1
|
Zhang W, Zhang Y, Li L, Chen R, Shi F. Unraveling heterogeneity and treatment of asthma through integrating multi-omics data. FRONTIERS IN ALLERGY 2024; 5:1496392. [PMID: 39563781 PMCID: PMC11573763 DOI: 10.3389/falgy.2024.1496392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Asthma has become one of the most serious chronic respiratory diseases threatening people's lives worldwide. The pathogenesis of asthma is complex and driven by numerous cells and their interactions, which contribute to its genetic and phenotypic heterogeneity. The clinical characteristic is insufficient for the precision of patient classification and therapies; thus, a combination of the functional or pathophysiological mechanism and clinical phenotype proposes a new concept called "asthma endophenotype" representing various patient subtypes defined by distinct pathophysiological mechanisms. High-throughput omics approaches including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome enable us to investigate the pathogenetic heterogeneity of diverse endophenotypes and the underlying mechanisms from different angles. In this review, we provide a comprehensive overview of the roles of diverse cell types in the pathophysiology and heterogeneity of asthma and present a current perspective on their contribution into the bidirectional interaction between airway inflammation and airway remodeling. We next discussed how integrated analysis of multi-omics data via machine learning can systematically characterize the molecular and biological profiles of genetic heterogeneity of asthma phenotype. The current application of multi-omics approaches on patient stratification and therapies will be described. Integrating multi-omics and clinical data will provide more insights into the key pathogenic mechanism in asthma heterogeneity and reshape the strategies for asthma management and treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Zhang
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Fei Shi
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| |
Collapse
|
2
|
Ioniuc IK, Lupu A, Dragan F, Tarnita I, Alexoae MM, Streanga V, Mitrofan C, Thet AA, Nedelcu AH, Salaru DL, Burlea SL, Mitrofan EC, Lupu VV, Azoicai AN. Oxidative Stress and Antioxidants in Pediatric Asthma's Evolution and Management. Antioxidants (Basel) 2024; 13:1331. [PMID: 39594473 PMCID: PMC11590961 DOI: 10.3390/antiox13111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Within the pediatric population, bronchial asthma is one of the most prevalent chronic respiratory system diseases. The number of exacerbations, severity, and duration of symptoms all have a significant impact on children's life quality. In the last decades, the prevention and management strategies of this pathology have focused on maintaining or even increasing the pulmonary function to maximum levels in early childhood, as it has been demonstrated that functional deficits at this level occurring before school age cause pathological manifestations later, in adulthood. The epithelium of the airways and implicitly that of the lung is the first barrier against the lesions caused by pro-oxidative factors. Both oxidative and antioxidative factors can be of endogenous origin (produced by the body) or exogenous (from the environment or diet). Good functioning of antioxidant defense mechanisms from the molecular level to the tissue level, and a balance between pro-oxidative factors and anti- oxidative factors, influence the occurrence of compensatory mechanisms at the level of the respiratory epithelium, causing the delay of local responses to the stress induced by chronic inflammation (bronchial remodeling, thickening of airway smooth muscles, bronchoconstriction, bronchial hyper-reactivity). These mechanisms underlie the pathophysiological changes in asthma. Numerous studies carried out among the pediatric population inclusively have demonstrated the effectiveness of antioxidants in the prophylaxis, slowing down and preventing the progression of this pathology. This review complements the scientific articles, aiming at emphasizing the complexity of oxidative physio-pathological pathways and their importance in the occurrence, development, and therapeutic response in asthma, providing a good understanding of the relationship between oxidative and antioxidative factors, and being a source of future therapeutic strategies.
Collapse
Affiliation(s)
- Ileana Katerina Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Irina Tarnita
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Monica Mihaela Alexoae
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Violeta Streanga
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Aye Aung Thet
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Stefan Lucian Burlea
- Public Health and Management Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Alice Nicoleta Azoicai
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| |
Collapse
|
3
|
Song T, Yao L, Zhu A, Liu G, Zhu B, Zhao Q, Zhao Y, Wang J. Cathepsin B-Activatable Bioactive Peptide Nanocarrier for High-Efficiency Immunotherapy of Asthma. Int J Nanomedicine 2024; 19:8059-8070. [PMID: 39130687 PMCID: PMC11317058 DOI: 10.2147/ijn.s455633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Asthma, a chronic respiratory disease closely associated with inflammation, presents ongoing treatment challenges. IALLIPF (le-Ala-Leu-Leu-Ile-Pro-Phe) is one of millet prolamins peptides (MPP) which shows anti-oxidant bioactivity by reducing the production of reactive oxygen species (ROS). Tryptophan (Trp, W) is an amino acid that has been demonstrated to possess anti-inflammatory effects. We introduce a novel cathepsin B-activatable bioactive peptides nanocarrier, PEG-IALLIPF-GFLG-W (MPP-Trp), designed for immunotherapy of asthma. Methods MPP-Trp is synthesized, purified, and its characteristics are investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The yield of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) are examined to evaluate anti-inflammatory effects of IALLIPF, Trp and MPP-Trp. The immunomodulatory effects of IALLIPF, Trp and MPP-Trp on Th1/Th2 cell populations and cytokines are investigated by flow cytometry, qRT-PCR and ELISA assays. We explore the therapeutic effect of MPP-Trp in the mouse model of asthma by the analysis of lung histology and ELISA. It is necessary to study the biocompatibility of MPP-Trp by CCK8 assay and histopathologic analysis using hematoxylin and eosin (HE) staining. Results In asthmatic peripheral blood mononuclear cells (PBMCs), IALLIPF, Trp and MPP-Trp are able to significantly alleviate inflammation by inhibiting the yield of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), especially MPP-Trp. MPP-Trp significantly upregulates Th1 cell levels while notably reducing Th2 cell levels. Furthermore, MPP-Trp effectively elevates the expression and production of interferon-gamma (IFN-γ), an essential cytokine from Th1 cells. Additionally, MPP-Trp markedly diminishes the mRNA expression and levels of key asthma pathogenesis cytokines, such as interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), in asthma PBMCs. MPP-Trp ameliorates pulmonary pathological alterations and significantly inhibits OVA-induced inflammation in mice with asthma. It has little influence on the cell viability in Asthma-PBMCs treated with various concentrations or durations of MPP-Trp. No pathological changes, including in the heart, liver, spleen, lung, and kidney tissues, are observed in non-sensitized and non-challenged mice treated with MPP-Trp (20 mg/kg). Discussion Our research demonstrates that MPP-Trp has immunomodulatory effects on Th1/Th2 cell populations, essential in managing asthma. It considerably alleviates OVA-induced asthma by shifting the immune response towards a Th1-dominant profile, thereby reducing Th2-driven inflammation. Therefore, this novel bioactive peptide nanocarrier, MPP-Trp, holds promise as a candidate for asthma immunotherapy.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Lulu Yao
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Angang Zhu
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Guangling Liu
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Beibei Zhu
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Qian Zhao
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Yue Zhao
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Jinya Wang
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Ma H, Wang T, Wang J, Wang P, Shu Q, Qin R, Li S, Xu H. Formaldehyde exacerbates inflammation and biases T helper cell lineage commitment through IFN-γ/STAT1/T-bet pathway in asthma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116534. [PMID: 38823345 DOI: 10.1016/j.ecoenv.2024.116534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
The correlation between formaldehyde (FA) exposure and prevalence of asthma has been widely reported. However, the underlying mechanism is still not fully understood. FA exposure at 2.0 mg/m3 was found to exacerbate asthma in OVA-induced murine models. IFN-γ, the cytokine produced by T helper 1 (Th1) cells, was significantly induced by FA in serum and bronchoalveolar lavage fluid (BALF) of asthmatic mice, which was different from cytokines secreted by other Th cells. The observation was also confirmed by mRNA levels of Th marker genes in CD4+ T cells isolated from BALF. In addition, increased production of IFN-γ and expression of T-bet in Jurkat T cells primed with phorbol ester and phytohaemagglutinin were also observed with 100 μM FA treatment in vitro. Upregulated STAT1 phosphorylation, T-bet expression and IFN-γ production induced by FA was found to be restrained by STAT1 inhibitor fludarabine, indicating that FA promoted Th1 commitment through the autocrine IFN-γ/STAT1/T-bet pathway in asthma. This work not only revealed that FA could bias Th lineage commitment to exacerbate allergic asthma, but also identified the signaling mechanism of FA-induced Th1 differentiation, which may be utilized as the target for development of interfering strategies against FA-induced immune disorders.
Collapse
Affiliation(s)
- Huijuan Ma
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui Province 231131, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tingqian Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junfeng Wang
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui Province 231131, China
| | - Peiyao Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Shu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ruilin Qin
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Sijia Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huan Xu
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui Province 231131, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Wu JJ, Zhang PA, Chen MZ, Zhang Y, Du WS, Li XN, Ji GC, Jiang LD, Jiao Y, Li X. Analysis of Key Genes and miRNA-mRNA Networks Associated with Glucocorticoids Treatment in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:589-605. [PMID: 38435123 PMCID: PMC10909375 DOI: 10.2147/copd.s441716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Some patients with chronic obstructive pulmonary disease (COPD) benefit from glucocorticoid (GC) treatment, but its mechanism is unclear. Objective With the help of the Gene Expression Omnibus (GEO) database, the key genes and miRNA-mRNA related to the treatment of COPD by GCs were discussed, and the potential mechanism was explained. Methods The miRNA microarray dataset (GSE76774) and mRNA microarray dataset (GSE36221) were downloaded, and differential expression analysis were performed. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the differentially expressed genes (DEGs). The protein interaction network of the DEGs in the regulatory network was constructed with the STRING database, and the key genes were screened through Cytoscape. Potential downstream target genes regulated by differentially expressed miRNAs (DEMs) were predicted by the miRWalk3.0 database, and miRNA-mRNA regulatory networks were constructed. Finally, some research results were validated. Results ① Four DEMs and 83 DEGs were screened; ② GO and KEGG enrichment analysis mainly focused on the PI3K/Akt signalling pathway, ECM receptor interaction, etc.; ③ CD2, SLAMF7, etc. may be the key targets of GC in the treatment of COPD; ④ 18 intersection genes were predicted by the mirwalk 3.0 database, and 9 pairs of miRNA-mRNA regulatory networks were identified; ⑤ The expression of miR-320d-2 and TFCP2L1 were upregulated by dexamethasone in the COPD cell model, while the expression of miR-181a-2-3p and SLAMF7 were downregulated. Conclusion In COPD, GC may mediate the expression of the PI3K/Akt signalling pathway through miR-181a-2-3p, miR-320d-2, miR-650, and miR-155-5p, targeting its downstream signal factors. The research results provide new ideas for RNA therapy strategies of COPD, and also lay a foundation for further research.
