Carolina Adriane Bento
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa Fernandes Arnaud-Sampaio
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Talita Glaser
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Elena Adinolfi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudiana Lameu
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Kiaie SH, Zangi AR, Sheibani M, Hemmati S, Baradaran B, Valizadeh H. Novel synthesized ionizable lipid for LNP-mediated P2X7siRNA to inhibit migration and induce apoptosis of breast cancer cells. Purinergic Signal 2024; 20:533-546. [PMID: 38436880 PMCID: PMC11377399 DOI: 10.1007/s11302-024-09989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
The development of ionizable lipid (IL) was necessary to enable the effective formulation of small interfering RNA (siRNA) to inhibit P2X7 receptors (P2X7R), a key player in tumor proliferation, apoptosis, and metastasis. In this way, the synthesis and utility of IL for enhancing cellular uptake of lipid nanoparticles (LNP) improve the proper delivery of siRNA-LNPs for knockdown overexpression of P2X7R. Therefore, to evaluate the impact of P2X7 knockdown on breast cancer (BC) migration and apoptosis, a branched and synthesized ionizable lipid (SIL) was performed for efficient transfection of LNP with siRNA for targeting P2X7 receptors (siP2X7) in mouse 4T-1 cells. Following synthesis and structural analysis of SIL, excellent characterization of the LNP was achieved (Z-average 126.8 nm, zeta-potential - 12.33, PDI 0.16, and encapsulation efficiency 85.35%). Afterward, the stability of the LNP was evaluated through an analysis of the leftover composition, and toxic concentration values for SIL and siP2X7 were determined. Furthermore, siP2X7-LNP cellular uptake in the formulation was assessed via confocal microscopy. Following determining the optimal dose (45 pmol), wound healing analysis was assessed using scratch assay microscopy, and apoptosis was evaluated using flow cytometry. The use of the innovative branched SIL in the formulation of siP2X7-LNP resulted in significant inhibition of migration and induction of apoptosis in 4T-1 cells due to improved cellular uptake. Subsequently, the innovative SIL represents a critical role in efficiently delivering siRNA against murine triple-negative breast cancer cells (TNBC) using LNP formulation, resulting in significant efficacy.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center and School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Pegoraro A, Grignolo M, Ruo L, Ricci L, Adinolfi E. P2X7 Variants in Pathophysiology. Int J Mol Sci 2024; 25:6673. [PMID: 38928378 PMCID: PMC11204217 DOI: 10.3390/ijms25126673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
P2X7 receptor activation by extracellular adenosine triphosphate (eATP) modulates different intracellular pathways, including pro-inflammatory and tumor-promoting cascades. ATP is released by cells and necrotic tissues during stressful conditions and accumulates mainly in the inflammatory and tumoral microenvironments. As a consequence, both the P2X7 blockade and agonism have been proposed as therapeutic strategies in phlogosis and cancer. Nevertheless, most studies have been carried out on the WT fully functional receptor variant. In recent years, the discovery of P2X7 variants derived by alternative splicing mechanisms or single-nucleotide substitutions gave rise to the investigation of these new P2X7 variants' roles in different processes and diseases. Here, we provide an overview of the literature covering the function of human P2X7 splice variants and polymorphisms in diverse pathophysiological contexts, paying particular attention to their role in oncological and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.G.); (L.R.); (L.R.)
| | | | | | | | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.G.); (L.R.); (L.R.)
| |
Collapse
|
4
|
Xu YS, Xiang J, Lin SJ. Functional role of P2X7 purinergic receptor in cancer and cancer-related pain. Purinergic Signal 2024:10.1007/s11302-024-10019-w. [PMID: 38771429 DOI: 10.1007/s11302-024-10019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Numerous studies have revealed that the ATP-gated ion channel purinergic 2X7 receptor (P2X7R) plays an important role in tumor progression and the pathogenesis of cancer pain. P2X7R requires activation by extracellular ATP to perform its regulatory role functions. During tumor development or cancer-induced pain, ATP is released from tumor cells or other cells in the tumor microenvironment (such as tumor-associated immune cells), which activates P2X7R, opens ion channels on the cell membrane, affects intracellular molecular metabolism, and regulates the activity of tumor cells. Furthermore, peripheral organs and receptors can be damaged during tumor progression, and P2X7R expression in nerve cells (such as microglia) is significantly upregulated, enhancing sensory afferent information, sensitizing the central nervous system, and inducing or exacerbating pain. These findings reveal that the ATP-P2X7R signaling axis plays a key regulatory role in the pathogenesis of tumors and cancer pain and also has a therapeutic role. Accordingly, in this study, we explored the role of P2X7R in tumors and cancer pain, discussed the pharmacological properties of inhibiting P2X7R activity (such as the use of antagonists) or blocking its expression in the treatment of tumor and cancer pain, and provided an important evidence for the treatment of both in the future.
Collapse
Affiliation(s)
- Yong-Sheng Xu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Jun Xiang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China.
| |
Collapse
|
5
|
Zou YT, Li JY, Chai JY, Hu YS, Zhang WJ, Zhang Q. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun 2024; 707:149513. [PMID: 38508051 DOI: 10.1016/j.bbrc.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024]
Abstract
Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
Collapse
Affiliation(s)
- Yu-Ting Zou
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jin-Yuan Li
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Yi Chai
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yu-Shan Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China; The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
6
|
Magni L, Yu H, Christensen NM, Poulsen MH, Frueh A, Deshar G, Johansen AZ, Johansen JS, Pless SA, Jørgensen NR, Novak I. Human P2X7 receptor variants Gly150Arg and Arg276His polymorphisms have differential effects on risk association and cellular functions in pancreatic cancer. Cancer Cell Int 2024; 24:148. [PMID: 38664691 PMCID: PMC11044319 DOI: 10.1186/s12935-024-03339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The purinergic P2X7 receptor (P2X7R) plays an important role in the crosstalk between pancreatic stellate cells (PSCs) and cancer cells, thus promoting progression of pancreatic ductal adenocarcinoma (PDAC). Single nucleotide polymorphisms (SNPs) in the P2X7R have been reported for several cancers, but have not been explored in PDAC. MATERIALS AND METHODS Blood samples from PDAC patients and controls were genotyped for 11 non-synonymous SNPs in P2X7R and a risk analysis was performed. Relevant P2X7R-SNP GFP variants were expressed in PSCs and cancer cells and their function was assayed in the following tests. Responses in Ca2+ were studied with Fura-2 and dye uptake with YO-PRO-1. Cell migration was monitored by fluorescence microscopy. Released cytokines were measured with MSD assay. RESULTS Risk analysis showed that two SNPs 474G>A and 853G>A (rs28360447, rs7958316), that lead to the Gly150Arg and Arg276His variants, had a significant but opposite risk association with PDAC development, protecting against and predisposing to the disease, respectively. In vitro experiments performed on cancer cells and PSCs expressing the Gly150Arg variant showed reduced intracellular Ca2+ response, fluorescent dye uptake, and cell migration, while the Arg276His variant reduced dye uptake but displayed WT-like Ca2+ responses. As predicted, P2X7R was involved in cytokine release (IL-6, IL-1β, IL-8, TNF-α), but the P2X7R inhibitors displayed varied effects. CONCLUSION In conclusion, we provide evidence for the P2X7R SNPs association with PDAC and propose that they could be considered as potential biomarkers.
