1
|
Kowluru RA, Kumar J, Malaviya P. DNA methylation of long noncoding RNA cytochrome B in diabetic retinopathy. Noncoding RNA Res 2025; 11:141-149. [PMID: 39811245 PMCID: PMC11732211 DOI: 10.1016/j.ncrna.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (LncCytB), is also downregulated. This study aims to investigate the role of DNA methylation in the downregulation of LncCytB in diabetic retinopathy. Human retinal endothelial cells, incubated in 5 mM (normal) or 20 mM (high) D-glucose, in the presence/absence of Azacytidine (a DNA methyl transferase inhibitor) were analyzed for LncCytB DNA methylation by immunoprecipitation and methylation specific PCR techniques, and LncCytB transcripts by strand-specific PCR and RNA-FISH. Mitochondrial genomic stability was evaluated by quantifying protective mtDNA nucleoids by SYBR green staining and by flow cytometry, and functional stability by oxygen consumption rate using Seahorse analyzer. Results were confirmed in an in vivo model using retina from diabetic rat. While high glucose elevated 5 mC and the ratio of methylated to unmethylated amplicons at LncCytB and downregulated its transcripts, azacytidine prevented LncCytB DNA hypermethylation and decrease in its expression. Azacytidine also ameliorated decrease in nucleoids and oxygen consumption rate. Similarly, azacytidine prevented increase in retinal LncCytB DNA methylation and decrease in its expression in diabetic rats. Thus, DNA hypermethylation plays a major role in the downregulation of retinal LncCytB in diabetes, resulting in impaired mitochondrial homeostasis, and culminating in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A. Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Jay Kumar
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Pooja Malaviya
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Zang H, Guo S, Dong S, Song Y, Li K, Fan X, Qiu J, Zheng Y, Jiang H, Wu Y, Lü Y, Chen D, Guo R. Construction of a Full-Length Transcriptome of Western Honeybee Midgut Tissue and Improved Genome Annotation. Genes (Basel) 2024; 15:728. [PMID: 38927663 PMCID: PMC11202838 DOI: 10.3390/genes15060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Honeybees are an indispensable pollinator in nature with pivotal ecological, economic, and scientific value. However, a full-length transcriptome for Apis mellifera, assembled with the advanced third-generation nanopore sequencing technology, has yet to be reported. Here, nanopore sequencing of the midgut tissues of uninoculated and Nosema ceranae-inoculated A. mellifera workers was conducted, and the full-length transcriptome was then constructed and annotated based on high-quality long reads. Next followed improvement of sequences and annotations of the current reference genome of A. mellifera. A total of 5,942,745 and 6,664,923 raw reads were produced from midguts of workers at 7 days post-inoculation (dpi) with N. ceranae and 10 dpi, while 7,100,161 and 6,506,665 raw reads were generated from the midguts of corresponding uninoculated workers. After strict quality control, 6,928,170, 6,353,066, 5,745,048, and 6,416,987 clean reads were obtained, with a length distribution ranging from 1 kb to 10 kb. Additionally, 16,824, 17,708, 15,744, and 18,246 full-length transcripts were respectively detected, including 28,019 nonredundant ones. Among these, 43,666, 30,945, 41,771, 26,442, and 24,532 full-length transcripts could be annotated to the Nr, KOG, eggNOG, GO, and KEGG databases, respectively. Additionally, 501 novel genes (20,326 novel transcripts) were identified for the first time, among which 401 (20,255), 193 (13,365), 414 (19,186), 228 (12,093), and 202 (11,703) were respectively annotated to each of the aforementioned five databases. The expression and sequences of three randomly selected novel transcripts were confirmed by RT-PCR and Sanger sequencing. The 5' UTR of 2082 genes, the 3' UTR of 2029 genes, and both the 5' and 3' UTRs of 730 genes were extended. Moreover, 17,345 SSRs, 14,789 complete ORFs, 1224 long non-coding RNAs (lncRNAs), and 650 transcription factors (TFs) from 37 families were detected. Findings from this work not only refine the annotation of the A. mellifera reference genome, but also provide a valuable resource and basis for relevant molecular and -omics studies.
