1
|
Çiftçioğlu U, Kerget B, Akgün M. Differential diagnosis of chronic obstructive pulmonary disease and obesity hypoventilation syndrome in patients presenting with hypercapnic respiratory failure. Sleep Breath 2025; 29:201. [PMID: 40448870 DOI: 10.1007/s11325-025-03367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/11/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
PURPOSE The differential diagnosis of chronic obstructive pulmonary disease (COPD) and obesity hypoventilation syndrome (OHS) is important to avoid misdiagnosis and mistreatment. This study aimed to compare the laboratory and clinical findings of these two diseases. METHODS Patients who presented with hypercapnic respiratory failure and were hospitalized for at least 5 days were included. The patients' clinical findings and laboratory parameters at admission were compared. The STOP-Bang questionnaire and Berlin Sleep Questionnaire were used to evaluate risk of sleep apnea, and dyspnea was assessed with the modified Borg scale. Improvements in clinical and blood gas parameters during follow-up were also evaluated. RESULTS Patients with OHS had higher diastolic blood pressure, STOP-Bang scores, frequency of high apnea risk according to the Berlin Sleep Questionnaire, and frequency of pulmonary hypertension (PH) when compared with the COPD group (p = 0.01, < 0.001, < 0.001, and < 0.001, respectively). Waist circumference, triglyceride level, and frequency of metabolic syndrome were also higher in the OHS group (p < 0.001 for all). High Berlin Sleep Questionnaire score and body mass index (BMI) were significant discriminators for OHS, while the presence of bronchial obstruction was a discriminator for COPD. Evaluation of these three parameters together enabled differential diagnosis in 85% of cases. CONCLUSION Patients with OHS who present with hypercapnic respiratory failure may be misdiagnosed as having COPD because of the similar clinical pictures. Clinicians should consider OHS in patients with high BMI, increased risk of sleep apnea, and no obstructive findings on physical examination.
Collapse
Affiliation(s)
- Uğur Çiftçioğlu
- Department of Pulmonary Diseases, Ankara Etlik City Hospital, Ankara, 06170, Türkiye.
- Chest Disease Department, Ankara Etlik City Hospital, Ankara, 06170, Türkiye.
| | - Buğra Kerget
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, 25240, Türkiye
| | - Metin Akgün
- Department of Pulmonary Diseases, Ağrı İbrahim Çeçen University, Ağrı, Türkiye
| |
Collapse
|
2
|
Huang L, Xu J, Zhou H, Li H, Cao W, Pu J. NR1D1 mitigates IL-17a-induced small airway remodeling in biomass smoke-induced COPD. Toxicol Lett 2025; 409:74-86. [PMID: 40345267 DOI: 10.1016/j.toxlet.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Biomass smoke (BS) exposure is a critical environmental risk factor for Chronic Obstructive Pulmonary Disease (COPD). In this study, mechanisms of biomass smoke (BS)-induced small airway disease are explored, with a focus on the roles of Interleukin-17a (IL-17a) and Nuclear Receptor Subfamily 1 Group D Member 1 (NR1D1). METHODS This study included 20 BS exposure COPD (BS-COPD) patients and 13 controls, who underwent chest high-resolution computed tomography (HRCT) scans to assess emphysema and small airway disease. The control group was divided into a low- and high BS exposure control group. Serum IL-17a levels were measured. Wild-type and IL-17a-/- B6/C57 mice were exposed to wood smoke to establish a COPD model in mice. Airway pathology was evaluated by histological analysis. The effects of IL-17a and NR1D1 on cell proliferation of BEAS-2b cells exposed to wood smoke particulate matter 2.5 were assessed in vitro using flow cytometry and Western blotting. RESULTS HRCT revealed significantly higher small airway disease and emphysema in BS-COPD patients compared to controls (p < 0.01). Small airway disease exhibited the strongest negative correlation with FEV1%predicted (r = -0.61, p = 0.004). High-exposure control group showed significant BS Index correlations with small airway disease (r = 0.81, p = 0.049) and emphysema (r = 0.87, p = 0.025). Serum IL-17a levels correlated with small airway disease in BS-COPD (r = 0.48, p = 0.033). The mouse model demonstrated higher airway wall thickness and small airway disease in IL-17a-/- mice exposed to wood smoke. In vitro, IL-17a promoted BEAS-2b cell proliferation, an effect enhanced by NR1D1 downregulation. CONCLUSIONS BS exposure drives emphysema and small airway disease in non-COPD individuals. NR1D1 downregulation exacerbates IL-17a-mediated remodeling in vitro, suggesting therapeutic potential. TRIAL REGISTRATION ChiCTR-OOC-16008692.