Collapse
Affiliation(s)
- Lara Magni
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Haoran Yu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Nynne M Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Mette H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Frueh
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Ganga Deshar
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
7
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
8
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
9
|
Mafra JCM, Boechat N, Teixeira GP, Faria RX. Synthetic molecules as P2X7 receptor antagonists: A medicinal chemistry update focusing the therapy of inflammatory diseases. Eur J Pharmacol 2023; 957:175999. [PMID: 37619787 DOI: 10.1016/j.ejphar.2023.175999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Stimulation of the P2X7 receptor by extracellular adenosine 5'-triphosphate induces a series of responses in the organism, exceptionally protein cascades related to the proinflammatory process. This has made P2X7 a target for research on inflammatory diseases such as rheumatoid arthritis. Thus, the incessant search for new prototypes that aim to antagonize the action of P2X7 has been remarkable in recent decades, a factor that has already led to numerous clinical studies in humans. In this review, we present the key molecules developed over the years with potential inhibition of P2X7 and inflammation. In addition, an update with newly developed chemical classes with promising activity and results in clinical studies for human pathologies focusing on P2X7 inhibition.
Collapse
Affiliation(s)
- João Carlos Martins Mafra
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil; Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro, Brazil.
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil.
| | - Guilherme Pegas Teixeira
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| | - Robson Xavier Faria
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| |
Collapse
|
10
|
Adinolfi E, De Marchi E, Grignolo M, Szymczak B, Pegoraro A. The P2X7 Receptor in Oncogenesis and Metastatic Dissemination: New Insights on Vesicular Release and Adenosinergic Crosstalk. Int J Mol Sci 2023; 24:13906. [PMID: 37762206 PMCID: PMC10531279 DOI: 10.3390/ijms241813906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The tumor niche is an environment rich in extracellular ATP (eATP) where purinergic receptors have essential roles in different cell subtypes, including cancer, immune, and stromal cells. Here, we give an overview of recent discoveries regarding the role of probably the best-characterized purinergic receptor in the tumor microenvironment: P2X7. We cover the activities of the P2X7 receptor and its human splice variants in solid and liquid cancer proliferation, dissemination, and crosstalk with immune and endothelial cells. Particular attention is paid to the P2X7-dependent release of microvesicles and exosomes, their content, including ATP and miRNAs, and, in general, P2X7-activated mechanisms favoring metastatic spread and niche conditioning. Moreover, the emerging role of P2X7 in influencing the adenosinergic axis, formed by the ectonucleotidases CD39 and CD73 and the adenosine receptor A2A in cancer, is analyzed. Finally, we cover how antitumor therapy responses can be influenced by or can change P2X7 expression and function. This converging evidence suggests that P2X7 is an attractive therapeutic target for oncological conditions.
Collapse
Affiliation(s)
- Elena Adinolfi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Elena De Marchi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Marianna Grignolo
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Anna Pegoraro
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| |
Collapse
|
11
|
Cevoli F, Arnould B, Peralta FA, Grutter T. Untangling Macropore Formation and Current Facilitation in P2X7. Int J Mol Sci 2023; 24:10896. [PMID: 37446075 DOI: 10.3390/ijms241310896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Macropore formation and current facilitation are intriguing phenomena associated with ATP-gated P2X7 receptors (P2X7). Macropores are large pores formed in the cell membrane that allow the passage of large molecules. The precise mechanisms underlying macropore formation remain poorly understood, but recent evidence suggests two alternative pathways: a direct entry through the P2X7 pore itself, and an indirect pathway triggered by P2X7 activation involving additional proteins, such as TMEM16F channel/scramblase. On the other hand, current facilitation refers to the progressive increase in current amplitude and activation kinetics observed with prolonged or repetitive exposure to ATP. Various mechanisms, including the activation of chloride channels and intrinsic properties of P2X7, have been proposed to explain this phenomenon. In this comprehensive review, we present an in-depth overview of P2X7 current facilitation and macropore formation, highlighting new findings and proposing mechanistic models that may offer fresh insights into these untangled processes.
Collapse
Affiliation(s)
- Federico Cevoli
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Benoit Arnould
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francisco Andrés Peralta
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Thomas Grutter
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67000 Strasbourg, France
| |
Collapse
|
12
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Tang Y, Qiao C, Li Q, Zhu X, Zhao R, Peng X. Research Progress in the Relationship Between P2X7R and Cervical Cancer. Reprod Sci 2023; 30:823-834. [PMID: 35799022 DOI: 10.1007/s43032-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
14
|
He X, Xu Y, Huang D, Yu Z, Yu J, Xie L, Liu L, Yu Y, Chen C, Wan J, Zhang Y, Zheng J. P2X1 enhances leukemogenesis through PBX3-BCAT1 pathways. Leukemia 2023; 37:265-275. [PMID: 36418376 PMCID: PMC9898031 DOI: 10.1038/s41375-022-01759-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
How bone marrow niches regulate leukemogenic activities of leukemia-initiating cells (LICs) is unclear. The present study revealed that the metabolic niche component, ATP, efficiently induced ion influx in LICs through its ligand-gated ion channel, P2X1. P2X1 deletion impaired LIC self-renewal capacities and resulted in an approximately 8-fold decrease in functional LIC numbers in a murine acute myeloid leukemia (AML) model without affecting normal hematopoiesis. P2X1 phosphorylation at specific sites of S387 and T389 was essential for sustaining its promoting effects on leukemia development. ATP-P2X1-mediated signaling upregulated the PBX3 level to transactivate BCAT1 to maintain LIC fates. P2X1 knockdown inhibited the proliferation of both human AML cell lines and primary cells. The P2X1 antagonist sufficiently suppressed AML cell proliferation. These results provided a unique perspective on how metabolic niche factor ATP fine-tunes LIC activities, which may benefit the development of strategies for targeting LICs or other cancer stem cells.