Collapse
Affiliation(s)
- Jian-Jun Wu
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ping-An Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ming-Zhe Chen
- Infectious Disease Department, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Yi Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wei-Sha Du
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiao-Ning Li
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guo-Chao Ji
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Liang-Duo Jiang
- Respiratory Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Jiao
- Respiratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xin Li
- Glaucoma Department, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Yang J, Shen X, Qin M, Zhou P, Huang FH, You Y, Wang L, Wu JM. Suppressing inflammatory signals and apoptosis-linked sphingolipid metabolism underlies therapeutic potential of Qing-Jin-Hua-Tan decoction against chronic obstructive pulmonary disease. Heliyon 2024; 10:e24336. [PMID: 38318072 PMCID: PMC10839876 DOI: 10.1016/j.heliyon.2024.e24336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background Qing-Jin-Hua-Tan decoction (QJHTD) is a classic traditional Chinese medicine (TCM) prescription that first appeared in the ancient book Yi-Xue-Tong-Zhi. QJHTD has shown effectiveness for treating chronic obstructive pulmonary disease (COPD), although its mechanisms of action are still perplexing. The molecular mechanisms underlying the curative effects of QJHTD on COPD is worth exploring. Methods In vitro antiapoptotic and antiinflammatory activities of QJHTD were evaluated using cell viability, proliferation, apoptosis rate, and expression of IL-1β and TNF-α in BEAS-2B and RAW264.7 cells challenged with cigarette smoke (CS) extract (CSE) and lipopolysaccharide (LPS). In vivo therapeutic activities of QJHTD were evaluated using respiratory parameters (peak inspiratory flow (PIFb) and peak expiratory flow (PEFb) values), histopathology (mean linear intercept, MLI), and proinflammatory cytokine (IL-1β and TNF-α) and cleaved caspase-3 (c-Casp3) levels in the lung tissue of CS-LPS-exposed BALB/c mice. Network pharmacology-based prediction, transcriptomic analysis, and metabolic profiling were employed to investigate the signaling molecules and metabolites pertinent to the anti-COPD action of QJHTD. Results Increased cell viability and proliferation with decreased apoptosis rate and proinflammatory cytokine expression were noted after QJHTD intervention. QJHTD administration elevated PEFb and PIFb values, reduced MLI, and inhibited IL-1β, TNF-α, and c-Casp3 expression in vivo. Integrated network pharmacology-transcriptomics revealed that suppressing inflammatory signals (IL-1β, IL-6, TNF, IκB-NF-κB, TLR, and MAPK) and apoptosis contributed to the anti-COPD property of QJHTD. Metabolomic profiling unveiled prominent roles for the suppression of apoptosis and sphingolipid (SL) metabolism and the promotion of choline (Ch) metabolism in the anti-COPD effect of QJHTD. Integrative transcriptomics-metabolomics unraveled the correlation between SL metabolism and apoptosis. In silico molecular docking revealed that acacetin, as an active compound in QJHTD, could bind with high affinity to MEK1, MEK2, ERK1, ERK2, Bcl2, NF-κB, and alCDase target proteins. Conclusion The therapeutic effect of QJHTD on COPD is dependent on regulating inflammatory signals and apoptosis-directed SL metabolism. These findings provide deeper insights into the molecular mechanism of action of QJHTD against COPD and justify its theoretical promise in novel pharmacotherapy for this multifactorial disease.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Xin Shen
- Department of Traditional Chinese Pharmacy, Chengdu First People's Hospital, Chengdu 610041, PR China
| | - Mi Qin
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Ping Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Fei-Hong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Jian-Ming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China
| |
Collapse
|
7
|
dos Santos J, Balbinot GDS, Buchner S, Collares FM, Windbergs M, Deon M, Beck RCR. 3D printed matrix solid forms: Can the drug solubility and dose customisation affect their controlled release behaviour? Int J Pharm X 2023; 5:100153. [PMID: 36632070 PMCID: PMC9827047 DOI: 10.1016/j.ijpx.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
The use of 3D printing in pharmaceutics has grown over the last years, along with the number of studies on the impact of the composition of these formulations on their pharmaceutical and biopharmaceutical properties. Recently, we reported the combined effect of the infill percentage and the presence of a pore former on the drug release behaviour of 3D printed matrix solid forms prepared by fused deposition modelling. However, there are some open questions about the effect of the drug solubility and the size of these dosage forms on their controlled release properties. Therefore, we produced poly(Ɛ-caprolactone) filaments containing different soluble forms of dexamethasone (free acid, DEX; acetate ester, DEX-A; and phosphate salt, DEX-P), which showed suitable mechanical properties and printability. 3D printed solid forms were produced in two different sizes. The formulations composed of DEX-P released about 50% of drug after 10 h, while those containing DEX or DEX-A released about 9%. The drug release profiles from the 3D printed forms containing the same drug form but with different sizes were almost completely overlapped. Therefore, these 3D printed matrix solid forms can have their drug content customised by adjusting their size, without changing their controlled release behaviour.
Collapse
Affiliation(s)
- Juliana dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492/4th floor, Porto Alegre, RS, Brazil
| | - Silvio Buchner
- Laboratório de Altas Pressões e Materiais Avançados (LAPMA), Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabrício Mezzomo Collares
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492/4th floor, Porto Alegre, RS, Brazil
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
8
|
Zhu WX, Xi Y, Li F, Jiao WE, Li ZJ, Chen SM, Kong YG, Xu Y, Deng YQ, Zuo JJ, Tao ZZ. Calpeptin may reverse glucocorticoid-resistance of allergic rhinitis associated with cigarette smoke exposure by down-regulating interferon regulatory factor 1. Heliyon 2023; 9:e17316. [PMID: 37449098 PMCID: PMC10336445 DOI: 10.1016/j.heliyon.2023.e17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Cigarette smoke exposure is an important factor in chronic inflammation in patients with allergic rhinitis (AR); however, the relationship between cigarette smoke and AR-related glucocorticoid resistance requires further study. In mice, calpeptin significantly reduces inflammation of the lower respiratory tract caused by cigarette smoke, but whether it can treat glucocorticoid-resistant AR caused by cigarette smoke requires further research. In this study, we confirmed that cigarette smoke exposure can aggravate the Th2 inflammatory response in AR leading to glucocorticoid resistance. The underlying mechanism may be related to decreased expression of DNA methyltransferase 3a (Dnmt3a), and increased expression of interferon regulatory factor 1 (IRF1). In addition, we found that calpeptin can inhibit the expression of IRF1 and thus treat AR-associated glucocorticoid resistance in rats exposed to cigarette smoke. These data suggest that calpeptin may downregulate IRF1 and therefore treat glucocorticoid resistance in AR-associated with cigarette smoke exposure.
Collapse
Affiliation(s)
- Wen-Xuan Zhu
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yang Xi
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Fen Li
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zi-Jing Li
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Shi-Ming Chen
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yong-Gang Kong
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yu Xu
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yu-Qin Deng
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jing-Jing Zuo
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Ze-Zhang Tao
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
9
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
10
|
Stolz D, Matera MG, Rogliani P, van den Berge M, Papakonstantinou E, Gosens R, Singh D, Hanania N, Cazzola M, Maitland-van der Zee AH, Fregonese L, Mathioudakis AG, Vestbo J, Rukhadze M, Page CP. Current and future developments in the pharmacology of asthma and COPD: ERS seminar, Naples 2022. Breathe (Sheff) 2023; 19:220267. [PMID: 37377851 PMCID: PMC10292790 DOI: 10.1183/20734735.0267-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
Pharmacological management of airway obstructive diseases is a fast-evolving field. Several advances in unravelling disease mechanisms as well as intracellular and molecular pathways of drug action have been accomplished. While the clinical translation and implementation of in vitro results to the bedside remains challenging, advances in comprehending the mechanisms of respiratory medication are expected to assist clinicians and scientists in identifying meaningful read-outs and designing clinical studies. This European Respiratory Society Research Seminar, held in Naples, Italy, 5-6 May 2022, focused on current and future developments of the drugs used to treat asthma and COPD; on mechanisms of drug action, steroid resistance, comorbidities and drug interactions; on prognostic and therapeutic biomarkers; on developing novel drug targets based on tissue remodelling and regeneration; and on pharmacogenomics and emerging biosimilars. Related European Medicines Agency regulations are also discussed, as well as the seminar's position on the above aspects.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, and Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, and Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Nicola Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Maia Rukhadze
- Center of Allergy and Immunology, Teaching University Geomedi LLC, Tbilisi, Georgia
| | - Clive P. Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
11
|
Chen R, Cui Y, Mak JCW. Novel treatments against airway inflammation in COPD based on drug repurposing. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:225-247. [PMID: 37524488 DOI: 10.1016/bs.apha.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of death and reduces quality of life that contributes to a health problem worldwide. Chronic airway inflammation is a hallmark of COPD, which occurs in response to exposure of inhaled irritants like cigarette smoke. Despite accessible to the most up-to-date medications, none of the treatments is currently available to decrease the disease progression. Therefore, it is believed that drugs which can reduce airway inflammation will provide effective disease modifying therapy for COPD. There are many broad-range anti-inflammatory drugs including those that inhibit cell signaling pathways like inhibitors of p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and phosphoinositide-3-kinase (PI3K), are now in phase III development for COPD. In this chapter, we review recent basic research data in the laboratory that may indicate novel therapeutic pathways arisen from currently used drugs such as selective monoamine oxidase (MAO)-B inhibitors and drugs targeting peripheral benzodiazepine receptors [also known as translocator protein (TSPO)] to reduce airway inflammation. Considering the impact of chronic airway inflammation on the lives of COPD patients, the potential pharmacological candidates for new anti-inflammatory targets should be further investigated. In addition, it is crucial to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target novel therapies. This review will enhance our knowledge on how cigarette smoke affects MAO-B activity and TSPO activation/inactivation with specific ligands through regulation of mitochondrial function, and will help to identify new potential treatment for COPD in future.