Collapse
Affiliation(s)
- Lizhi Huang
- Department of Thoracic Surgery, the Peoples's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Juan Xu
- Intensive Care Unit (Panyu), the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongbin Zhou
- Reproductive Medical Center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weitao Cao
- Department of Respiratory and Critical Care Medicine, Guangzhou First People's Hospital, Guangzhou, China
| | - Jinding Pu
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Catana OM, Nemes AF, Cioboata R, Toma CL, Mitroi DM, Calarasu C, Streba CT. Leptin and Insulin in COPD: Unveiling the Metabolic-Inflammatory Axis-A Narrative Review. J Clin Med 2025; 14:2611. [PMID: 40283443 PMCID: PMC12027990 DOI: 10.3390/jcm14082611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and debilitating condition characterized by airflow limitations and systemic inflammation. The interaction between the metabolic and inflammatory pathways plays a key role in disease progression, with leptin and insulin emerging as pivotal metabolic regulators. Leptin, an adipokine that regulates energy homeostasis, and insulin, the primary regulator of glucose metabolism, are both altered in COPD patients. This narrative review provides an in-depth examination of the roles of leptin and insulin in COPD pathogenesis, focusing on the molecular mechanisms through which these metabolic regulators interact with inflammatory pathways and how their dysregulation contributes to a spectrum of extrapulmonary manifestations. These disturbances not only exacerbate COPD symptoms but also increase the risk of comorbidities such as metabolic syndrome, diabetes, cardiovascular disease, or muscle wasting. By exploring the underlying mechanisms of leptin and insulin dysregulation in COPD, this review underscores the significance of the metabolic-inflammatory axis, suggesting that restoring metabolic balance through leptin and insulin modulation could offer novel therapeutic strategies for improving clinical outcomes.
Collapse
Affiliation(s)
- Oana Maria Catana
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (O.M.C.); (D.M.M.)
| | | | - Ramona Cioboata
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| | - Claudia Lucia Toma
- Pneumology Department, University of Medicine Carol Davila, 020021 Bucharest, Romania
| | - Denisa Maria Mitroi
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (O.M.C.); (D.M.M.)
| | - Cristina Calarasu
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| | - Costin Teodor Streba
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| |
Collapse
|
4
|
Razia DEM, Gao C, Wang C, An Y, Wang F, Liu L, Lin H. Targeting Non-Eosinophilic Immunological Pathways in COPD and AECOPD: Current Insights and Therapeutic Strategies. Int J Chron Obstruct Pulmon Dis 2025; 20:511-532. [PMID: 40066199 PMCID: PMC11892741 DOI: 10.2147/copd.s506616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/23/2025] [Indexed: 05/13/2025] Open
Abstract
COPD is a multifactorial illness characterized by a long-term restriction of airflow and an inflammatory reaction in the lungs. The associated emphysema leads to the breakdown of alveolar proteins and abnormal expansion of the lung air spaces. Chronic bronchitis caused by the same disease can result in increased deposition of structural proteins, narrowing of the airways, and excessive mucus secretion leading to acute exacerbation of COPD (AECOPD). The most commonly prescribed medications for it, such as glucocorticoids and bronchodilators, provide important therapeutic benefits, but they also have negative side effects, including immunosuppression and infection. Therefore, it is necessary to develop medications for the treatment of COPD that specifically target the immune system and molecular components. This review focuses on non-eosinophilic aspects of immunological modulation in COPD management. Since, existing literature extensively covers eosinophilic inflammation, this review aims to fill the gap by examining alternative immunological pathways and their therapeutic implications. The findings suggest that targeting specific immune responses may enhance treatment efficacy while minimizing adverse effects associated with traditional therapies. In summary, this review emphasizes the importance of advancing research into non-eosinophilic immunological mechanisms in COPD, prescribing for the development of novel therapies that can more effectively manage this disease.