Collapse
Affiliation(s)
- Xiaoxiao He
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yilu Xu
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Dan Huang
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhuo Yu
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jing Yu
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Li Xie
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ligen Liu
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ye Yu
- grid.254147.10000 0000 9776 7793School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Research Unit of Stress and Cancer, Chinese Academy of Medical Sciences, Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China.
| |
Collapse
|
15
|
Demeules M, Scarpitta A, Hardet R, Gondé H, Abad C, Blandin M, Menzel S, Duan Y, Rissiek B, Magnus T, Mann AM, Koch-Nolte F, Adriouch S. Evaluation of nanobody-based biologics targeting purinergic checkpoints in tumor models in vivo. Front Immunol 2022; 13:1012534. [PMID: 36341324 PMCID: PMC9626963 DOI: 10.3389/fimmu.2022.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. ATP promotes tumor growth but also anti-tumor immune responses notably via the P2X7 receptor. ATP can also be catabolized by CD39 and CD73 ecto-enzymes into immunosuppressive adenosine. P2X7, CD39 and CD73 have attracted much interest in cancer as targets offering the potential to unleash anti-tumor immune responses. These membrane proteins represent novel purinergic checkpoints that can be targeted by small drugs or biologics. Here, we investigated nanobody-based biologics targeting mainly P2X7, but also CD73, alone or in combination therapies. Blocking P2X7 inhibited tumor growth and improved survival of mice in cancer models that express P2X7. P2X7-potentiation by a nanobody-based biologic was not effective alone to control tumor growth but enhanced tumor control and immune responses when used in combination with oxaliplatin chemotherapy. We also evaluated a bi-specific nanobody-based biologic that targets PD-L1 and CD73. This novel nanobody-based biologic exerted a potent anti-tumor effect, promoting tumor rejection and improving survival of mice in two tumor models. Hence, this study highlights the importance of purinergic checkpoints in tumor control and open new avenues for nanobody-based biologics that may be further exploited in the treatment of cancer.
Collapse
Affiliation(s)
- Mélanie Demeules
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Allan Scarpitta
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Romain Hardet
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Henri Gondé
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Catalina Abad
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Marine Blandin
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
- *Correspondence: Sahil Adriouch,
| |
Collapse
|
16
|
Zanoni M, Pegoraro A, Adinolfi E, De Marchi E. Emerging roles of purinergic signaling in anti-cancer therapy resistance. Front Cell Dev Biol 2022; 10:1006384. [PMID: 36200041 PMCID: PMC9527280 DOI: 10.3389/fcell.2022.1006384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer is a complex disease with a rapid growing incidence and often characterized by a poor prognosis. Although impressive advances have been made in cancer treatments, resistance to therapy remains a critical obstacle for the improvement of patients outcome. Current treatment approaches as chemo-, radio-, and immuno-therapy deeply affect the tumor microenvironment (TME), inducing an extensive selective pressure on cancer cells through the activation of the immune system, the induction of cell death and the release of inflammatory and damage-associated molecular patterns (DAMPS), including nucleosides (adenosine) and nucleotides (ATP and ADP). To survive in this hostile environment, resistant cells engage a variety of mitigation pathways related to metabolism, DNA repair, stemness, inflammation and resistance to apoptosis. In this context, purinergic signaling exerts a pivotal role being involved in mitochondrial function, stemness, inflammation and cancer development. The activity of ATP and adenosine released in the TME depend upon the repertoire of purinergic P2 and adenosine receptors engaged, as well as, by the expression of ectonucleotidases (CD39 and CD73) on tumor, immune and stromal cells. Besides its well established role in the pathogenesis of several tumors and in host–tumor interaction, purinergic signaling has been recently shown to be profoundly involved in the development of therapy resistance. In this review we summarize the current advances on the role of purinergic signaling in response and resistance to anti-cancer therapies, also describing the translational applications of combining conventional anticancer interventions with therapies targeting purinergic signaling.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Michele Zanoni,
| | - Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:222. [PMID: 35836249 PMCID: PMC9284706 DOI: 10.1186/s13046-022-02430-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/02/2022] [Indexed: 01/09/2023]
Abstract
Emerging evidence has demonstrated that radiotherapy (RT) can not only cause direct damage to cancer cells but also lead to immunogenic cell death (ICD), which involves the activation of host antitumor immune response in tumor immune microenvironment (TIME). RT-induced ICD comprises the release of damage-associated molecular patterns (DAMPs) from dying cancer cells that result in the activation of tumor-specific immunity to elicit long-term antitumor efficacy in both original and abscopal tumor sites. Adenosine triphosphate (ATP), as an important DAMP released by irradiated cancer cells and an essential factor within purinergic pathway, can be further hydrolyzed to adenosine (ADO) by two key ectonucleotidases, CD39 and CD73, to further modulate the antitumor immunity in TIME through purinergic signaling via the interaction to its specific receptors such as adenosine 2A receptor (A2AR) and A2BR widely expressed on the surface of the components in TIME, including cancer cells and many immune effector cells. In this review, we first introduced key components in purinergic pathway including ATP, ADO, their receptors, and essential ectonucleotidases. Then we reviewed the regulation of ATP and ADO levels and their main mechanisms by which they promote tumor growth and broadly suppress antitumor immunity through inhibiting the pro-inflammatory response of dendritic cells, cytotoxic T lymphocytes, and natural killer cells, while improving the anti-inflammatory response of regulatory T cells, macrophages, and myeloid-derived suppressor cells in TIME, especially after irradiation. Finally, we presented an overview of dozens of promising therapeutics including pharmacological antagonists and specific antibodies targeting ADO receptors and ectonucleotidases CD39 or CD73 investigated in the clinic for cancer treatment, especially focusing on the preclinical studies and clinical trials being explored for blocking the purinergic signaling to enhance RT as a combination antitumor therapeutic strategy, which has a robust potential to be translated to the clinic in the future.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, 2800 Gongwei Rd, Shanghai, China. .,Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Rd, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Da M, Chen L, Enk A, Ring S, Mahnke K. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells. Front Immunol 2022; 13:914799. [PMID: 35711418 PMCID: PMC9197450 DOI: 10.3389/fimmu.2022.914799] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine (Ado) has been shown to have immunosuppressive effects in a variety of diseases. It can either be released directly into the extracellular environment by cells, or it can be produced by degradation of ATP within the extracellular spaces. This extracellular pathway is facilitated by the concerted actions of the ectoenzymes CD39 and CD73. In a first step CD39 dephosphorylates ATP to ADP and AMP, respectively, and in a second step CD73 converts AMP to Ado. Thus, activity of CD73 on the cell surface of cells is the rate limiting step in the generation of extracellular Ado. Among T cells, CD73 is most abundantly expressed by regulatory T cells (Tregs) and is even upregulated after their activation. Functionally, the generation of Ado by CD73+ Tregs has been shown to play a role in immune suppression of dendritic cells, monocytes and T cells, and the defined expression of CD73 by Tregs in immunosuppressive environments, such as tumors, made CD73 a novel checkpoint inhibitor. Therefore, therapeutical intervention by anti-CD73 antibodies or by chemical inhibitors of the enzymatic function is currently under investigation in some preclinical animal models. In the following we summarize the expression pattern and the possible functions of CD73 in T cells and Tregs, and exemplify novel ways to manipulate CD73 functions in Tregs to stimulate anti-tumor immunity.