Collapse
Affiliation(s)
- Rui Chen
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China; Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, P.R. China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, P.R. China
| | - Judith C W Mak
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China.
| |
Collapse
|
12
|
McClean N, Hasday JD, Shapiro P. Progress in the development of kinase inhibitors for treating asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:145-178. [PMID: 37524486 DOI: 10.1016/bs.apha.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Current therapies to mitigate inflammatory responses involved in airway remodeling and associated pathological features of asthma and chronic obstructive pulmonary disease (COPD) are limited and largely ineffective. Inflammation and the release of cytokines and growth factors activate kinase signaling pathways that mediate changes in airway mesenchymal cells such as airway smooth muscle cells and lung fibroblasts. Proliferative and secretory changes in mesenchymal cells exacerbate the inflammatory response and promote airway remodeling, which is often characterized by increased airway smooth muscle mass, airway hyperreactivity, increased mucus secretion, and lung fibrosis. Thus, inhibition of relevant kinases has been viewed as a potential therapeutic approach to mitigate the debilitating and, thus far, irreversible airway remodeling that occurs in asthma and COPD. Despite FDA approval of several kinase inhibitors for the treatment of proliferative disorders, such as cancer and inflammation associated with rheumatoid arthritis and ulcerative colitis, none of these drugs have been approved to treat asthma or COPD. This review will provide a brief overview of the role kinases play in the pathology of asthma and COPD and an update on the status of kinase inhibitors currently in clinical trials for the treatment of obstructive pulmonary disease. In addition, potential issues associated with the current kinase inhibitors, which have limited their success as therapeutic agents in treating asthma or COPD, and alternative approaches to target kinase functions will be discussed.
Collapse
Affiliation(s)
- Nathaniel McClean
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
13
|
Tsai JJ, Yen CY, Hsu CH, Yu SJ, Chen CH, Liao EC. Immunomodulatory effects of modified Liu-Wei-Di-Huang-Wan Traditional Chinese medicine on allergic asthmatic mice. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:35. [PMID: 37101296 PMCID: PMC10134635 DOI: 10.1186/s13223-023-00792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Allergic asthma occurs worldwide and is particularly prevalent in westernized countries characterized by chronic airway inflammation resulting in airway hyperresponsiveness. The house dust mites (HDM) including Dermatophagoides pteronyssinus are major sources of sensitization and triggering allergic symptoms in asthmatic patients. The Der p 2 is a major allergen and the predominant source of causative respiratory disorders which induce airway inflammation and bronchial constriction in mite-allergic patients. Few studies evaluate the ameliorating effects of modified Liu-Wei-Di-Huang-Wan (modified LWDHW) on allergic asthma. METHODS This study aimed to investigate the immunological mechanisms of modified LWDHW on the reductions of airway inflammation, signal transduction, inflammatory cytokine production, Th2 cell proliferation, and bronchial obstruction in Der p 2-induced asthmatic mice. RESULTS At least ten active ingredients were contained in the formula of modified LWDHW- 1217A and 1217B. Results showed that the immunoglobulin generations (Der p 2 specific- IgE and IgG1), inflammatory cytokine productions (IL-5 and IL-13) in the Sera and BALF could be down-regulated, and the Th1-cytokine productions (IL-12 and IFN-γ) be increased after immunotherapy with modified LWDHW of 1217A or 1217B. The inflammatory cell infiltrations (macrophages, eosinophils, and neutrophils) in the airway and the expressions of TH2-related genes (IL-4, IL-5, and IL-13), TH2-related transcription factor (GATA-3), and neutrophil chemotactic chemokine (IL-8) in the lung tissue of asthmatic mice were significantly decreased after the immunotherapy. The Th1/Th2 polarization had been identified that the IL-4+/CD4+ T cells were downregulated and IFN-γ+/CD4+ T cells were increased. The airway hyperresponsiveness to methacholine inhalation of Penh values was significantly decreased in the treated groups. There were significant improvements in the bronchus histopathology after immunotherapy with 1217A or 1217B which were evaluated by tracheal thickness, inflammatory cell count, and tracheal rupture of mouse lung. CONCLUSION It revealed that 1217A or 1217B could regulate the immune responses and improve pulmonary function. Data suggests that modified LWDHW of 1217A or 1217B have the potential for use as a therapeutic intervention for the treatment of mite allergen Der p 2-induced allergic asthma.
Collapse
Affiliation(s)
- Jaw-Ji Tsai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
| | - Chung-Yang Yen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Hsien Hsu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Family Medicine, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Family Medicine, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - En-Chih Liao
- Department of Medicine, MacKay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
14
|
Huang H, Wang W. Molecular mechanisms of glucocorticoid resistance. Eur J Clin Invest 2023; 53:e13901. [PMID: 36346177 DOI: 10.1111/eci.13901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND As a powerful anti-inflammatory, immunosuppressive, and antiproliferative drug, glucocorticoid (GC) plays an important role in the treatment of various diseases. However, some patients may experience glucocorticoid resistance (GCR) in clinical, and its molecular mechanism have not been determined. METHODS The authors performed a review of the literature on GCR focusing on mutations in the NR3C1 gene and impaired glucocorticoid receptor (GR) signalling, using METSTR (2000 through May 2022) to identify original articles and reviews on this topic. The search terms included 'glucocorticoid resistance/insensitive', 'steroid resistance/insensitive', 'NR3C1', and 'glucocorticoid receptor'. RESULTS Primary GCR is mainly caused by NR3C1 gene mutation, and 31 NR3C1 gene mutations have been reported so far. Secondary GCR is caused by impaired GC signalling pathways, including decreased expression of GR, impaired nuclear translocation of GR, and impaired binding of GR to GC and GR to target genes. However, the current research is more on the expression level of GR, and there are relatively few studies on other mechanisms. In addition, methods for improving GC sensitivity are rarely reported. CONCLUSION The molecular mechanisms of GCR are complex and may differ in different diseases or different patients. In future studies, when exploring the mechanism of GCR, methods to improve GC sensitivity should also be investigated.
Collapse
Affiliation(s)
- Huanming Huang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Wenqing Wang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
CTNNAL1 enhances glucocorticoid sensitivity in HDM-induced asthma mouse model through deactivating hsp90 signaling pathway. Life Sci 2023; 313:121304. [PMID: 36535402 DOI: 10.1016/j.lfs.2022.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
AIMS Adhesion molecules play vital roles in the induction of airway hyperresponsiveness (AHR) or airway inflammation. The down-regulation of catenin alpha-like 1 (CTNNAL1) in the bronchial epithelial cells of asthma patients and mice models has been noted in our previous study. In this work, we further explore the underlying mechanism of CTNNAL1 in asthma. MAIN METHODS We constructed a house dust mite (HDM)-induced asthma animal model on control mice and applied CTNNAL1-siRNA transfection to create CTNNAL1-deficient mice. KEY FINDINGS We documented much more severe airway inflammation and increased leukocyte infiltration in the lungs of the CTNNAL1-deficient mice comparing to control mice, along with elevated expression of inflammatory cytokines. Dexamethasone (DEX) treatment led to less reduced inflammation in CTNNAL1-deficient mice compared with control mice. Immunoprecipitation confirmed the interaction between heat shock protein90 (hsp90) and CTNNAL1. The expression of hsp90 was upregulated after CTNNAL1 silencing. Meanwhile, the use of hsp90 inhibitor geldanamycin significantly decreased the expression of NR3C1, ICAM-1 and the ratio of p-p65/p65 in CTNNAL1-silenced 16HBE14o- cells. Both geldanamycin and DEX could function to suppress the expression of ICAM-1 and the phosphorylation level of p65. Nevertheless, the anti-inflammatory effect of DEX proved less potent than geldanamycin in the CTNNAL1-silenced group. The combined therapy of geldanamycin and DEX significantly decreased the inflammatory responses in CTNNAL1-deficient HBE cells than DEX monotherapy. SIGNIFICANCE Our study corroborates that CTNNAL1 deficiency induced aggravated airway inflammation and rendered insensitivity to glucocorticoids via triggering hsp90 signaling pathway.
Collapse
|
16
|
Airway Smooth Muscle Regulated by Oxidative Stress in COPD. Antioxidants (Basel) 2023; 12:antiox12010142. [PMID: 36671004 PMCID: PMC9854973 DOI: 10.3390/antiox12010142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Since COPD is a heterogeneous disease, a specific anti-inflammatory therapy for this disease has not been established yet. Oxidative stress is recognized as a major predisposing factor to COPD related inflammatory responses, resulting in pathological features of small airway fibrosis and emphysema. However, little is known about effects of oxidative stress on airway smooth muscle. Cigarette smoke increases intracellular Ca2+ concentration and enhances response to muscarinic agonists in human airway smooth muscle. Cigarette smoke also enhances proliferation of these cells with altered mitochondrial protein. Hydrogen peroxide and 8-isoprostans are increased in the exhaled breath condensate in COPD. These endogenous oxidants cause contraction of tracheal smooth muscle with Ca2+ dynamics through Ca2+ channels and with Ca2+ sensitization through Rho-kinase. TNF-α and growth factors potentiate proliferation of these cells by synthesis of ROS. Oxidative stress can alter the function of airway smooth muscle through Ca2+ signaling. These phenotype changes are associated with manifestations (dyspnea, wheezing) and pathophysiology (airflow limitation, airway remodeling, airway hyperresponsiveness). Therefore, airway smooth muscle is a therapeutic target against COPD; oxidative stress should be included in treatable traits for COPD to advance precision medicine. Research into Ca2+ signaling related to ROS may contribute to the development of a novel agent for COPD.