Collapse
Affiliation(s)
- Dur E Maknoon Razia
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Chencheng Gao
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Chao Wang
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yiming An
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, People’s Republic of China
- Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, People’s Republic of China
| | - Ling Liu
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hongqiang Lin
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, People’s Republic of China
- Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, People’s Republic of China
| |
Collapse
|
5
|
Matera MG, Calzetta L, Rinaldi B, de Novellis V, Page CP, Barnes PJ, Cazzola M. Animal models of chronic obstructive pulmonary disease and their role in drug discovery and development: a critical review. Expert Opin Drug Discov 2025:1-20. [PMID: 39939153 DOI: 10.1080/17460441.2025.2466704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The use of laboratory animals is essential to understand the mechanisms underlying COPD and to discover and evaluate new drugs. However, the complex changes associated with the disease in humans are difficult to fully replicate in animal models. AREAS COVERED This review examines the most recent literature on animal models of COPD and their implications for drug discovery and development. EXPERT OPINION Recent advances in animal models include the introduction of transgenic mice with an increased propensity to develop COPD-associated features, such as emphysema, and animals exposed to relevant environmental agents other than cigarette smoke, in particular biomass smoke and other air pollutants. Other animal species, including zebrafish, pigs, ferrets and non-human primates, are also increasingly being used to gain insights into human COPD. Furthermore, three-dimensional organoids and humanized mouse models are emerging as technologies for evaluating novel therapeutics in more human-like models. However, despite these advances, no model has yet fully captured the heterogeneity and progression of COPD as observed in humans. Therefore, further research is needed to develop improved models incorporating humanized elements in experimental animals, that may better predict therapeutic responses in clinic settings and accelerate the development of new treatments for this debilitating disease.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Vito de Novellis
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
6
|
Goswami R, Nagaraj H, Cicek YA, Nasim N, Mirza SS, Hassan MA, Mhaske R, Saravanan DM, Noonan C, Pham E, Mager J, Rotello VM. Polymer-siRNA nanovectors for treating lung inflammation. J Control Release 2025; 378:1092-1102. [PMID: 39730067 PMCID: PMC11830555 DOI: 10.1016/j.jconrel.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects. siRNA is a promising therapeutic modality for immune regulation. However, effective delivery of siRNA is challenged by issues related to cellular uptake and localization within tissues. This study investigates a series of guanidinium-functionalized polymers (Cn-Guan) designed to explore the effects of amphiphilicity on siRNA complexation and efficiency in vitro and in vivo. Nine polymers with varying side chain lengths (C3, C5, C7) and molecular weights (17 kDa, 30 kDa, 65 kDa) were synthesized, forming polyplexes with siRNA. Characterization revealed that C7-Guan/si_scr polymers exhibited the smallest polyplex sizes and the tightest complexation with siRNA. In vitro studies showed that 65 kDa polymers had the highest gene knockdown efficiency, with C3 and C5-Guan/si_TNF-α achieving ∼70 % knockdown, while C7-Guan/si_TNF-α achieved ∼30 %. In vivo, C7-Guan/Cy5-siRNA demonstrated the highest lung accumulation, and all polymers showed ∼70 % TNF-α knockdown with a low siRNA dosage (0.14 mg/kg) in a murine lung inflammation model. C7-Guan polymers, despite lower in vitro efficiency, were quite effective in vivo, potentially due to enhanced serum stability. These findings demonstrate that Cn-Guan/siRNA polyplexes are effective and safe for attenuating pulmonary inflammation and provide important insights for the development of future siRNA delivery vectors for lung disease treatment.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Nourina Nasim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarah S Mirza
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rukmini Mhaske
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Deepthika M Saravanan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Cedar Noonan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Edward Pham