Collapse
|
19
|
De Marchi E, Pegoraro A, Turiello R, Di Virgilio F, Morello S, Adinolfi E. A2A Receptor Contributes to Tumor Progression in P2X7 Null Mice. Front Cell Dev Biol 2022; 10:876510. [PMID: 35663396 PMCID: PMC9159855 DOI: 10.3389/fcell.2022.876510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
ATP and adenosine are key constituents of the tumor niche where they exert opposite and complementary roles. ATP can be released in response to cell damage or actively released by tumor cells and subsequently degraded into adenosine, which accumulates within the tumor microenvironment. Notably, while ATP promotes immune eradicating responses mainly via the P2X7 receptor (P2X7R), extracellular adenosine acts as a potent immune suppressor and facilitates neovascularization thanks to the A2A receptor (A2AR). To date, studies exploring the interplay between P2X7R and A2AR in the tumor microenvironment are as yet missing. Here, we show that, in C57/bl6 P2X7 null mice inoculated with B16-F10 melanoma cells, several pro-inflammatory cytokines, including interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 12 (IL-12), interleukin 17 (IL-17), interferon gamma (IFN-γ) were significantly decreased, while the immune suppressant transforming growth factor beta (TGF-β) was almost three-fold increased. Interestingly, tumors growing in P2X7-null mice upregulated tumor-associated and splenic A2AR, suggesting that immunosuppression linked to lack of the P2X7R might depend upon A2AR overexpression. Immunohistochemical analysis showed that tumor cells’ A2AR expression was increased, especially around necrotic areas, and that vascular endothelial growth factor (VEGF) and the endothelial marker CD31 were upregulated. A2AR antagonist SCH58261 treatment reduced tumor growth similarly in the P2X7 wild type or null mice strain. However, SCH58261 reduced VEGF only in the P2X7 knock out mice, thus supporting the hypothesis of an A2AR-mediated increase in vascularization observed in the P2X7-null host. SCH58261 administration also significantly reduced intratumor TGF-β levels, thus supporting a key immune suppressive role of A2AR in our model. Altogether, these results indicate that in the absence of host P2X7R, the A2AR favors tumor growth via immune suppression and neovascularization. This study shows a novel direct correlation between P2X7R and A2AR in oncogenesis and paves the way for new combined therapies promoting anti-cancer immune responses and reducing tumor vascularization.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- *Correspondence: Elena Adinolfi,
| |
Collapse
|
20
|
Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G, Martini F, Tognon M. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications. Cancers (Basel) 2022; 14:1116. [PMID: 35267424 PMCID: PMC8909580 DOI: 10.3390/cancers14051116] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) is a transmembrane protein whose expression has been related to a variety of cellular processes, while its dysregulation has been linked to inflammation and cancer. P2X7R is expressed in cancer and immune system cell surfaces. ATP plays a key role in numerous metabolic processes due to its abundance in the tumour microenvironment. P2X7R plays an important role in cancer by interacting with ATP. The unusual property of P2X7R is that stimulation with low doses of ATP causes the opening of a permeable channel for sodium, potassium, and calcium ions, whereas sustained stimulation with high doses of ATP favours the formation of a non-selective pore. The latter effect induces a change in intracellular homeostasis that leads to cell death. This evidence suggests that P2X7R has both pro- and anti-tumour proprieties. P2X7R is increasingly recognised as a regulator of inflammation. In this review, we aimed to describe the most relevant characteristics of P2X7R function, activation, and its ligands, while also summarising the role of P2X7R activation in the context of inflammation and cancer. The currently used therapeutic approaches and clinical trials of P2X7R modulators are also described.