Collapse
|
17
|
Weidinger D, Jamal Jameel K, Alisch D, Jacobsen J, Bürger P, Ruhe M, Yusuf F, Rohde S, Störtkuhl K, Kaufmann P, Kronsbein J, Peters M, Hatt H, Giannakis N, Knobloch J. OR2AT4 and OR1A2 counterregulate molecular pathophysiological processes of steroid-resistant inflammatory lung diseases in human alveolar macrophages. Mol Med 2022; 28:150. [PMID: 36503361 PMCID: PMC9743598 DOI: 10.1186/s10020-022-00572-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are lacking. Alveolar macrophages are central in the progression of these diseases by releasing proinflammatory cytokines, making them promising targets for new therapeutic approaches. Extra nasal expressed olfactory receptors (ORs) mediate various cellular processes, but clinical data are lacking. This work investigates whether ORs in human primary alveolar macrophages could impact pathophysiological processes and could be considered as therapeutic targets. METHODS Human primary alveolar macrophages were isolated from bronchoalveolar lavages of 50 patients with pulmonary diseases. The expression of ORs was validated using RT-PCR, immunocytochemical staining, and Western blot. Changes in intracellular calcium levels were analyzed in real-time by calcium imaging. A luminescent assay was used to measure the cAMP concentration after OR stimulation. Cytokine secretion was measured in cell supernatants 24 h after stimulation by ELISA. Phagocytic ability was measured by the uptake of fluorescent-labeled beads by flow cytometry. RESULTS We demonstrated the expression of functional OR2AT4 and OR1A2 on mRNA and protein levels. Both ORs were primarily located in the plasma membrane. Stimulation with Sandalore, the ligand of OR2AT4, and Citronellal, the ligand of OR1A2, triggered a transient increase of intracellular calcium and cAMP. In the case of Sandalore, this calcium increase was based on a cAMP-dependent signaling pathway. Stimulation of alveolar macrophages with Sandalore and Citronellal reduced phagocytic capacity and release of proinflammatory cytokines. CONCLUSION These are the first indications for utilizing olfactory receptors as therapeutic target molecules in treating steroid-resistant lung diseases with non-type 2 inflammation.
Collapse
Affiliation(s)
- Daniel Weidinger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kaschin Jamal Jameel
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Desiree Alisch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Julian Jacobsen
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Paul Bürger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Matthias Ruhe
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Faisal Yusuf
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Simon Rohde
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Klemens Störtkuhl
- grid.5570.70000 0004 0490 981XAG Physiology of Senses, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Peter Kaufmann
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Juliane Kronsbein
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Marcus Peters
- grid.5570.70000 0004 0490 981XDepartment of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hanns Hatt
- grid.5570.70000 0004 0490 981XDepartment of Cell Physiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nikolaos Giannakis
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jürgen Knobloch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
18
|
Zhao S, Luo J, Hu J, Wang H, Zhao N, Cao M, Zhang C, Hu R, Liu L. Role of Ezrin in Asthma-Related Airway Inflammation and Remodeling. Mediators Inflamm 2022; 2022:6255012. [PMID: 36530558 PMCID: PMC9750775 DOI: 10.1155/2022/6255012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 08/13/2023] Open
Abstract
Ezrin is an actin binding protein connecting the cell membrane and the cytoskeleton, which is crucial to maintaining cell morphology, intercellular adhesion, and cytoskeleton remodeling. Asthma involves dysfunction of inflammatory cells, cytokines, and airway structural cells. Recent studies have shown that ezrin, whose function is affected by extensive phosphorylation and protein interactions, is closely associated with asthma, may be a therapeutic target for asthma treatment. In this review, we summarize studies on ezrin and discuss its role in asthma-related airway inflammation and remodeling.
Collapse
Affiliation(s)
- Shumei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiaqi Luo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jun Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Hesheng Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Shimadzu Biomedical Research Laboratory, Shanghai 200233, China
| | - Meng Cao
- Nanjing University of Chinese Medicine, Nanjing 210029, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Cong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Rongkui Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lanying Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
19
|
Sanzi Yangqin Decoction Alleviates Allergic Asthma by Modulating Th1/Th2 Balance: Coupling Network Pharmacology with Biochemical Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9037154. [PMID: 36212941 PMCID: PMC9536894 DOI: 10.1155/2022/9037154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to verify that Sanzi Yangqin Decoction (SYD) can relieve asthma in mice and explore the effect on TH1/Th2 balance. The targets of SYD and asthma were explored from the public database using various methods. The potential targets and signaling pathways were identified by KEGG enrichment analysis from DAVID database. Mice asthma models were established using OVA and aluminum hydroxide. Lung tissues of mice were stained with HE and Masson. The contents of IFN-γ, IL-4, and TNF-α in BALF and IgE in mouse serum were detected using ELISA. In addition, the changes in Th1 and Th2 cells of the spleen were detected by flow cytometry. Fourteen core targets including IL4, IFNG, and MMP9 were identified for the treatment of asthma by SYD. The content of IL-4 in the lung tissue and BALF was gradually decreased with the increase in SYD concentration, while the IFN-γ was gradually increased. The drug significantly reduced IgE levels in serum and TNF-α in BALF. The number of Th1 cells in the spleen increased, while Th2 cells decreased in a concentration-dependent manner. SYD can alleviate pulmonary inflammation, restore Th1/Th2 balance, and relieve asthma.
Collapse
|
20
|
The Efficacy and Safety of Xinjia Xuanbai Chengqi Granules in Acute Exacerbation of COPD: A Multicentre, Randomised, Double-Blind, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7366320. [PMID: 35783528 PMCID: PMC9246576 DOI: 10.1155/2022/7366320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Purpose The study aimed to explore the efficacy and safety of Xinjia Xuanbai Chengqi granules (XJXBCQ) combined with conventional medicine in the treatment of acute exacerbation of chronic pulmonary disease (AECOPD). Patients and Methods. This multicentre, double-blind, parallel, placebo-controlled, randomised clinical trial conducted in China from January 2019 to February 2021 recruited 330 participants who were allocated into three groups. All participants underwent conventional basic treatment with oxygen therapy, antibiotics, and a bronchodilator. Besides, group A received XJXBCQ granules and budesonide suspension for inhalation; group B received XJXBCQ granules and half dosage of budesonide suspension; and group C received budesonide suspension and a placebo. All therapies lasted for 5 days, and participants were followed up for 30 days after discharge. The primary outcomes were efficacy, traditional Chinese medicine (TCM) syndrome score, and clinical symptom score. Secondary outcomes included the blood gas analysis, serum inflammatory markers, adverse events, mortality, theoretical discharge time, actual hospitalisation time, proportion of patients requiring invasive mechanical ventilation, proportion of patients transferred to an intensive care unit (ICU), and readmission rate within 30 days after discharge. Results XJXBCQ adjunct with conventional treatment could significantly improve the total efficacy (P < 0.05). Meanwhile, group A showed significantly better results than group C in the TCM syndrome score, phlegm score, and Wexner constipation score (P < 0.05). For modified British medical research council (mMRC), on day 3 (−0.17, 95% confidence interval [CI]: −0.33–−0.01) and day 4 (−0.20, 95% CI: −0.39–−0.02), group A performed statistically better than group C. No significant differences in other secondary outcomes were detected. Conclusion XJXBCQ is beneficial and safe for AECOPD treatment and could be considered an adjunctive therapy for promoting the relief of clinical symptoms. This trial is registered with ChiCTR1800016915.
Collapse
|
21
|
Rahmawati SF, Vos R, Bos IST, Kerstjens HAM, Kistemaker LEM, Gosens R. Function-specific IL-17A and dexamethasone interactions in primary human airway epithelial cells. Sci Rep 2022; 12:11110. [PMID: 35773318 PMCID: PMC9247091 DOI: 10.1038/s41598-022-15393-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Asthmatics have elevated levels of IL-17A compared to healthy controls. IL-17A is likely to contribute to reduced corticosteroid sensitivity of human airway epithelium. Here, we aimed to investigate the mechanistic underpinnings of this reduced sensitivity in more detail. Differentiated primary human airway epithelial cells (hAECs) were exposed to IL-17A in the absence or presence of dexamethasone. Cells were then collected for RNA sequencing analysis or used for barrier function experiments. Mucus was collected for volume measurement and basal medium for cytokine analysis. 2861 genes were differentially expressed by IL-17A (Padj < 0.05), of which the majority was not sensitive to dexamethasone (< 50% inhibition). IL-17A did inhibit canonical corticosteroid genes, such as HSD11B2 and FKBP5 (p < 0.05). Inflammatory and goblet cell metaplasia markers, cytokine secretion and mucus production were all induced by IL-17A, and these effects were not prevented by dexamethasone. Dexamethasone did reverse IL-17A-stimulated epithelial barrier disruption, and this was associated with gene expression changes related to cilia function and development. We conclude that IL-17A induces function-specific corticosteroid-insensitivity. Whereas inflammatory response genes and mucus production in primary hAECs in response to IL-17A were corticosteroid-insensitive, corticosteroids were able to reverse IL-17A-induced epithelial barrier disruption.
Collapse
Affiliation(s)
- Siti Farah Rahmawati
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Pharmacology and Clinical Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Rémon Vos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Huib A M Kerstjens
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Aquilo Contract Research, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.
| |
Collapse
|
22
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
23
|
Saunders RM, Biddle M, Amrani Y, Brightling CE. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radic Biol Med 2022; 185:97-119. [PMID: 35472411 DOI: 10.1016/j.freeradbiomed.2022.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway. However, despite a number of recent reviews addressing the role of oxidative stress/ROS in asthma and COPD, the potential contribution of oxidative stress/ROS-related ASM dysfunction to asthma and COPD pathophysiology has not been comprehensively reviewed. We provide a thorough review of studies that have used primary airway, bronchial or tracheal smooth muscle cells to investigate the role of oxidative stress/ROS in ASM dysfunction and consider how they could contribute to the pathophysiology of asthma and COPD. We summarise the current state of play with regards to clinical trials/development of agents targeting oxidative stress and associated limitations, and the adverse effects of oxidative stress on the efficacy of current therapies, with reference to ASM related studies where appropriate. We also identify limitations in the current knowledge of the role of oxidative stress/ROS in ASM dysfunction and identify areas for future research.