Collapse
Affiliation(s)
- He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
| | - Shunan Dong
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
| | - Yuxuan Song
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
| | - Kunze Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
| | - Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Yidi Zheng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jilin 132000, China; (H.J.); (Y.W.)
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin 132000, China; (H.J.); (Y.W.)
| | - Yang Lü
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China;
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (S.G.); (S.D.); (Y.S.); (K.L.); (X.F.); (J.Q.); (Y.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
3
|
Syed RU, Afsar S, Aboshouk NAM, Salem Alanzi S, Abdalla RAH, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Satheesh Kumar G, Alshammari MD. LncRNAs in necroptosis: Deciphering their role in cancer pathogenesis and therapy. Pathol Res Pract 2024; 256:155252. [PMID: 38479121 DOI: 10.1016/j.prp.2024.155252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Necroptosis, a controlled type of cell death that is different from apoptosis, has become a key figure in the aetiology of cancer and offers a possible target for treatment. A growing number of biological activities, including necroptosis, have been linked to long noncoding RNAs (lncRNAs), a varied family of RNA molecules with limited capacity to code for proteins. The complex interactions between LncRNAs and important molecular effectors of necroptosis, including mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting protein kinase 3 (RIPK3), will be investigated. We will explore the many methods that LncRNAs use to affect necroptosis, including protein-protein interactions, transcriptional control, and post-transcriptional modification. Additionally, the deregulation of certain LncRNAs in different forms of cancer will be discussed, highlighting their dual function in influencing necroptotic processes as tumour suppressors and oncogenes. The goal of this study is to thoroughly examine the complex role that LncRNAs play in controlling necroptotic pathways and how that regulation affects the onset and spread of cancer. In the necroptosis for cancer treatment, this review will also provide insight into the possible therapeutic uses of targeting LncRNAs. Techniques utilising LncRNA-based medicines show promise in controlling necroptotic pathways to prevent cancer from spreading and improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | | | - Amna Abakar Suleiman Khalifa
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - G Satheesh Kumar
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
4
|
Yue B, Chen J, Bao T, Zhang Y, Yang L, Zhang Z, Wang Z, Zhu C. Chromosomal copy number amplification-driven Linc01711 contributes to gastric cancer progression through histone modification-mediated reprogramming of cholesterol metabolism. Gastric Cancer 2024; 27:308-323. [PMID: 38270815 DOI: 10.1007/s10120-023-01464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Chromosome gains or localized amplifications are frequently observed in human gastric cancer (GC) and are major causes of aberrant oncogene activation. However, the significance of long non-coding RNAs (LncRNAs) in the above process is largely unknown. METHODS The copy number aberrations (CNAs) data of GC samples were downloaded and analyzed from the TCGA database. qRT-PCR and fluorescence in situ hybridization were used to evaluate the expression of Linc01711 in GC. The effects of Linc01711 on GC progression were investigated through in vitro and in vivo assays. The mechanism of Linc01711 action was explored through transcriptome sequencing, chromatin immunoprecipitation sequencing, RNA immunoprecipitation, RNA pull-down and chromatin isolation by RNA purification (ChIRP) assays. RESULTS We report for the first time a novel DNA copy number amplification-driven LncRNA on chromosome 20q13, designated Linc01711 in human GC, which is highly associated with malignant features. Functionally, Linc01711 significantly accelerates the proliferation and metastasis of GC. Mechanistically, Linc01711 acts as a modular scaffold to promote the binding of histone acetyltransferase HBO1 and histone demethylase KDM9. By coordinating the localization of the HBO1/KDM9 complex, Linc01711 specifies the histone modification pattern on the target genes, such as LPCAT1, and consequently facilitates the cholesterol synthesis, thereby contributing to tumor progression. CONCLUSIONS Our findings suggest that copy number amplification-driven Linc01711 may serve as a promising prognostic predictor for GC patients and targeting Linc01711-related cholesterol metabolism pathway may be meaningful in anticancer strategies.