Collapse
Affiliation(s)
- John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Stefani
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Giada Badiale
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Giulia Campione
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| |
Collapse
|
21
|
De Marchi E, Pegoraro A, Adinolfi E. Administration of P2X7 Receptor Blockers in Oncological Experimental Models. Methods Mol Biol 2022; 2510:303-314. [PMID: 35776333 DOI: 10.1007/978-1-0716-2384-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The tumor microenvironment is rich in components that strongly influence cancer cell survival. One of the pivotal molecules present at the tumor bed is ATP, which has an essential role in promoting cancer proliferation and metastasis and immune responses via its receptor P2X7. Several studies have proved the efficacy of P2X7 pharmacological blockade in inhibiting primary and metastatic tumor growth in preclinical models. Here we describe the experimental procedures that we optimized to test P2X7 roles in carcinogenesis by antagonist administration. Special attention is paid to their concentrations and routes of administration. The depicted in vitro models include cell count and viability assays, which are useful to test P2X7 roles in cell proliferation and vitality, and the soft agar colony formation test that allows investigation of the transforming and invading abilities of tumor cells. We also describe systemic and intramass administration of P2X7 blockers in murine models of melanoma and leukemia. Both xenotransplant and syngeneic experimental tumor models are detailed.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
22
|
Bao L, Sun K, Zhang X. PANX1 is a potential prognostic biomarker associated with immune infiltration in pancreatic adenocarcinoma: A pan-cancer analysis. Channels (Austin) 2021; 15:680-696. [PMID: 34796785 PMCID: PMC8632293 DOI: 10.1080/19336950.2021.2004758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pannexin 1 (PANX1) channel is a critical ATP-releasing pathway that modulates tumor immunity, progression, and prognosis. However, the roles of PANX1 in different cancers remain unclear. We analyzed the expression of PANX1 in human pan-cancer in the Oncomine and GEPIA2.0 databases. The prognostic value of PANX1 expression was determined using Kaplan-Meier plotter and OncoLnc tools. The correlation between PANX1 and tumor-infiltrating immune cells was investigated using the TIMER 2.0. In addition, the relationship between PANX1 and immunomodulators was explored using TISIDB. Finally, gene set enrichment analysis (GSEA) was performed utilizing LinkedOmics. The results indicated that PANX1 was overexpressed in most cancers compared to normal tissues. The high expression of PANX1 was associated with poor prognosis in multiple tumors, especially in pancreatic adenocarcinoma (PAAD). In addition, PANX1 was correlated with a variety of immunomodulators, such as CD274, IL10, CD276, IL2RA, TAP1, and TAP2. PANX1 expression level was significantly related to infiltration of multiple immune cells in many cancers, including cancer associated fibroblast, macrophage, and neutrophil cells. Further analysis revealed that PANX1 was significantly associated with T cells CD8+ (rho = 0.524, P = 1.94e-13) and Myeloid dendritic cell (rho = 0.564, P = 9.45e-16). GSEA results showed that PANX1 was closely associated with leukocyte cell-cell adhesion, endoplasmic reticulum lumen, ECM-receptor interaction, and Focal adhesion pathways in PAAD. PANX1 expression was higher in pan-cancer samples than in normal tissues. The high expression of PANX1 was associated with poor outcome and immune infiltration in multiple cancers, especially in PAAD.
Collapse
Affiliation(s)
- Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| | - Kai Sun
- Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xuede Zhang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
23
|
P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death Dis 2021; 12:1088. [PMID: 34789738 PMCID: PMC8599616 DOI: 10.1038/s41419-021-04378-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Tumor growth and metastatic spreading are heavily affected by the P2X7 receptor as well as microvesicles and exosomes release into the tumor microenvironment. P2X7 receptor stimulation is known to trigger vesicular release from immune and central nervous system cells. However, P2X7 role in microvesicles and exosomes delivery from tumor cells was never analyzed in depth. Here we show that P2X7 is overexpressed in patients affected by metastatic malignant melanoma and that its expression closely correlates with reduced overall survival. Antagonism of melanoma cell-expressed P2X7 receptor inhibited in vitro anchorage-independent growth and migration and in vivo dissemination and lung metastasis formation. P2X7 stimulation triggered the release of miRNA-containing microvesicles and exosomes from melanoma cells, profoundly altering the nature of their miRNA content, as well as their dimensions and quantity. Among the more than 200 miRNAs that we found up-or-down-modulated for each vesicular fraction tested, we identified three miRNAs, miR-495-3p, miR-376c-3p, and miR-6730-3p, that were enriched in both the exosome and microvesicle fraction in a P2X7-dependent fashion. Interestingly, upon transfection, these miRNAs promoted melanoma cell growth or migration, and their vesicular release was minimized by P2X7 antagonism. Our data unveil an exosome/microvesicle and miRNA-dependent mechanism for the pro-metastatic activity of the P2X7 receptor and highlight this receptor as a suitable prognostic biomarker and therapeutic target in malignant melanoma.
Collapse
|
24
|
Rubenich DS, de Souza PO, Omizzollo N, Lenz GS, Sevigny J, Braganhol E. Neutrophils: fast and furious-the nucleotide pathway. Purinergic Signal 2021; 17:371-383. [PMID: 33913070 PMCID: PMC8410927 DOI: 10.1007/s11302-021-09786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleotide signaling is a key element of the neutrophil activation pathway. Neutrophil recruitment and migration to injured tissues is guided by purinergic receptor sensitization, mostly induced by extracellular adenosine triphosphate (ATP) and its hydrolysis product, adenosine (ADO), which is primarily produced by the CD39-CD73 axis located at the neutrophil cell surface. In inflammation unrelated to cancer, neutrophil activation via purinergic signaling aims to eliminate antigens and promote an immune response with minimal damage to healthy tissues; however, an antagonistic response may be expected in tumors. Indeed, alterations in purinergic signaling favor the accumulation of extracellular ATP and ADO in the microenvironment of solid tumors, which promote tumor progression by inducing cell proliferation, angiogenesis, and escape from immune surveillance. Since neutrophils and their N1/N2 polarization spectrum are being considered new components of cancer-related inflammation, the participation of purinergic signaling in pro-tumor activities of neutrophils should also be considered. However, there is a lack of studies investigating purinergic signaling in human neutrophil polarization and in tumor-associated neutrophils. In this review, we discussed the human neutrophil response elicited by nucleotides in inflammation and extrapolated its behavior in the context of cancer. Understanding these mechanisms in cancerous conditions may help to identify new biological targets and therapeutic strategies, particularly regarding tumors that are refractory to traditional chemo- and immunotherapy.
Collapse
Affiliation(s)
- Dominique S Rubenich
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Sarmento Leite St, 245 - Main Building - Room 304, Porto Alegre, RS, 90.050-170, Brazil
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária do Instituto de Cardiologia (IC-FUC), Porto Alegre, RS, Brazil
| | - Priscila O de Souza
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Sarmento Leite St, 245 - Main Building - Room 304, Porto Alegre, RS, 90.050-170, Brazil
| | - Natalia Omizzollo
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Sarmento Leite St, 245 - Main Building - Room 304, Porto Alegre, RS, 90.050-170, Brazil
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária do Instituto de Cardiologia (IC-FUC), Porto Alegre, RS, Brazil
| | - Gabriela S Lenz
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Sarmento Leite St, 245 - Main Building - Room 304, Porto Alegre, RS, 90.050-170, Brazil
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária do Instituto de Cardiologia (IC-FUC), Porto Alegre, RS, Brazil
| | - Jean Sevigny
- Département de Microbiologie-infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, QC, Québec, Canada
- Centre de Recherchedu CHU de Québec, Université Laval, Québec City, QC, G1V4G2, Canada
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Sarmento Leite St, 245 - Main Building - Room 304, Porto Alegre, RS, 90.050-170, Brazil.