Collapse
Affiliation(s)
- Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| | - Michael Biddle
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yassine Amrani
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
24
|
Marshall CL, Hasani K, Mookherjee N. Immunobiology of Steroid-Unresponsive Severe Asthma. FRONTIERS IN ALLERGY 2022; 2:718267. [PMID: 35387021 PMCID: PMC8974815 DOI: 10.3389/falgy.2021.718267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma is a heterogeneous respiratory disease characterized by airflow obstruction, bronchial hyperresponsiveness and airway inflammation. Approximately 10% of asthma patients suffer from uncontrolled severe asthma (SA). A major difference between patients with SA from those with mild-to-moderate asthma is the resistance to common glucocorticoid treatments. Thus, steroid-unresponsive uncontrolled asthma is a hallmark of SA. An impediment in the development of new therapies for SA is a limited understanding of the range of immune responses and molecular networks that can contribute to the disease process. Typically SA is thought to be characterized by a Th2-low and Th17-high immunophenotype, accompanied by neutrophilic airway inflammation. However, Th2-mediated eosinophilic inflammation, as well as mixed Th1/Th17-mediated inflammation, is also described in SA. Thus, existing studies indicate that the immunophenotype of SA is diverse. This review attempts to summarize the interplay of different immune mediators and related mechanisms that are associated with airway inflammation and the immunobiology of SA.
Collapse
Affiliation(s)
- Courtney Lynn Marshall
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kosovare Hasani
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Milara J, Ballester B, de Diego A, Calbet M, Ramis I, Miralpeix M, Cortijo J. The pan-JAK inhibitor LAS194046 reduces neutrophil activation from severe asthma and COPD patients in vitro. Sci Rep 2022; 12:5132. [PMID: 35332239 PMCID: PMC8948298 DOI: 10.1038/s41598-022-09241-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
Non-T2 severe asthma and chronic obstructive pulmonary disease (COPD) are airway chronic inflammatory disorders with a poor response to corticosteroids. LAS194046, a novel pan-Janus kinase (JAK) inhibitor, shows inhibitory effects on T2 allergic lung inflammation in rats. In this work we analyze the effects of LAS194046, fluticasone propionate and their combination in neutrophils from non-T2 severe asthma and COPD patients in vitro. Neutrophils from 23 healthy subjects, 23 COPD and 21 non-T2 severe asthma patients were incubated with LAS194046 (0.01 nM–1 µM), fluticasone propionate (0.1 nM–1 µM) or their combination and stimulated with lipopolysaccharide (LPS 1 µM). LAS194046 shows similar maximal % inhibition and potency inhibiting IL-8, MMP-9 and superoxide anion release in neutrophils from healthy, COPD and asthma. Fluticasone propionate suppresses mediator release only in neutrophils from healthy patients. The combination of LAS194046 with fluticasone propionate shows synergistic anti-inflammatory and anti-oxidant effects. The mechanisms involved in the synergistic effects of this combination include the increase of MKP1 expression, decrease of PI3Kδ, the induction of glucocorticoid response element and the decrease of ERK1/2, P38 and JAK2/STAT3 phosphorylation compared with monotherapies. In summary, LAS194046 shows anti-inflammatory effects in neutrophils from COPD and severe non-T2 asthma patients and induces synergistic anti-inflammatory effects when combined with fluticasone propionate.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain. .,Pharmacy Unit, Consorcio Hospital General Universitario, Avenida tres cruces s/n, 46014, Valencia, Spain. .,CIBERES, Health Institute Carlos III, Valencia, Spain.
| | - Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Alfredo de Diego
- Respiratory Unit, University and Polytechnic La Fe Hospital, Valencia, Spain
| | | | | | | | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBERES, Health Institute Carlos III, Valencia, Spain.,Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
26
|
Suhuang Antitussive Capsule Ameliorates Corticosteroid Insensitivity in Cough Variant Asthma Guinea Pigs by Inhibiting p38 MAPK Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1699429. [PMID: 35341157 PMCID: PMC8947934 DOI: 10.1155/2022/1699429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
Methods The CVA guinea pig model was successfully established by use of ovalbumin (OVA) sensitization and cigarette smoke (CS) exposure. The guinea pigs were divided into 6 groups: a control group, an OVA model group, an OVA + CS model group, a Suhuang treatment group, a BUD treatment group, and a combination (Suhuang and BUD) treatment group. The effects of the treatment were determined by measuring lung function (RI/Cydn) and cough symptoms (coughs number/cough latency) as outcome criteria. The levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were determined by ELISA. Lung tissues were stained by hematoxylin and eosin (H&E). The expressions of GR/total p38 MAPK/p-p38 MAPK were detected by Western blot. The MKP-1 mRNA levels were detected by RT-PCR. Results Combination treatment significantly decreased RI/coughs numbers and increased Cydn/cough latency. Significantly, the results indicated that combination treatment decreased injury to pulmonary tissues. Results also revealed that levels of inflammatory cytokines were reduced in all treatment groups but most markedly in the combination treatment group. Moreover, Suhuang treatment significantly ameliorated corticosteroid insensitivity by improving the expression of glucocorticoid receptors (GR). The expressions of total p38 MAPK and p-p38 MAPK in lung tissue were significantly inhibited in the Suhuang and combination treatment groups. The MKP-1 mRNA levels in Suhuang and combination treatment groups were also increased significantly. Conclusion Suhuang was effective for reversing corticosteroid insensitivity by regulating the p38 MAPK signal pathway, and combining BUD and Suhuang treatment showed synergistic interactions in CVA guinea pigs. Our findings showed that this combination therapy might be a promising therapeutic agent for CVA and also clarified its underlying mechanism of action, providing a theoretical basis for clinical combination treatment with Suhuang and BUD in CVA patients.
Collapse
|
27
|
Novel Immunomodulatory Therapies for Respiratory Pathologies. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8238403 DOI: 10.1016/b978-0-12-820472-6.00073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Xue Y, Zhou Y, Bao W, Fu Q, Hao H, Han L, Zhang X, Tian X, Zhang M. STAT3 and IL-6 Contribute to Corticosteroid Resistance in an OVA and Ozone-induced Asthma Model with Neutrophil Infiltration. Front Mol Biosci 2021; 8:717962. [PMID: 34760922 PMCID: PMC8573338 DOI: 10.3389/fmolb.2021.717962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to high levels of ozone contributes to insensitivity to glucocorticoids in asthma treatment, but the underlying mechanisms are not known. We built two asthma models: a "T2-high" asthma model was established by ovalbumin (OVA) sensitization/challenge and OVA sensitization/challenge combined with ozone exposure (OVA + ozone) was used to induce airway inflammation with increased numbers of neutrophils to simulate "T2-low" asthma. The expression of T-helper (Th)1/2/17-related cytokines was measured by cytokine antibody arrays. Bronchial provocation tests were carried out to evaluate the lung resistance of mice. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemical (IHC) analyses of alpha-smooth muscle actin were undertaken to observe morphology changes in lungs. The expression of glucocorticoid receptors (GRs) and phosphorylated-GR (p-GR) was measured by western blotting. Nr3c1 mRNA was quantified by RT-qPCR. Protein expression of proinflammatory cytokines, signal transducer and activator of transcription 3 (STAT3), suppressor of cytokine signaling 3 (SOCS3), and CXCL1 was measured through ELISAs, western blotting, or IHC analyses. Resected lung tissue from seven asthma patients and 10 healthy controls undergoing thoracotomy for pulmonary nodules was evaluated by IHC analyses and ELISAs. In both asthma models, mucus hypersecretion, as well as inflammation, hyperresponsiveness, and remodeling of the airways, was present compared with the control group, whereas the OVA + ozone group showed severe neutrophil infiltration. The expression of Th17-related cytokines (interleukin (IL)-6, IL-17A, IL-21), GR protein, and CXCL1 increased in the OVA + ozone group, whereas the expression of p-GR decreased. Dexamethasone (Dex) could not totally reverse the expression of p-GR and histone deacetylase-2 in the OVA + ozone group. STAT3 expression increased in the OVA + ozone group and could not be completely reversed by Dex, and nor could IL-6 expression. A positive correlation between IL-6 or IL-17A and STAT3 and negative correlation between SOCS3 and STAT3 were shown, suggesting that the IL-6/STAT3 pathway may be involved in OVA + ozone-induced corticosteroid-resistant airway inflammation. In clinical samples, IL-17A expression in lung tissue was positively correlated with percent STAT3-positive area and negatively correlated with SOCS3 expression. The IL-6/STAT3 pathway may contribute to corticosteroid insensitivity in OVA + ozone-induced neutrophilic airway inflammation through regulation of Th17 cells and could provide new targets for individual treatment of corticosteroid resistance in asthma.
Collapse
Affiliation(s)
- Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijuan Hao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. Int J Mol Sci 2021; 22:10049. [PMID: 34576214 PMCID: PMC8465023 DOI: 10.3390/ijms221810049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential.