Collapse
Affiliation(s)
- Ben Yue
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jianjun Chen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Tianshang Bao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuanruohan Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Linxi Yang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
5
|
Mimura I, Nangaku M. Epigenetic regulation of angiogenesis and ischemic response by long noncoding RNA LEENE in diabetes. Kidney Int 2023; 104:1048-1050. [PMID: 37419449 DOI: 10.1016/j.kint.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo School of Medicine, Tokyo, Japan.
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Man HSJ, Subramaniam N, Downs T, Sukumar AN, Saha AD, Nair R, Chen L, Teitelbaum D, Turgeon PJ, Ku KH, Tran E, de Perrot M, Marsden PA. Long noncoding RNA GATA2-AS1 augments endothelial Hypoxia Inducible Factor 1-α induction and regulates hypoxic signaling. J Biol Chem 2023; 299:103029. [PMID: 36806681 PMCID: PMC10148162 DOI: 10.1016/j.jbc.2023.103029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Vascular endothelial cells form the inner cellular lining of blood vessels and have myriad physiologic functions including angiogenesis and response to hypoxia. We recently identified a set of endothelial cell (EC)-enriched long noncoding RNAs (lncRNAs) in differentiated human primary cell types and described the role of the STEEL lncRNA in angiogenic patterning. We sought to further understand the role of EC-enriched lncRNAs in physiologic adaptation of the vascular endothelium. In this work, we describe an abundant, cytoplasmic, and EC-enriched lncRNA, GATA2-AS1, that is divergently transcribed from the EC-enriched developmental regulator, GATA2. While GATA2-AS1 is largely co-expressed with GATA2 in ECs, GATA2-AS1 and GATA2 appear to be complementary rather than synergistic as they have mostly distinct target genes. Common single nucleotide variants (SNVs) in GATA2-AS1 exons are associated with early onset coronary artery disease (CAD) and decreased expression of GATA2-AS1 in endothelial cell lines. In most cells, HIF1-α is central to the transcriptional response to hypoxia, while in ECs, both HIF1-α and HIF2-α are required to coordinate an acute and chronic response respectively. In this setting, GATA2-AS1 contributes to the "HIF switch" and augments HIF1-α induction in acute hypoxia to regulate HIF1-α/ HIF2-α balance. In hypoxia, GATA2-AS1 orchestrates HIF1-α-dependent induction of the glycolytic pathway, and HIF1-α-independent maintenance of mitochondrial biogenesis. Similarly, GATA2-AS1 coordinates both metabolism and "tip/stalk" cell signaling to regulate angiogenesis in hypoxic ECs. Furthermore, we find that GATA2-AS1 expression patterns are perturbed in atherosclerotic disease. Together, these results define a role for GATA2-AS1 in the EC-specific response to hypoxia.
Collapse
Affiliation(s)
- H S Jeffrey Man
- Institute of Medical Science, Toronto, Ontario, Canada; Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Department of Respirology, University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Noeline Subramaniam
- Institute of Medical Science, Toronto, Ontario, Canada; Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tiana Downs
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Aravin N Sukumar
- Institute of Medical Science, Toronto, Ontario, Canada; Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Aninda D Saha
- Institute of Medical Science, Toronto, Ontario, Canada; Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ranju Nair
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lucy Chen
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Teitelbaum
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul J Turgeon
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kyung Ha Ku
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eileen Tran
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Philip A Marsden
- Institute of Medical Science, Toronto, Ontario, Canada; Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
De Rosa S, Iaconetti C, Eyileten C, Yasuda M, Albanese M, Polimeni A, Sabatino J, Sorrentino S, Postula M, Indolfi C. Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. J Clin Med 2022; 11:jcm11020459. [PMID: 35054151 PMCID: PMC8777617 DOI: 10.3390/jcm11020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular system is largely exposed to the effect of changing flow conditions. Vascular cells can sense flow and its changes. Flow sensing is of pivotal importance for vascular remodeling. In fact, it influences the development and progression of atherosclerosis, controls its location and has a major influx on the development of local complications. Despite its importance, the research community has traditionally paid scarce attention to studying the association between different flow conditions and vascular biology. More recently, a growing body of evidence has been accumulating, revealing that ncRNAs play a key role in the modulation of several biological processes linking flow-sensing to vascular pathophysiology. This review summarizes the most relevant evidence on ncRNAs that are directly or indirectly responsive to flow conditions to the benefit of the clinician, with a focus on the underpinning mechanisms and their potential application as disease biomarkers.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Correspondence: (S.D.R.); (C.I.)