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Di M, Niu F, Yang P, Zheng S, Yang B, Xiao Q, Shen H, Zhou S, Li S, Zhang Y, Long F. Integrated metabolomics and gut microbiota analysis to explore potential mechanism of Qi-Huo-Yi-Fei formula against chronic obstructive pulmonary disease. J Pharm Biomed Anal 2025; 252:116511. [PMID: 39383542 DOI: 10.1016/j.jpba.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Metabolic disorders and gut microbiota dysbiosis contribute to the complicated pathology of chronic obstructive pulmonary disease (COPD). Qi-Huo-Yi-Fei formula (QHYFF) is a Chinese medicine prescription for COPD treatment and has showed beneficial clinical effects, but the underlying mechanism remains elusive. This study integrated metabolomics and gut microbiota analysis to explore potential mechanism of QHYFF against COPD. The therapeutic effects of QHYFF were evaluated using a murine model of COPD induced by cigarette smoke and lipopolysaccharide. QHYFF effectively improved pulmonary function, suppressed inflammation, and relieved lung pathological changes. Serum and urine metabolomics analysis identified 19 differential metabolites, such as L-tyrosine, epinephrine, dopamine, hypotaurine, citric acid, L-tryptophan and indoleacrylic acid, involving tyrosine metabolism, taurine and hypotaurine metabolism, citrate cycle and tryptophan metabolism. QHYFF also enriched Bifidobacterium, Blautia, Faecalibaculum and Parasutterella. Moreover, Spearman's correlation analysis showed that discriminative metabolites and bacteria were closely correlated with efficacy indices. The findings indicated that QHYFF could be an effective therapeutic measure against COPD by regulating metabolism and gut microbiota.
Collapse
Affiliation(s)
- Miaomiao Di
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Fangbing Niu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Peng Yang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Shuting Zheng
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Bingyang Yang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Qingling Xiao
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hong Shen
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Shanshan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Songlin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Yeqing Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Fang Long
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
8
|
Li R, Deng H, Han Y, Tong Y, Hou Y, Huang T, Xiao M, Deng L, Zhao X, Chen Y, Feng P, Chen R, Yang Z, Qi H, Jia Z, Feng W. Therapeutic effects of Lianhua Qingke on COPD and influenza virus-induced exacerbation of COPD are associated with the inhibition of NF-κB signaling and NLRP3 inflammasome responses. Int Immunopharmacol 2024; 142:113213. [PMID: 39317049 DOI: 10.1016/j.intimp.2024.113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Lianhua Qingke (LHQK), a traditional Chinese medicine (TCM) used clinically for the treatment of respiratory diseases with acute tracheobronchitis, and cough, has demonstrated promising efficacy in suppressing inflammation, inhibitingmucin secretion, reducing goblet cell hyperplasia andmaintainingairway epithelial integrity. However, its efficacy in managing chronic obstructive pulmonary disease (COPD) progression, particularly virus-induced acute exacerbations of COPD (AECOPD),remains unclear. Here, cigarette smoke (CS)-induced COPD and CS+virus (influenza H1N1)-triggered AECOPD mouse models were employed to evaluated the therapeutic potential of LHQK. The findings demonstrated that LHQK treatment led to significant improved pulmonary function, suppressed pulmonary inflammation, alleviated lung histopathological changes, and preserved airway epithelial integrity in COPD mice. Additionally, LHQK treatment effectively inhibited viral replication in the lungs of AECOPD mice and decreased recruitment of immune cells (M1 macrophages, progenitor-exhausted T cells and CD8 + T cells) to the lungs. Western blot analysis indicated that the therapeutic effects of LHQK are associated with the inhibition ofNF-κB signaling and NLRP3 inflammasome activation. Collectively, these findings elucidate the underlying mechanisms by which LHQK mitigates COPD and AECOPD, thereby supporting its potential as a therapeutic option for individuals afflicted with these conditions.
Collapse
Affiliation(s)
- Runfeng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Huihuang Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Yu Han
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang Hebei 050031, China
| | - Yanan Tong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China
| | - Yunlong Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China
| | - Tao Huang
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Mengjie Xiao
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingzhu Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Xin Zhao
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yaorong Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Pei Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau
| | - Ruifeng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China; Guangzhou Laboratory, Guangzhou, Guangdong 510120, China
| | - Hui Qi
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China.