Collapse
Affiliation(s)
- Lisa M. Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| | - Alba Jiménez-Panizo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Carme Caelles
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| |
Collapse
|
30
|
Martin C, Burgel PR, Roche N. Inhaled Dual Phosphodiesterase 3/4 Inhibitors for the Treatment of Patients with COPD: A Short Review. Int J Chron Obstruct Pulmon Dis 2021; 16:2363-2373. [PMID: 34429594 PMCID: PMC8378910 DOI: 10.2147/copd.s226688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current pharmacological treatments for chronic obstructive pulmonary disease (COPD) are mostly limited to inhaled bronchodilators and corticosteroids. Azithromycin can contribute to exacerbation prevention. Roflumilast, a phosphodiesterase (PDE) 4 inhibitor administered orally, also prevents exacerbations in selected patients with chronic bronchitis, recurrent exacerbations, severe airflow limitation and concomitant therapy with long-acting inhaled bronchodilators. This outcome likely results from anti-inflammatory effects since PDE4 is expressed by all inflammatory cell types involved in COPD. The use of this agent is, however, limited by side-effects, particularly nausea and diarrhea. To address remaining unmet needs and enrich therapeutic options for patients with COPD, inhaled dual PDE3/4 inhibitors have been developed, with the aim of enhancing bronchodilation through PDE3 inhibition and modulating inflammation and mucus production though PDE4 inhibition, thus producing a potentially synergistic effect on airway calibre. Experimental preclinical data confirmed these effects in vitro and in animal models. At present, RPL554/ensifentrine is the only agent of this family in clinical development. It decreases sputum markers of both neutrophilic and eosinophilic inflammation in patients with COPD. Clinical Phase II trials confirmed its bronchodilator effect and demonstrated clinically meaningful symptom relief and quality of life improvements in these patients. The safety profile appears satisfactory, with less effects on heart rate and blood pressure than salbutamol and no other side effect. Altogether, these data suggest that ensifentrine could have a role in COPD management, especially in addition to inhaled long-acting bronchodilators with or without corticosteroids since experimental studies suggest potentiation of ensifentrine effects by these agents. However, results from ongoing and future Phase III studies are needed to confirm both beneficial effects and favourable safety profile on a larger scale and assess other outcomes including exacerbations, lung function decline, comorbidities and mortality.
Collapse
Affiliation(s)
- Clémence Martin
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Pierre-Régis Burgel
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Nicolas Roche
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| |
Collapse
|
31
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
32
|
Li H, Ye Q, Lin Y, Yang X, Zou X, Yang H, Wu W, Meng P, Zhang T. CpG oligodeoxynucleotides attenuate RORγt-mediated Th17 response by restoring histone deacetylase-2 in cigarette smoke-exposure asthma. Cell Biosci 2021; 11:92. [PMID: 34016172 PMCID: PMC8139164 DOI: 10.1186/s13578-021-00607-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 05/07/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cigarette smoke (CS) exposure increases corticosteroid insensitive asthma related to increased Th17 phenotype, and new treatment strategies are needed for CS-associated asthma. Histone deacetylase 2 (HDAC2), found in the airway epithelium, is critical for ameliorating glucocorticoids insensitivity. We recently demonstrated the anti-inflammatory effects of CpG oligodeoxynucleotides (CpG-ODNs) on CS-exposure asthma. However, the effects of CpG-ODNs on HDAC2 expression and enzymatic activity remain unclear. This study aimed to assess whether CpG-ODNs protect against excessive Th17 immune responses in CS-induced asthma through HDAC2-dependent mechanisms and compared their effects with those of corticosteroids. METHODS The effects of CpG-ODNs alone and in combination with budesonide (BUD) on airway inflammation and Th2/Th17-related airway immune responses were determined using an in vivo model of CS-induced asthma and in cultured bronchial epithelial (HBE) cells administered ovalbumin (OVA) and/or cigarette smoke extract (CSE). HDAC2 and retinoid-related orphan nuclear receptor γt (RORγt) expression were also assessed in mouse lung specimens and HBE cells. RESULTS CpG-ODNs and BUD synergistically attenuated CS exposure asthmatic responses in vivo by modulating the influx of eosinophils and neutrophils, airway remodeling, Th2/Th17 associated cytokine and chemokine production, and airway hyperresponsiveness and blocking RORγt-mediated Th17 inflammation through induced HDAC2 expression/activity. In vitro, CpG-ODNs synergized with BUD to inhibit Th17 cytokine production in OVA- and CSE-challenged HBE cells while suppressing RORγt and increasing epithelial HDAC2 expression/activity. CONCLUSIONS CpG-ODNs reversed CS-induced HDAC2 downregulation and enhanced the sensitivity of CS-exposed asthmatic mice and CSE-induced HBE cells to glucocorticoid treatment. This effect may be associated with HDAC2 restoration via RORγt/IL-17 pathway regulation, suggesting that CpG-ODNs are potential corticosteroid-sparing agents for use in CS-induced asthma with Th17-biased immune conditions.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qimei Ye
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xuena Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ping Meng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
33
|
Li X, Yang N, Cheng Q, Zhang H, Liu F, Shang Y. MiR-21-5p in Macrophage-Derived Exosomes Targets Smad7 to Promote Epithelial Mesenchymal Transition of Airway Epithelial Cells. J Asthma Allergy 2021; 14:513-524. [PMID: 34040396 PMCID: PMC8140948 DOI: 10.2147/jaa.s307165] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
Background Asthma is usually associated with airway inflammation and airway remodeling. Epithelial mesenchymal transition (EMT) often occurs in airway remodeling. The purpose of this study is to identify the effect of miR-21-5p and Smad7 signaling pathway in macrophage-derived exosomes on EMT of airway epithelial cells. Methods HE staining and Masson staining were used to verify the successful establishment of the asthma model. The levels of epithelial cell adhesion factor and stromal cell markers were detected by Western blot. The levels of miR-21-5p were detected by qRT-PCR. The expression of miR-21-5p in lung tissue was further verified by fluorescence in situ hybridization (FISH). Exosome morphology was observed by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Luciferase reporter assay was applied to analyze the interaction of miR-21-5p with Smad7. Results The expression of miR-21-5p was upregulated in macrophages of rats in vivo with OVA-induced asthma. In vitro cultured alveolar macrophages stimulated by LPS could secrete exosomes with high levels of miR-21-5p. The exosome-derived miR-21-5p promotes EMT in rat tracheal epithelial cells through TGFβ1/Smad signaling pathway by downregulating Smad7. This process can be blocked by miR-21-5p inhibitor. Conclusion Rat alveolar macrophages produced high levels of miR-21-5p-containing exosomes, which transported miR-21-5p to tracheal epithelial cells, thus promoting EMT through TGF-β1/Smad signaling pathway by targeting Smad7.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Nan Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Han Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Fen Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| |
Collapse
|
34
|
Pelaia C, Vatrella A, Gallelli L, Lombardo N, Sciacqua A, Savino R, Pelaia G. Role of p38 Mitogen-Activated Protein Kinase in Asthma and COPD: Pathogenic Aspects and Potential Targeted Therapies. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1275-1284. [PMID: 33790539 PMCID: PMC8001041 DOI: 10.2147/dddt.s300988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
Among the various members of the mitogen-activated protein kinase (MAPK) family, p38 MAPK subgroup is the most involved in airway and lung inflammation underlying asthma and chronic obstructive pulmonary disease (COPD). In particular, several environmental agents including aeroallergens, cigarette smoke, airborne pollutants, viral and bacterial pathogens activate the p38α isoform which in turn up-regulates the expression of multiple proinflammatory cytokines and chemokines, as well as the production of some fibrogenic factors. Therefore, p38 MAPK-induced bronchial inflammation and remodelling significantly contribute to the development, persistence and amplification of airflow limitation, which is the hallmark of asthma and COPD. Such advances in our understanding of p38 role in the pathobiology of the above widespread, chronic obstructive respiratory diseases, have led to consider p38 MAPK as a suitable molecular target for novel treatment strategies. Indeed, many studies have been carried out in both animal and clinical settings, with the aim of evaluating the potential therapeutic effects of p38 MAPK inhibitors in both asthma and COPD.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Luca Gallelli
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Nicola Lombardo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rocco Savino
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
35
|
Chen Z, Xu SL, Ge LY, Zhu J, Zheng T, Zhu Z, Zhou L. Sialic acid-binding immunoglobulin-like lectin 9 as a potential therapeutic target for chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:757-764. [PMID: 33595976 PMCID: PMC8104259 DOI: 10.1097/cm9.0000000000001381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) has become the third-leading cause of death worldwide, which is a severe economic burden to the healthcare system. Chronic bronchitis is the most common condition that contributes to COPD, both locally and systemically. Neutrophilic inflammation predominates in the COPD airway wall and lumen. Logically, repression of neutrophilia is an essential fashion to COPD treatment. However, currently available anti-neutrophilic therapies provide little benefit in COPD patients and may have serious side effects. Thus, there is an urgent need to explore an effective and safe anti-neutrophilic approach that might delay progression of the disease. Sialic acid-binding immunoglobulin-like lectin (Siglec)-9 is a member of the Siglec cell surface immunoglobulin family. It is noteworthy that Siglec-9 is highly expressed on human neutrophils and monocytes. Ligation of Siglec-9 by chemical compounds or synthetic ligands induced apoptosis and autophagic-like cell death in human neutrophils. Furthermore, administration of antibody to Siglec-E, mouse functional ortholog of Siglec-9, restrained recruitment and activation of neutrophils in mouse models of airway inflammation in vivo. Given the critical role that neutrophils play in chronic bronchitis and emphysema, targeting Siglec-9 could be beneficial for the treatment of COPD, asthma, fibrosis, and related chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuang-Lan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin-Yang Ge
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jin Zhu
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, China
| | - Tao Zheng
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI 02912, USA
| | - Zhou Zhu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI 02912, USA
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
36
|
Yap JMG, Ueda T, Kanemitsu Y, Takeda N, Fukumitsu K, Fukuda S, Uemura T, Tajiri T, Ohkubo H, Maeno K, Ito Y, Oguri T, Ugawa S, Niimi A. AITC inhibits fibroblast-myofibroblast transition via TRPA1-independent MAPK and NRF2/HO-1 pathways and reverses corticosteroids insensitivity in human lung fibroblasts. Respir Res 2021; 22:51. [PMID: 33579280 PMCID: PMC7881560 DOI: 10.1186/s12931-021-01636-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background Little is known on the role of transient receptor potential ankyrin 1 (TRPA1) in fibroblast—myofibroblast transition (FMT) that can lead to airway remodeling which is a major problem for severe asthma and fibrosis. Thus, this study investigated the effect of TRPA1 modulators on transforming growth factor beta 1(TGF-β1) -treated lung fibroblasts. Methods MRC-5 cells were preincubated with TGF-β1 for 24 h. TRPA1 agonist or antagonist were added and further incubated for 24 h. The changes in TRPA1 and alpha-smooth muscle actin (α-SMA) expressions by stimuli were evaluated using qRT-PCR, western blot and immunohistochemical analyses. Statistical significance was determined by using one- or two-way ANOVA, followed by Bonferroni’s post hoc analysis for comparison of multiple groups and paired 2-tailed Student’s t-test between 2 groups. Results MRC-5 cells treated by TGF-β1 significantly upregulated α-SMA mRNA expressions (P < 0.01), but downregulated TRPA1 gene expression (P < 0.001). Post-treatment of TRPA1 activator, allyl isothiocyanate (AITC), after TGF-β1 significantly downregulated the α-SMA gene induction (P < 0.01 at 24 h), protein expression (P < 0.05) and immunoreactivity with stress fibers (P < 0.05). On the other hand, TRPA1 antagonist HC-030031 did not prevent this effect, and instead tended to facilitate the suppressive effect of AITC when co-stimulated. AITC significantly increased phosphorylated- extracellular signal-regulated kinase (ERK) 1/2 and heme oxygenase (HO)-1 protein expressions (P < 0.05) in TGF-β1-treated cells. Combined inhibition with ERK1/2 mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor (NRF2) almost completely reversed AITC-induced α-SMA suppression (P < 0.05). Dexamethasone was not able to inhibit the upregulated α-SMA induction by TGF-β1. However, AITC improved dexamethasone-insensitive myodifferentiation in the presence of the corticosteroid (P < 0.01). Conclusion We found that AITC exerts protective effect on TGF-β1-induced α-SMA induction by activating ERK1/2 MAPK and NRF2/HO-1 pathways in lung fibroblasts. It also overcomes corticosteroids insensitivity in TGF-β1-induced α-SMA induction. TRPA1 antagonist modulates the suppressive effect, but not prevent it. AITC and TRPA1 antagonist may be therapeutic agents in treating chronic respiratory diseases.