| | - Claudio Iaconetti
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Masakazu Yasuda
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Alberto Polimeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Correspondence: (S.D.R.); (C.I.)
| |
Collapse
|
9
|
Long Non-Coding RNA Regulation of Epigenetics in Vascular Cells. Noncoding RNA 2021; 7:ncrna7040062. [PMID: 34698214 PMCID: PMC8544676 DOI: 10.3390/ncrna7040062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
The vascular endothelium comprises the interface between the circulation and the vessel wall and, as such, is under the dynamic regulation of vascular signalling, nutrients, and hypoxia. Understanding the molecular drivers behind endothelial cell (EC) and vascular smooth muscle cell (VSMC) function and dysfunction remains a pivotal task for further clinical progress in tackling vascular disease. A newly emerging era in vascular biology with landmark deep sequencing approaches has provided us with the means to profile diverse layers of transcriptional regulation at a single cell, chromatin, and epigenetic level. This review describes the roles of major vascular long non-coding RNA (lncRNAs) in the epigenetic regulation of EC and VSMC function and discusses the recent progress in their discovery, detection, and functional characterisation. We summarise new findings regarding lncRNA-mediated epigenetic mechanisms—often regulated by hypoxia—within the vascular endothelium and smooth muscle to control vascular homeostasis in health and disease. Furthermore, we outline novel molecular techniques being used in the field to delineate the lncRNA subcellular localisation and interaction with proteins to unravel their biological roles in the epigenetic regulation of vascular genes.
Collapse
|
10
|
Subramaniam N, Nair R, Marsden PA. Epigenetic Regulation of the Vascular Endothelium by Angiogenic LncRNAs. Front Genet 2021; 12:668313. [PMID: 34512715 PMCID: PMC8427604 DOI: 10.3389/fgene.2021.668313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The functional properties of the vascular endothelium are diverse and heterogeneous between vascular beds. This is especially evident when new blood vessels develop from a pre-existing closed cardiovascular system, a process termed angiogenesis. Endothelial cells are key drivers of angiogenesis as they undergo a highly choreographed cascade of events that has both exogenous (e.g., hypoxia and VEGF) and endogenous regulatory inputs. Not surprisingly, angiogenesis is critical in health and disease. Diverse therapeutics target proteins involved in coordinating angiogenesis with varying degrees of efficacy. It is of great interest that recent work on non-coding RNAs, especially long non-coding RNAs (lncRNAs), indicates that they are also important regulators of the gene expression paradigms that underpin this cellular cascade. The protean effects of lncRNAs are dependent, in part, on their subcellular localization. For instance, lncRNAs enriched in the nucleus can act as epigenetic modifiers of gene expression in the vascular endothelium. Of great interest to genetic disease, they are undergoing rapid evolution and show extensive inter- and intra-species heterogeneity. In this review, we describe endothelial-enriched lncRNAs that have robust effects in angiogenesis.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Ranju Nair
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Philip A. Marsden
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Mao P, Liu X, Wen Y, Tang L, Tang Y. LncRNA SNHG12 regulates ox-LDL-induced endothelial cell injury by the miR-218-5p/IGF2 axis in atherosclerosis. Cell Cycle 2021; 20:1561-1577. [PMID: 34313533 PMCID: PMC8409753 DOI: 10.1080/15384101.2021.1953755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
Atherosclerosis (AS) is a cardiovascular disorder accompanied by endothelial dysfunction. Extensive evidence demonstrates the regulatory functions of long noncoding RNAs (lncRNAs) in cardiovascular disease, including AS. Here, the function of lncRNA small nucleolar RNA host gene 12 (SNHG12) in AS progression was investigated. A cell model of AS was established in human umbilical endothelial cells (HUVECs) using oxidative low-density lipoprotein (ox-LDL). CCK-8, flow cytometry, TUNEL, ELISA, and western blotting analyses were performed. Apolipoprotein E-deficient (apoE-/-) mice fed a Western diet were used as in vivo models of AS. RT-qPCR determined the levels of SNHG12, microRNA-218-5p (miR-218-5p) and insulin-like growth factor-II (IGF2). The molecular mechanisms were investigated using luciferase reporter and RNA pull-down assays. We found that SNHG12 and IGF2 expression levels were high and miR-218-5p expression levels were low in AS patients and ox-LDL-treated HUVECs. SNHG12 depletion attenuated ox-LDL-induced injury in HUVECs, whereas miR-218-5p suppression partially abated this effect. Moreover, IGF2 overexpression prevented the alleviative role of miR-218-5p in ox-LDL-treated HUVECs. SNHG12 upregulated IGF2 expression by sponging miR-218-5p. More importantly, SNHG12 increased proinflammatory cytokine production and augmented atherosclerotic lesions in vivo. Overall, SNHG12 promotes the development of AS by the miR-218-5p/IGF2 axis.