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China; Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, Hebei 050091, China.
| | - Wei Feng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China.
| |
Collapse
|
9
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. Emerging Anti-Inflammatory COPD Treatments: Potential Cardiovascular Impacts. Int J Chron Obstruct Pulmon Dis 2024; 19:2481-2495. [PMID: 39606712 PMCID: PMC11600434 DOI: 10.2147/copd.s498255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition often complicated by cardiovascular disease (CVD) due to shared inflammatory pathways. This review explores the cardiovascular impacts of emerging anti-inflammatory therapies in COPD. Phosphodiesterase (PDE) inhibitors may offer anti-inflammatory effects with improved lung function but pose potential risks for arrhythmias when PDE3 is inhibited although PDE4 inhibitors reduce cardiovascular events by improving endothelial function and reducing thrombosis. Similarly, p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) inhibitors target COPD-related inflammation and may benefit COPD patients with CVD. p38 MAPK inhibitors reduce cardiac fibrosis, enhance contractility and lower the risk of arrhythmia. PI3K inhibitors target the PI3K/Akt pathway, which drives atherosclerosis and cardiac fibrosis, and thus potentially mitigate both plaque instability and fibrosis. Biologic therapies, including monoclonal antibodies that inhibit IL-5, IL-13/IL-4, thymic stromal lymphopoietin, IL-33, and IL-17A, show promise in reducing exacerbations but require close cardiovascular monitoring due to their immunomodulatory effects. Single-target inhibitors of neutrophil elastase or matrix metalloproteinases show limited efficacy in COPD but may aid cardiovascular patients by stabilizing atherosclerotic plaques through promoting vascular smooth muscle cell proliferation. However, their tendency to degrade the extracellular matrix and attract immune cells may heighten plaque rupture risk, contraindicating use in CVD. Alpha-1 antitrypsin replacement therapy holds promise, potentially reducing COPD exacerbations and providing cardiovascular protection, especially in myocardial injury. Understanding the influence of these innovative therapies on CVD is vital, making it imperative to examine these molecules in COPD patients with CVD at an early stage.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome ‘tor Vergata’, Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome ‘tor Vergata’, Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania ‘luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
10
|
Carzaniga L, Linney ID, Rizzi A, Schmidt W, Knight CK, Mileo V, Amadei F, Pastore F, Miglietta D, Cesari N, Riccardi B, Mazzucato R, Ghidini E, Blackaby WP, Patacchini R, Battipaglia L, Villetti G, Puccini P, Catinella S, Civelli M, Rancati F. Discovery, Multiparametric Optimization, and Solid-State Driven Identification of CHF-6550, a Novel Soft Dual Pharmacology Muscarinic Antagonist and β 2 Agonist (MABA) for the Inhaled Treatment of Respiratory Diseases. J Med Chem 2024; 67:9816-9841. [PMID: 38857426 DOI: 10.1021/acs.jmedchem.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Clinical guidelines for COPD and asthma recommend inhaled β-adrenergic agonists, muscarinic antagonists, and, for frequent exacerbators, inhaled corticosteroids, with the challenge of combining them into a single device. The MABA (muscarinic antagonist and β2 agonist) concept has the potential to simplify this complexity while increasing the efficacy of both pharmacologies. In this article, we report the outcome of our solid-state driven back-up program that led to the discovery of the MABA compound CHF-6550. A soft drug approach was applied, aiming at high plasma protein binding and high hepatic clearance, concurrently with an early stage assessment of crystallinity through a dedicated experimental workflow. A new chemotype was identified, the diphenyl hydroxyacetic esters, able to generate crystalline material. Among this class, CHF-6550 demonstrated in vivo efficacy, suitability for dry powder inhaler development, favorable pharmacokinetics, and safety in preclinical settings and was selected as a back-up candidate, fulfilling the desired pharmacological and solid-state profile.