Collapse
Affiliation(s)
- Jennifer Maries Go Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Testsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
37
|
Sivapalan P, Bikov A, Jensen JU. Using Blood Eosinophil Count as a Biomarker to Guide Corticosteroid Treatment for Chronic Obstructive Pulmonary Disease. Diagnostics (Basel) 2021; 11:236. [PMID: 33546498 PMCID: PMC7913607 DOI: 10.3390/diagnostics11020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Treating patients hospitalised with acute exacerbations of chronic obstructive pulmonary disease (COPD) usually involves administering systemic corticosteroids. The many unwanted side effects associated with this treatment have led to increased interest in minimising the accumulated corticosteroid dose necessary to treat exacerbations. Studies have shown that short-term treatment with corticosteroids is preferred, and recent trials have shown that biomarkers can be used to further reduce exposure to corticosteroids. Interestingly, high eosinophil counts in patients with acute exacerbations of COPD are indicative of an eosinophilic phenotype with a distinct response to treatment with corticosteroids. In addition, post-hoc analysis of randomised control trials have shown that higher blood eosinophil counts at the start of the study predict a greater response to inhaled corticosteroids in stable COPD. In this review, we examine the studies on this topic, describe how blood eosinophil cell count may be used as a biomarker to guide treatment with corticosteroids, and identify some relevant challenges.
Collapse
Affiliation(s)
- Pradeesh Sivapalan
- Department of Internal Medicine, Respiratory Medicine Section, Herlev-Gentofte Hospital, 2900 Hellerup, Denmark;
- Department of Internal Medicine, Zealand University Hospital, 4000 Roskilde, Denmark
| | - András Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Jens-Ulrik Jensen
- Department of Internal Medicine, Respiratory Medicine Section, Herlev-Gentofte Hospital, 2900 Hellerup, Denmark;
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
38
|
Advances in Pharmacological Actions and Mechanisms of Flavonoids from Traditional Chinese Medicine in Treating Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8871105. [PMID: 33488753 PMCID: PMC7790571 DOI: 10.1155/2020/8871105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high morbidity and mortality. The conventional therapies remain palliative and have various undesired effects. Flavonoids from traditional Chinese medicine (TCM) have been proved to exert protective effects on COPD. This review aims to illuminate the poly-pharmacological properties of flavonoids in treating COPD based on laboratory evidences and clinical data and points out possible molecular mechanisms. Animal/laboratory studies and randomised clinical trials about administration of flavonoids from TCM for treating COPD from January 2010 to October 2020 were identified and collected, with the following terms: chronic obstructive pulmonary disease or chronic respiratory disease or inflammatory lung disease, and flavonoid or nature product or traditional Chinese medicine. Pharmacokinetic studies and external application treatment were excluded. A total of 15 flavonoid compounds were listed. Flavonoids could inhibit inflammation, oxidative stress, and cellular senescence, restore corticosteroid sensitivity, improve pulmonary histology, and boost pulmonary function through regulating multiple targets and signaling pathways, which manifest that flavonoids are a group of promising natural products for COPD. Nevertheless, most studies remain in the research phase of animal testing, and further clinical applications should be carried out.
Collapse
|
39
|
The Impact of Tobacco Smoking on Adult Asthma Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030992. [PMID: 33498608 PMCID: PMC7908240 DOI: 10.3390/ijerph18030992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Background: Tobacco smoking is associated with more severe asthma symptoms, an accelerated decline in lung function, and reduced responses to corticosteroids. Our objective was to compare asthma outcomes in terms of disease control, exacerbation rates, and lung function in a population of asthmatic patients according to their smoking status. Methods: We compared patients’ demographics, disease characteristics, and lung-function parameters in current-smokers (CS, n = 48), former-smokers (FS, n = 38), and never-smokers (NS, n = 90), and identified predictive factors for asthma control. Results: CS had a higher prevalence of family asthma/atopy, a lower rate of controlled asthma, impaired perception of dyspnea, an increased number of exacerbations, and poorer lung function compared to NS. The mean asthma control questionnaire’s (ACQ) score was higher in CS vs. NS and FS (1.9 vs. 1.2, p = 0.02). Compared to CS, FS had a lower rate of exacerbations, a better ACQ score (similar to NS), a higher prevalence of dyspnea, and greater lung-diffusion capacity. Non-smoking status, the absence of dyspnea and exacerbations, and a forced expiratory volume in one second ≥80% of predicted were associated with controlled asthma. Conclusions: CS with asthma exhibit worse clinical and functional respiratory outcomes compared to NS and FS, supporting the importance of smoking cessation in this population.
Collapse
|
40
|
Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders. Adv Drug Deliv Rev 2021; 168:196-216. [PMID: 32416111 DOI: 10.1016/j.addr.2020.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Genome-editing systems based on clustered, regularly interspaced, short palindromic repeat (CRISPR)/associated protein (CRISPR/Cas), are emerging as a revolutionary technology for the treatment of various genetic diseases. To date, the delivery of genome-editing biomacromolecules by viral or non-viral vectors have been proposed as new therapeutic options for lung genetic disorders, such as cystic fibrosis (CF) and α-1 antitrypsin deficiency (AATD), and it has been accepted that these delivery vectors can introduce CRISPR/Cas9 machineries into target cells or tissues in vitro, ex vivo and in vivo. However, the efficient local or systemic delivery of CRISPR/Cas9 elements to the lung, enabled by either viral or by non-viral carriers, still remains elusive. Herein, we first introduce lung genetic disorders and their current treatment options, and then summarize CRISPR/Cas9-based strategies for the therapeutic genome editing of these disorders. We further summarize the pros and cons of different routes of administration for lung genetic disorders. In particular, the potentials of aerosol delivery for therapeutic CRISPR/Cas9 biomacromolecules for lung genome editing are discussed and highlighted. Finally, current challenges and future outlooks in this emerging area are briefly discussed.
Collapse
|
41
|
The Budesonide-Hydroxypropyl-β-Cyclodextrin Complex Attenuates ROS Generation, IL-8 Release and Cell Death Induced by Oxidant and Inflammatory Stress. Study on A549 and A-THP-1 Cells. Molecules 2020; 25:molecules25214882. [PMID: 33105741 PMCID: PMC7660049 DOI: 10.3390/molecules25214882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic glucocorticoids such as budesonide (BUD) are potent anti-inflammatory drugs commonly used to treat patients suffering from chronic inflammatory diseases. A previous animal study reported a higher anti-inflammatory activity with a 2-hydroxypropyl-β-cyclodextrin (HPβCD)-based formulation of BUD (BUD:HPβCD). This study investigated, on cellular models (A549 and A-THP-1), the effect of BUD:HPβD in comparison with BUD and HPβCD on the effects induced by oxidative and inflammatory stress as well as the role of cholesterol. We demonstrated the protective effect afforded by BUD:HPβCD against cytotoxicity and ROS generation induced by oxidative and inflammatory stress. The effect observed for BUD:HPβCD was comparable to that observed with HPβCD with no major effect of cholesterol content. We also demonstrated (i) the involvement of the canonical molecular pathway including ROS generation, a decrease in PI3K/Akt activation, and decrease in phosphorylated/unphosphorylated HDAC2 in the effect induced by BUD:HPβCD, (ii) the maintenance of IL-8 decrease with BUD:HPβCD, and (iii) the absence of improvement in glucocorticoid insensitivity with BUD:HPβCD in comparison with BUD, in conditions where HDAC2 was inhibited. Resulting from HPβCD antioxidant and anticytotoxic potential and protective capacity against ROS-induced PI3K/Akt signaling and HDAC2 inhibition, BUD:HPβCD might be more beneficial than BUD alone in a context of concomitant oxidative and inflammatory stress.