Collapse
Affiliation(s)
- Ping Mao
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xiaowei Liu
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yingzheng Wen
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Lijiang Tang
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yimin Tang
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Pelia R, Venkateswaran S, Matthews JD, Haberman Y, Cutler DJ, Hyams JS, Denson LA, Kugathasan S. Profiling non-coding RNA levels with clinical classifiers in pediatric Crohn's disease. BMC Med Genomics 2021; 14:194. [PMID: 34325702 PMCID: PMC8323253 DOI: 10.1186/s12920-021-01041-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Crohn's disease (CD) is a heritable chronic inflammatory disorder. Non-coding RNAs (ncRNAs) play an important role in epigenetic regulation by affecting gene expression, but can also directly affect protein function, thus having a substantial impact on biological processes. We investigated whether non-coding RNAs (ncRNA) at diagnosis are dysregulated during CD at different CD locations and future disease behaviors to determine if ncRNA signatures can serve as an index to outcomes. METHODS Using subjects belonging to the RISK cohort, we analyzed ncRNA from the ileal biopsies of 345 CD and 71 non-IBD controls, and ncRNA from rectal biopsies of 329 CD and 61 non-IBD controls. Sequence alignment was done (STAR package) using Human Genome version 38 (hg38) as reference panel. The differential expression (DE) analysis was performed with EdgeR package and DE ncRNAs were identified with a threshold of fold change (FC) > 2 and FDR < 0.05 after multiple test corrections. RESULTS In total, we identified 130 CD specific DE ncRNAs (89 in ileum and 41 in rectum) when compared to non-IBD controls. Similarly, 35 DE ncRNAs were identified between B1 and B2 in ileum, whereas no differences among CD disease behaviors were noticed in rectum. We also found inflammation specific ncRNAs between inflamed and non-inflamed groups in ileal biopsies. Overall, we observed that expression of mir1244-2, mir1244-3, mir1244-4, and RN7SL2 were increased during CD, regardless of disease behavior, location, or inflammatory status. Lastly, we tested ncRNA expression at baseline as potential tool to predict the disease status, disease behaviors and disease inflammation at 3-year follow up. CONCLUSIONS We have identified ncRNAs that are specific to disease location, disease behavior, and disease inflammation in CD. Both ileal and rectal specific ncRNA are changing over the course of CD, specifically during the disease progression in the intestinal mucosa. Collectively, our findings show changes in ncRNA during CD and may have a clinical utility in early identification and characterization of disease progression.
Collapse
Affiliation(s)
- Ranjit Pelia
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Jason D Matthews
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Yael Haberman
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Sheba Medical Center, Tel-HaShomer, Affiliated With the Tel-Aviv University, Tel-Aviv, Israel
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Lee A Denson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Tsilimigras DI, Bibli SI, Siasos G, Oikonomou E, Perrea DN, Filis K, Tousoulis D, Sigala F. Regulation of Long Non-Coding RNAs by Statins in Atherosclerosis. Biomolecules 2021; 11:biom11050623. [PMID: 33922114 PMCID: PMC8143454 DOI: 10.3390/biom11050623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Despite increased public health awareness, atherosclerosis remains a leading cause of mortality worldwide. Significant variations in response to statin treatment have been noted among different populations suggesting that the efficacy of statins may be altered by both genetic and environmental factors. The existing literature suggests that certain long noncoding RNAs (lncRNAs) might be up- or downregulated among patients with atherosclerosis. LncRNA may act on multiple levels (cholesterol homeostasis, vascular inflammation, and plaque destabilization) and exert atheroprotective or atherogenic effects. To date, only a few studies have investigated the interplay between statins and lncRNAs known to be implicated in atherosclerosis. The current review characterizes the role of lncRNAs in atherosclerosis and summarizes the available evidence related to the effect of statins in regulating lncRNAs.