Collapse
Affiliation(s)
- Laura Carzaniga
- Medicinal Chemistry and Drug Discovery Technologies Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Ian D Linney
- Medicinal Chemistry Department, Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL, Essex United Kingdom
| | - Andrea Rizzi
- Medicinal Chemistry and Drug Discovery Technologies Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Wolfgang Schmidt
- Medicinal Chemistry Department, Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL, Essex United Kingdom
| | - Christopher K Knight
- Medicinal Chemistry Department, Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL, Essex United Kingdom
| | - Valentina Mileo
- Analytics and Early Formulations Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Francesco Amadei
- Analytics and Early Formulations Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Fiorella Pastore
- Pharmacology Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniela Miglietta
- Pharmacology Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Nicola Cesari
- Pharmacokinetics Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Benedetta Riccardi
- Pharmacokinetics Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Roberta Mazzucato
- Medicinal Chemistry and Drug Discovery Technologies Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Eleonora Ghidini
- Medicinal Chemistry and Drug Discovery Technologies Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Wesley P Blackaby
- Medicinal Chemistry Department, Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL, Essex United Kingdom
| | - Riccardo Patacchini
- AIR Franchise, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Loredana Battipaglia
- Safety and Toxicology Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gino Villetti
- Pharmacology Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Pharmacokinetics Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Catinella
- Analytics and Early Formulations Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Head of Global Research & Preclinical Development, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Fabio Rancati
- Medicinal Chemistry and Drug Discovery Technologies Department, Chiesi Farmaceutici S.p.A., Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
11
|
Banzato R, Pinheiro-Menegasso NM, Novelli FPRS, Olivo CR, Taguchi L, de Oliveira Santos S, Fukuzaki S, Teodoro WPR, Lopes FDTQS, Tibério IFLC, de Toledo-Arruda AC, Prado MAM, Prado VF, Prado CM. Alpha-7 Nicotinic Receptor Agonist Protects Mice Against Pulmonary Emphysema Induced by Elastase. Inflammation 2024; 47:958-974. [PMID: 38227123 DOI: 10.1007/s10753-023-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1β, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.
Collapse
Affiliation(s)
- Rosana Banzato
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Nathalia M Pinheiro-Menegasso
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | | | - Clarice R Olivo
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Laura Taguchi
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | - Stheffany de Oliveira Santos
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | - Silvia Fukuzaki
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Walcy Paganelli Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, FMUSP, São Paulo, Brazil
| | - Fernanda D T Q S Lopes
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Iolanda F L C Tibério
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marco Antônio M Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M Prado
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil.
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
12
|
Mardi A, Abdolmohammadi-Vahid S, Sadeghi SA, Jafarzadeh S, Abbaspour-Aghdam S, Hazrati A, Mikaeili H, Valizadeh H, Sadeghi A, Ahmadi M, Nadiri M. Nanocurcumin modulates Th17 cell responses in moderate and severe COPD patients. Heliyon 2024; 10:e30025. [PMID: 38737273 PMCID: PMC11088266 DOI: 10.1016/j.heliyon.2024.e30025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory process in the airways that results in airflow obstruction. It is mainly linked to cigarette smoke exposure. Th17 cells have a role in the pathogenesis of COPD by secreting pro-inflammatory cytokines, which cause hyperinflammation and progression of the disease. This study aimed to assess the potential therapeutic effects of nanocurcumin on the Th17 cell frequency and its responses in moderate and severe COPD patients. This study included 20 patients with severe COPD hospitalized in an intensive care unit (ICU) and 20 patients with moderate COPD. Th17 cell frequency, Th17-related factors gene expression (RAR-related orphan receptor t (RORγt), IL-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and serum levels of Th17-related cytokines were assessed before and after treatment in both placebo and nanocurcumin-treated groups using flow cytometry, real-time PCR, and ELISA, respectively. According to our findings, in moderate and severe nanocurcumin-treated COPD patients, there was a substantial reduction in the frequency of Th17 cells, mRNA expression, and cytokines secretion level of Th17-related factors compared to the placebo group. Furthermore, after treatment, the metrics mentioned above were considerably lower in the nanocurcumin-treated group compared to before treatment. Nanocurcumin has been shown to decrease the number of Th17 cells and their related inflammatory cytokines in moderate and severe COPD patients. As a result, it might be used as an immune-modulatory agent to alleviate the patient's inflammatory state.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sarvin Alizadeh Sadeghi