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária do Instituto de Cardiologia (IC-FUC), Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
D’Amico R, Fusco R, Siracusa R, Impellizzeri D, Peritore AF, Gugliandolo E, Interdonato L, Sforza AM, Crupi R, Cuzzocrea S, Genovese T, Cordaro M, Di Paola R. Inhibition of P2X7 Purinergic Receptor Ameliorates Fibromyalgia Syndrome by Suppressing NLRP3 Pathway. Int J Mol Sci 2021; 22:ijms22126471. [PMID: 34208781 PMCID: PMC8234677 DOI: 10.3390/ijms22126471] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Fibromyalgia is a chronic condition characterized by persistent widespread pain that significantly reduces quality of life in patients. The purinergic P2X7 receptor (P2X7R) seems to be involved in different pain states and neuroinflammation. The purpose of this study is to investigate the positive effects of P2X7R inhibition by the antagonist Brilliant Blue G (BBG) in a rat model of reserpine-induced fibromyalgia. Sprague-Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days. Later, animals were administered BBG (50 mg/kg) intraperitoneally for seven days. Reserpine injections induced a significant increase in pain pro-inflammatory mediators as well as a significant increase in neuroinflammation. Chronic pain, in turn, led to depressive-like symptoms and reduced neurogenesis. Blockage of P2X7R by BBG administrations is able to attenuate the behavioral deficits, pain mediators and microglial activation induced by reserpine injection. Additionally, BBG prevents NLRP3 inflammasome activation and consequently the release of active interleukin (IL)-1 and IL-18, involved in the activation of nociceptors. In conclusion, these results suggest that inhibition of P2X7R should be further investigated to develop a potential approach for the management of fibromyalgia.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Andrea Maria Sforza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
- Correspondence: (S.C.); (T.G.); Tel.: +39-090-676-5208 (S.C. & T.G.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
- Correspondence: (S.C.); (T.G.); Tel.: +39-090-676-5208 (S.C. & T.G.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, via Consolare Valeria, 98125 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| |
Collapse
|
26
|
Lombardi M, Gabrielli M, Adinolfi E, Verderio C. Role of ATP in Extracellular Vesicle Biogenesis and Dynamics. Front Pharmacol 2021; 12:654023. [PMID: 33790800 PMCID: PMC8006391 DOI: 10.3389/fphar.2021.654023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is among the molecules involved in the immune response. It acts as danger signal that promotes inflammation by activating both P2X and P2Y purinergic receptors expressed in immune cells, including microglia, and tumor cells. One of the most important receptors implicated in ATP-induced inflammation is P2X7 receptor (P2X7R). The stimulation of P2X7R by high concentration of ATP results in cell proliferation, inflammasome activation and shedding of extracellular vesicles (EVs). EVs are membrane structures released by all cells, which contain a selection of donor cell components, including proteins, lipids, RNA and ATP itself, and are able to transfer these molecules to target cells. ATP stimulation not only promotes EV production from microglia but also influences EV composition and signaling to the environment. In the present review, we will discuss the current knowledge on the role of ATP in the biogenesis and dynamics of EVs, which exert important functions in physiology and pathophysiology.
Collapse
Affiliation(s)
- Marta Lombardi
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Gabrielli
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
27
|
De Marchi E, Pegoraro A, Adinolfi E. P2X7 Receptor in Hematological Malignancies. Front Cell Dev Biol 2021; 9:645605. [PMID: 33763425 PMCID: PMC7982859 DOI: 10.3389/fcell.2021.645605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
The P2X7 receptor is an ion channel gated by the nucleotide ATP, known for its role in immune responses and recently emerging as a critical onco-promoting factor. Lymphocytes, myeloid cells, and their precursors were among the first cells proved to express a functional P2X7 receptor; therefore, it is not surprising that lymphoproliferative and myeloproliferative diseases, also known as hematological malignancies, were shown to be related in their insurgence and progression to P2X7 alterations. Here, we overview established and recent literature relating P2X7 with the biological mechanisms underlying leukemias, lymphomas, and multiple myeloma development. Particular attention is paid to studies published in the very recent past correlating P2X7 with ATP concentration in the leukemic microenvironment and P2X7 overexpression to acute myeloid leukemia aggressiveness and response to chemotherapy. The described literature strongly suggests that P2X7 and its genetic variants could be regarded as potential new biomarkers in hematological malignancies and that both P2X7 antagonists and agonists could emerge as new therapeutic tools alone or in combination with traditional chemotherapy.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Zhu X, Li Q, Song W, Peng X, Zhao R. P2X7 receptor: a critical regulator and potential target for breast cancer. J Mol Med (Berl) 2021; 99:349-358. [PMID: 33486566 DOI: 10.1007/s00109-021-02041-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is currently the most common cancer and the leading cause of cancer death among women worldwide. Advanced breast cancer is prone to metastasis, and there is currently no drug to cure metastatic breast cancer. The purinergic ligand-gated ion channel 7 receptor is an ATP-gated nonselective cation channel receptor and is involved in signal transduction, growth regulation, cytokine secretion, and tumor cell development. Recent studies have shown that upregulation of the P2X7 receptor in breast cancer can mediate AKT signaling pathways, Ca2 þ-activated SK3 potassium channels, and EMT and regulate the secretion of small extracellular vesicles to promote breast cancer invasion and migration, which are affected by factors such as hypoxia and ATP. In addition, studies have shown that microRNAs can bind to the 3' untranslated region of the P2X7 receptor, which affects the occurrence and development of breast cancer by upregulating and downregulating P2X7 receptor expression. Studies have shown that new P2X7 receptor inhibitors, such as emodin and Uncaria tomentosa, can inhibit P2X7 receptor-mediated breast cancer invasion and are expected to be used clinically. This article reviews the research progress on the relationship between the P2X7 receptor and breast cancer to provide new ideas and a basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Wei Song
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
29
|
Abstract
The P2X7 receptor for extracellular ATP is a well-established mediator of tumoral development and progression both in solid cancers and hematological malignancies. The human P2X7 gene is highly polymorphic, and several splice variants of the receptor have been identified in time. P2X7 single-nucleotide polymorphisms (SNPs) have been broadly analyzed by studies relating them to pathologies as different as infectious, inflammatory, nervous, and bone diseases, among which cancer is included. Moreover, in the last years, an increasing number of reports concentrated on P2X7 splice variants’ different roles and their implications in pathological conditions, including oncogenesis. Here, we give an overview of established and recent literature demonstrating a role for human P2X7 gene products in oncological conditions, mainly focusing on current data emerging on P2X7 isoform B and nfP2X7. We explored the role of these and other genetic variants of P2X7 in cancer insurgence, dissemination, and progression, as well as the effect of chemotherapy on isoforms expression. The described literature strongly suggests that P2X7 variants are potential new biomarkers and therapeutical targets in oncological conditions and that their study in carcinogenesis deserves to be further pursued.