Collapse
Affiliation(s)
- Diamantis I. Tsilimigras
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
- Correspondence: ; Tel.: +30-697-5683-212
| | - Sofia-Iris Bibli
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60323 Frankfurt am Main, Germany;
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Evangelos Oikonomou
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Despina N. Perrea
- Laboratory for Experimental Surgery and Surgical Research “N.S. Christeas”, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Konstantinos Filis
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
| | - Dimitrios Tousoulis
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Fragiska Sigala
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
| |
Collapse
|
14
|
Altered Long Noncoding RNA Expression Profile in Multiple Myeloma Patients with Bisphosphonate-Induced Osteonecrosis of the Jaw. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9879876. [PMID: 32714991 PMCID: PMC7354644 DOI: 10.1155/2020/9879876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Bisphosphonates (BPs) are inhibitors of osteoclast-mediated bone resorption used for the treatment of multiple myeloma (MM) patients with osteolytic lesions. Bisphosphonate-induced osteonecrosis of the jaw (BONJ) is an infrequent drug-caused adverse event of these agents. Long noncoding RNAs (lncRNAs) are a set of more than 200 base pairs, noncoding RNA molecules, which are critical posttranscriptional regulators of gene expression. Our study was aimed at evaluating 17 lncRNAs, whose targets were previously validated as key elements in MM, bone metabolism, and angiogenesis in MM subjects without BONJ (MM group), in MM subjects with BONJ (BONJ group), and a group of healthy controls (CTRL group). Our results demonstrated a different lncRNA profile in BONJ patients compared to MM patients and controls. Two lncRNAs (DANCR and MALAT1) were both downregulated compared to controls and MM, twelve (HOTAIR, MEG3, TP73-AS1, HOTTIP, HIF1A-AS2, MANTIS, CTD-2201E18, CTD1-2003C8, R-471B22, RP1-43E13, RP11-553L6.5, and RP1-286D6) were overexpressed in MM with BONJ, and one (H19) was upregulated compared with only MM. Two lncRNAs (JHDMD1 and MTMR9LP) had higher expression, but these differences were not statistically significant. The examined lncRNAs target several genes and metabolic pathways. An altered lncRNA signature could contribute to the onset of BONJ or have a protective action. Targeting these lncRNAs could offer a possibility for the prevention or therapy of BONJ.
Collapse
|
15
|
LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis 2020; 11:435. [PMID: 32513988 PMCID: PMC7280314 DOI: 10.1038/s41419-020-2645-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
Many studies have shown that long-noncoding RNA (lncRNA) is associated with cardiovascular disease, but its molecular mechanism is still unclear. In this study, we explored the role of lncRNA ANRIL in ox-LDL-induced phenotypic transition of human aortic smooth muscle cells (HASMC). The results of quantitative fluorescence PCR showed that the expression of ANRIL in patients with coronary atherosclerotic heart disease (CAD) was significantly higher than that in normal subjects. RNA-FISH detection showed that the ANRIL expression increased in HASMC treated by ox-LDL. Ox-LDL could upregulate the expression of ANRIL and ROS and promote the phenotypic transition of HASMC. After downregulation of ANRIL by siRNA, ROS level decreased and HASMC phenotypic transition alleviated. ANRIL could act as a molecular scaffold to promote the binding of WDR5 and HDAC3 to form WDR5 and HDAC3 complexes, they regulated target genes such as NOX1 expression by histone modification, upregulated ROS level and promote HASMC phenotype transition. Therefore, we found a new epigenetic regulatory mechanism for phenotype transition of VSMC, ANRIL was a treatment target of occlusive vascular diseases.
Collapse
|