Collapse
|
42
|
Activation of angiotensin II type-2 receptor protects against cigarette smoke-induced COPD. Pharmacol Res 2020; 161:105223. [PMID: 33017650 PMCID: PMC7530556 DOI: 10.1016/j.phrs.2020.105223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. Cumulative evidence has implicated renin-angiotensin system (RAS) in the pathogenesis of COPD. This study aimed to investigate potential protective effects of angiotensin II type-2 receptor (AT2R) activation in cigarette smoke (CS)-induced COPD models. Compound 21 (C21), a selective and potent non-peptide small molecule AT2R agonist, was evaluated for anti-inflammatory, anti-oxidative and anti-remodeling activities in a two-week (acute) and an eight-week (chronic) CS-induced COPD models. C21 inhibited CS-induced increases in macrophage and neutrophil counts, pro-inflammatory cytokines and oxidative damage markers in bronchoalveolar lavage (BAL) fluid, and TGF-β1 in lung tissues, from COPD models. C21 restored phosphatase activities and reduced phospho-p38 MAPK, phospho-ERK and p65 subunit of NF-κB levels in CS-exposed lung tissues. C21 also suppressed CS-induced increases in α-Sma, Mmp9, Mmp12 and hydroxyproline levels in lung tissues, and neutrophil elastase activity in BAL fluid. C21 modulated RAS in CS-exposed lungs by downregulating Ang II but upregulating Ang-(1–7) and Mas receptor levels. C21 prevented CS-induced emphysema and improved lung functions in chronic COPD model. We report here for the first time the protective effects of AT2R agonist C21 against CS-induced COPD, and provide strong evidence for further development of AT2R agonist for the treatment of COPD.
Collapse
|
43
|
Defnet AE, Hasday JD, Shapiro P. Kinase inhibitors in the treatment of obstructive pulmonary diseases. Curr Opin Pharmacol 2020; 51:11-18. [PMID: 32361678 DOI: 10.1016/j.coph.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Chronic pulmonary diseases, including chronic obstructive pulmonary disease (COPD) and asthma, are major causes of death and reduced quality of life. Characteristic of chronic pulmonary disease is excessive lung inflammation that occurs in response to exposure to inhaled irritants, chemicals, and allergens. Chronic inflammation leads to remodeling of the airways that includes excess mucus secretion, proliferation of smooth muscle cells, increased deposition of extracellular matrix proteins and fibrosis. Protein kinases have been implicated in mediating inflammatory signals and airway remodeling associated with reduced lung function in chronic pulmonary disease. This review will highlight the role of protein kinases in the lung during chronic inflammation and examine opportunities to use protein kinase inhibitors for the treatment of chronic pulmonary diseases.
Collapse
Affiliation(s)
- Amy E Defnet
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States.
| |
Collapse
|
44
|
Palumbo ML, Prochnik A, Wald MR, Genaro AM. Chronic Stress and Glucocorticoid Receptor Resistance in Asthma. Clin Ther 2020; 42:993-1006. [PMID: 32224031 DOI: 10.1016/j.clinthera.2020.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Chronic and persistent exposure to negative stress can lead to adverse consequences on health. Particularly, psychosocial factors were found to increase the risk and outcome of respiratory diseases like asthma. Glucocorticoids (GCs) are the most efficient anti-inflammatory therapy for asthma. However, a significant proportion of patients don't respond adequately to GC administration. GC sensitivity is modulated by genetic and acquired disease-related factors. Additionally, it was proposed that endogenous corticosteroids may limit certain actions of synthetic GCs, contributing to insensitivity. Psychological and physiological stresses activate the hypothalamic-pituitary-adrenal axis, increasing cortisol levels. Here, we review the mechanism involved in altered GC sensitivity in asthmatic patients under stressful situations. Strategies for modulation GC sensitivity and improving GC therapy are discussed. METHODS PubMed was searched for publications on psychological chronic stress and asthma, GC resistance in asthma, biological mechanisms for GC resistance, and drugs for steroid-resistant asthma, including highly potent GCs. FINDINGS GC resistance in patients with severe disease remains a major clinical problem. In asthma, experimental and clinical evidence suggests that chronic stress induces inflammatory changes, contributing to a worse GC response. GC resistant patients can be treated with other broad-spectrum anti-inflammatory drugs, but these generally have major side effects. Different mechanisms of GC resistance have been described and might be useful for developing new therapeutic strategies against it. Novel drugs, such as highly potent GCs, phosphoinositide 3-kinase-delta inhibitors that reestablish histone deacetylase-2 function, decrease of GC receptor phosphorylation by p38 mitogen-activated protein kinase inhibitors, or phosphatase activators, are currently in clinical development and might be combined with GC therapy in the future. Furthermore, microRNAs (small noncoding RNA molecules) operate as posttranscriptional regulators, providing another level of control of GC receptor levels. Empirical results allow postulating that the detection and study of microRNAs might be a promising approach to better characterize and treat asthmatic patients. IMPLICATIONS Many molecular and cellular pathobiological mechanisms are responsible of GC resistance. Therefore detecting specific biomarkers to help identify patients who would benefit from new therapies is crucial. Stress consitutes a negative aspect of current lifestyles that increase asthma morbidity and mortality. Adequate stress management could be an important and positive intervention.
Collapse
Affiliation(s)
- María Laura Palumbo
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (UNNOBA-UNSADA-CONICET), Junín, Argentina
| | - Andrés Prochnik
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina
| | - Miriam Ruth Wald
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina
| | - Ana María Genaro
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina; Departamento de Farmacología, Facultad de Medicina, UBA Paraguay, Buenos Aires, Argentina.
| |
Collapse
|
45
|
Pelaia C, Vatrella A, Crimi C, Gallelli L, Terracciano R, Pelaia G. Clinical relevance of understanding mitogen-activated protein kinases involved in asthma. Expert Rev Respir Med 2020; 14:501-510. [PMID: 32098546 DOI: 10.1080/17476348.2020.1735365] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Mitogen-activated protein kinases (MAPKs) are a large family of evolutionary conserved intracellular enzymes that play a pivotal role in signaling pathways mediating the biologic actions of a wide array of extracellular stimuli.Areas covered: MAPKs are implicated in most pathogenic events involved in asthma, including both inflammatory and structural changes occurring in the airways. Indeed, MAPKs are located at the level of crucial convergence points within the signal transduction networks activated by many cytokines, chemokines, growth factors, and other inducers of bronchial inflammation and remodeling such as immunoglobulin E (IgE) and oxidative stress.Expert opinion: Therefore, given the growing importance of MAPKs in asthma pathobiology, these signaling enzymes are emerging as key intracellular pathways whose upstream activation can be inhibited by biological drugs such as anti-cytokines and anti-IgE.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Luca Gallelli
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
46
|
Yang H, Xie J, Zhang J, Chang Y, Han J. [Inhibiting miR-186 expression alleviates mitochondrial damage in hypoxic human umbilical vein endothelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:898-903. [PMID: 31511208 DOI: 10.12122/j.issn.1673-4254.2019.08.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of miR-186 inhibition on the expression of hypoxia-inducible factor-1α (HIF-α) and mitochondrial function in hypoxic vascular endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) cultured in routine or hypoxic conditions for 6 h were examined for the expression of miR-186. A miR-186 inhibitor was transfected in the HUVECs, and the cells were subsequently cultured in hypoxic condition for 6 h to observe the changes in the mitochondrial structure under an electron microscope. The changes in the mRNA and protein expressions of HIF-1α in response to miR-186 interference were tested using real-time fluorescent quantitative PCR and Western blotting. RESULTS The expression of miR-18 was mildly increased in HUVECs after hypoxic exposure for 6 h (P=0.0188). Interference of miR-186 expression obviously promoted the mRNA and protein expressions of HIF-1α in HUVECs. In hypoxic conditions, miR-186 interference significantly reduced mitochondrial damage in HUVECs as observed under electron microscope (P=0.0297). CONCLUSIONS Inhibition of miR-186 protects vascular endothelial cells against hypoxic injuries by promoting HIF-α expression to lessen mitochondrial damage, suggesting the possibility of targeted miR-186 interference for treatment of hemorrhagic shock.
Collapse
Affiliation(s)
- Haifan Yang
- Key Laboratory of Modern Teaching Technology of Ministry of Education, Shaanxi Normal University, Xi'an 710062, China
| | - Jiangang Xie
- Department of Emergency Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Jinming Zhang
- Key Laboratory of Modern Teaching Technology of Ministry of Education, Shaanxi Normal University, Xi'an 710062, China
| | - Yuan Chang
- Key Laboratory of Modern Teaching Technology of Ministry of Education, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology of Ministry of Education, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
47
|
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Effects of AntagomiRs on Different Lung Diseases in Human, Cellular, and Animal Models. Int J Mol Sci 2019; 20:E3938. [PMID: 31412612 PMCID: PMC6719072 DOI: 10.3390/ijms20163938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION MiRNAs have been shown to play a crucial role among lung cancer, pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus including chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several miRNAs has been recently ruled out. In order to act on miRNAs turnover, antagomiRs have been developed. MATERIALS AND METHODS The systematic review was conducted under the PRISMA guidelines (registration number is: CRD42019134173). The PubMed database was searched between 1 January 2000 and 30 April 2019 under the following search strategy: (((antagomiR) OR (mirna antagonists) OR (mirna antagonist)) AND ((lung[MeSH Terms]) OR ("lung diseases"[MeSH Terms]))). We included original articles, published in English, whereas exclusion criteria included reviews, meta-analyses, single case reports, and studies published in a language other than English. RESULTS AND CONCLUSIONS A total of 68 articles matching the inclusion criteria were retrieved. Overall, the use of antagomiR was seen to be efficient in downregulating the specific miRNA they are conceived for. The usefulness of antagomiRs was demonstrated in humans, animal models, and cell lines. To our best knowledge, this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in the lung, in order to provide readers a comprehensive review upon major lung disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
48
|
Editorial overview: Emerging anti-inflammatory approaches for the treatment of respiratory diseases. Curr Opin Pharmacol 2019; 46:iii-v. [DOI: 10.1016/j.coph.2019.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|