Collapse
|
30
|
Di Virgilio F, Vultaggio-Poma V, Sarti AC. P2X receptors in cancer growth and progression. Biochem Pharmacol 2020; 187:114350. [PMID: 33253643 DOI: 10.1016/j.bcp.2020.114350] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that ion channels have a crucial role in tumors, either as promoters of cancer cell growth, or modulators of immune cell functions, or both. Among ion channels, P2X receptors have a special status because they are gated by ATP, a common and abundant component of the tumor microenvironment. Furthermore, one P2X receptor, i.e. P2X7, may also function as a conduit for ATP release, thus fuelling the increased extracellular ATP level in the tumor interstitium. These findings show that P2X receptors and extracellular ATP are indissoluble partners and key regulators of tumor growth, and suggest the exploitation of the extracellular ATP-P2X partnership to develop innovative therapeutic approaches to cancer.
Collapse
|
31
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
32
|
Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020; 9:cells9112496. [PMID: 33212982 PMCID: PMC7698494 DOI: 10.3390/cells9112496] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Adenosine triphosphate (ATP) is one of the main biochemical components of the tumor microenvironment (TME), where it can promote tumor progression or tumor suppression depending on its concentration and on the specific ecto-nucleotidases and receptors expressed by immune and cancer cells. ATP can be released from cells via both specific and nonspecific pathways. A non-regulated release occurs from dying and damaged cells, whereas active release involves exocytotic granules, plasma membrane-derived microvesicles, specific ATP-binding cassette (ABC) transporters and membrane channels (connexin hemichannels, pannexin 1 (PANX1), calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs) and maxi-anion channels (MACs)). Extracellular ATP acts at P2 purinergic receptors, among which P2X7R is a key mediator of the final ATP-dependent biological effects. Over the years, P2 receptor- or ecto-nucleotidase-targeting for cancer therapy has been proposed and actively investigated, while comparatively fewer studies have explored the suitability of TME ATP as a target. In this review, we briefly summarize the available evidence suggesting that TME ATP has a central role in determining tumor fate and is, therefore, a suitable target for cancer therapy.
Collapse
|
33
|
Hofman P. New insights into the interaction of the immune system with non-small cell lung carcinomas. Transl Lung Cancer Res 2020; 9:2199-2213. [PMID: 33209644 PMCID: PMC7653157 DOI: 10.21037/tlcr-20-178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The basis of current and future lung cancer immunotherapy depends mainly on our knowledge of the molecular mechanisms of interactions between cancer and immune cells (ICs), as well as on interactions occurring between the different populations of intra-tumor ICs. These interactions are very complex, as virtually all immune cell types, including macrophages, neutrophils, mast cells, natural killer (NK) cells, dendritic cells and T and B lymphocytes can infiltrate lung cancer tissues at the same time. Moreover these interactions lead to progressive emergence of an imbalance in ICs. Initially ICs have an anti-tumor effect but then induce immune tolerance and eventually tumor progression and dissemination. All the cells of innate and adaptive intra-tumor immunity engage in this progressive phenotypic switch. A majority of non-small cell lung carcinoma (NSCLC) patients do not benefit from the expected positive responses associated with current immunotherapy. Thus, there is urgent need to better understand the different roles of the associated cancer ICs. This review summarizes some of the new insights into this domain, with particular focus on: the myeloid cell population associated with tumors, the tertiary lymphoid structures (TLSs), the role of the P2 purinergic receptors (P2R) and ATP, and the new concept of the “liquid microenvironment” implying blood circulating ICs.
Collapse
Affiliation(s)
- Paul Hofman
- CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, Nice, France.,CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France.,CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France
| |
Collapse
|
34
|
The P2X7 purinergic receptor: a potential therapeutic target for lung cancer. J Cancer Res Clin Oncol 2020; 146:2731-2741. [PMID: 32892231 DOI: 10.1007/s00432-020-03379-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Purinergic P2X7 receptor (P2X7R) is a gated ion channel for which adenosine triphosphate (ATP) is a ligand. Activated P2X7R is widely expressed in a variety of immune cells and tissues and is involved in a variety of physiological and pathological processes. Studies have confirmed that P2X7R is involved in the regulation of tumor cell growth, stimulating cell proliferation or inducing apoptosis. Recent studies have found that P2X7R is abnormally expressed in lung cancer and is closely related to the carcinogenesis and development of lung cancer. In this paper, we comprehensively describe the structure, function, and genetic polymorphisms of P2X7R. In particular, the role and therapeutic potential of P2X7R in lung cancer are discussed to provide new targets and new strategies for the treatment and prognosis of clinical lung cancer. METHODS The relevant literature on P2X7R and lung cancer from PubMed databases is reviewed in this article. RESULTS P2X7R regulates the function of lung cancer cells by activating multiple intracellular signaling pathways (such as the JNK, Rho, HMGB1 and EMT pathways), thereby affecting cell survival, growth, invasion, and metastasis and patient prognosis. Targeting P2X7R with inhibitors effectively suppresses the growth and metastasis of lung cancer cells. CONCLUSION In summary, P2X7R is expected to become a potential target for the treatment of lung cancer, and more clinical research is needed in the future to explore the effectiveness of P2X7R antagonists as treatments.
Collapse
|
35
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
36
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
37
|
Coccurello R, Volonté C. P2X7 Receptor in the Management of Energy Homeostasis: Implications for Obesity, Dyslipidemia, and Insulin Resistance. Front Endocrinol (Lausanne) 2020; 11:199. [PMID: 32528404 PMCID: PMC7247848 DOI: 10.3389/fendo.2020.00199] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Whole-body energy metabolism entails the highly regulated balance between food intake, nutrient breakdown, energy generation (ATP), and energy storage for the preservation of vital functions and body mass. Purinergic signaling has attracted increasing attention in the regulatory mechanisms not only for the reverse processes of white adipose tissue lipogenesis and lipolysis, but also for brown adipocyte-dependent thermogenesis and leptin production. This regulatory role has remarkable implications in the handling of body's energy expenditure and energy reservoir. Hence, selected purinergic receptors can play a relevant function in lipid metabolism, endocrine activity, glucose uptake, ATP-dependent increased expression of uncoupling protein 1, and browning of adipose tissue. Indeed, purinergic P2 receptors regulate adipogenesis and lipid metabolism and are involved in adipogenic differentiation. In particular, the ionotropic ATP-activated P2X7 subtype is involved in fat distribution, as well as in the modulation of inflammatory pathways in white adipose tissue. Within this context, very recent evidence has established a direct function of P2X7 in energy metabolism. Specifically, either genetic deletion (P2X7 knockout mice) or subchronic pharmacological inhibition of the receptor produces a decrease of whole-body energy expenditure and, concurrently, an increase of carbohydrate oxidation. As further evidence, lipid accumulation, increased fat mass distribution, and weight gain are reported in P2X7-depleted mice. Conversely, the stimulation of P2X7 enhances energy expenditure. Altogether, this knowledge supports the role of P2X7 signaling in the fight against obesity and insulin resistance, as well as in the promotion of adaptive thermogenesis.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex System (ISC), National Research Council (CNR), Rome, Italy
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR), Rome, Italy
| |
Collapse
|
38
|
Sanz JM, Falzoni S, Morieri ML, Passaro A, Zuliani G, Di Virgilio F. Association of Hypomorphic P2X7 Receptor Genotype With Age. Front Mol Neurosci 2020; 13:8. [PMID: 32116543 PMCID: PMC7029736 DOI: 10.3389/fnmol.2020.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
One of the main risk factors for brain diseases is aging. Recent studies have shown that aging is a progressive degenerative process associated with chronic low-level inflammation. The ATP-gated P2X7 receptor (P2X7R) plays an important role in inflammation and has been associated with different brain (e.g., Alzheimer’s and Parkinson’s) or other age-related (osteoporosis, arthritis, cancer) diseases. Several single nucleotide polymorphisms (SNPs) in the P2RX7 gene have been identified, including the loss-of-function 1513A>C and 1405A>G SNPs, and the gain-of-function 489C>T and 1068G>A SNPs. We carried out a literature analysis to verify an association between P2RX7 SNPs’ frequency and age. In 34 worldwide eligible studies (11.858 subjects) no correlation between 1513CC genotype frequency and age emerged. On the contrary, analysis of European Caucasian cohorts (7.241 subjects) showed a significant increase in 1513CC frequency with age (P = 0.027). In agreement with these findings, analysis of two publicly available datasets, including USA Caucasian cohorts, unveiled an increased frequency of 1513CC and 489CC genotypes with age (P = 0.0055 and P = 0.0019, respectively). Thus, hypomorphic P2RX7 genotypes may be positively selected with age in European and North American Caucasian populations. We hypothesize that Caucasian individuals bearing an anti-inflammatory P2X7R phenotype and living in high-income countries may have a longer life expectancy.
Collapse
Affiliation(s)
- Juana Maria Sanz
- Section of Internal and Cardiorespiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Mario Luca Morieri
- Section of Internal and Cardiorespiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Angelina Passaro
- Section of Internal and Cardiorespiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
39
|
Yan J, Li XY, Roman Aguilera A, Xiao C, Jacoberger-Foissac C, Nowlan B, Robson SC, Beers C, Moesta AK, Geetha N, Teng MWL, Smyth MJ. Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunol Res 2020; 8:356-367. [PMID: 31992567 DOI: 10.1158/2326-6066.cir-19-0749] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cell protection from tumor metastases is a critical feature of the host immune response to cancer, but various immunosuppression mechanisms limit NK cell effector function. The ectoenzyme, CD39, expressed on tumor-infiltrating myeloid cells, granulocytes, and lymphocytes, including NK cells, converts extracellular ATP (eATP) into AMP and, thus, potentially suppresses eATP-mediated proinflammatory responses. A CD39-targeting monoclonal antibody (mAb) that inhibits the mouse ectoenzyme CD39 suppressed experimental and spontaneous metastases in a number of different tumor models and displayed superior antimetastatic activity compared with the CD39 inhibitor POM1 and inhibitors and mAbs that block other members of the adenosinergic family (e.g., A2AR and CD73). The antimetastatic activity of anti-CD39 was NK cell and IFNγ dependent, and anti-CD39 enhanced the percentage and quantity of IFNγ produced and CD107a expression in lung-infiltrating NK cells following tumor challenge and anti-CD39 therapy. Using conditional Cd39 gene-targeted mouse strains and adoptive NK cell transfers, we showed that CD39 expressed on bone marrow-derived myeloid cells was essential for anti-CD39's antimetastatic activity, but NK cell expression of CD39 was not critical. The eATP receptor P2X7 and the NALP3 inflammasome, including downstream IL18, were critical in the mechanism of action of anti-CD39, and the frequency of P2X7 and CD39 coexpressing lung alveolar macrophages was specifically reduced 1 day after anti-CD39 therapy. The data provide a mechanism of action involving NK cells and myeloid cells, and anti-CD39 combined with anti-PD-1, NK cell-activating cytokines IL15 or IL2, or an inhibitor of A2AR to effectively suppress tumor metastases.
Collapse
Affiliation(s)
- Juming Yan
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Xian-Yang Li
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Christos Xiao
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Celia Jacoberger-Foissac
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bianca Nowlan
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Nishamol Geetha
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|