- Department of Internal Medicine, Clinical Research Development Center at Modarres Hospital, Tabriz of Medical Sciences, Tehran, Iran
| | - Sajad Jafarzadeh
- Department of Stem Cells and Developmental Biology, Cell Sciences Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Embryology Lab, East Azarbaijan ART Center, Tabriz, Iran
| | | | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Mikaeili
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Nadiri
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Ren H, Wu W, Chen J, Li Q, Wang H, Qian D, Guo S, Duan JA. Integrated serum metabolomics and network pharmacology analysis on the bioactive metabolites and mechanism exploration of Bufei huoxue capsule on chronic obstructive pulmonary disease rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117816. [PMID: 38286154 DOI: 10.1016/j.jep.2024.117816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufei Huoxue capsule (BHC) as a classic Chinese patent medicine formula, has the efficacy of tonifying the lungs and activating the blood. It has been extensively used in China for the treatment of chronic obstructive pulmonary disease (COPD) clinically. However, its mechanism is still unclear, which hampers the applications of BHC in treating COPD. AIM OF THE STUDY The purpose of the present study was to demonstrate the protective efficacy and mechanism of BHC on COPD model rats by integrating serum metabolomics analysis and network pharmacology study. MATERIALS AND METHODS A COPD rat model was established by cigarette fumigation combined with lipopolysaccharide (LPS) airway drip for 90 consecutive days. After oral administration for 30 days, the rats were placed in the body tracing box of the EMKA Small Animal Noninvasive Lung Function Test System to determine lung function related indexes. Histopathological alteration was observed by H&E staining and Masson staining. The serum levels of inflammatory cytokine, matrix metalloprotein 9, and laminin were determined by ELISA kits. Oxidative stress levels were tested by biochemical methods. UHPLC-Q-TOF/MS analysis of serum metabolomics and network pharmacology were performed to reveal the bioactive metabolites, key components and pathways for BHC treating COPD. WB and ELISA kits were used to verify the effects of BHC on key pathway. RESULTS BHC could improve lung function, immunity, lung histopathological changes and collagen deposition in COPD model rats. It also could significantly reduce inflammatory response in vivo, regulate oxidative stress level, reduce laminin content, and regulate protease-antiprotease balance. Metabolomics analysis found 46 biomarkers of COPD, of which BHC significantly improved the levels of 23 differential metabolites including arachidonic acid, leukotriene B4 and prostaglandin E2. Combined with the results of network pharmacology, the components of BHC, such as calycosin, oxypaeoniflora, (S)-bavachin and neobavaisoflavone could play therapeutic roles through the arachidonic acid pathway. In addition, the results of WB and ELISA indicated that BHC could suppress the expressions of COX2 and 5-LOX in lung tissues and inhibit the generation of AA and its metabolites in serum samples. Regulation of arachidonic acid metabolic pathway may be the crucial mechanism for BHC treating COPD. CONCLUSIONS In summary, the studies indicated that BHC exhibited the protective effect on COPD model rats by anti-inflammatory and anti-oxidative properties through arachidonic acid metabolism pathway. This study provided beneficial support for the applications of BHC in treating COPD.
Collapse
Affiliation(s)
- Hui Ren
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenxing Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangyan Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Quan Li
- Leiyunshang Pharmaceutical Co. Limited, Suzhou, 215003, China
| | - Hengbin Wang
- Leiyunshang Pharmaceutical Co. Limited, Suzhou, 215003, China
| | - Dawei Qian
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
15
|
Wen C, Yu Z, Wang J, Deng Q, Deng J, Sun Z, Ye Q, Ye Z, Qin K, Peng X. Inhalation of Citrus Reticulata essential oil alleviates airway inflammation and emphysema in COPD rats through regulation of macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117407. [PMID: 37981111 DOI: 10.1016/j.jep.2023.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory respiratory disease. Citrus Reticulata peel, the dried ripe peel of Citrus Reticulata species, has been found to have anti-inflammatory and cough attenuation effects. However, the therapeutic effects and its precise underlying mechanisms of atomizing inhalation using Citrus Reticulata essential oil (CREO) have not yet been fully elucidated. AIM OF THE STUDY The aim of this study was to assess the therapeutic effects of Citrus Reticulata essential oil and its associated anti-inflammatory mechanisms in COPD rat model. METHODS A total of 80 SD rats were randomized into four groups: control group (Con), COPD model group (COPD), COPD + ipratropium bromide (IB), and COPD + citrus reticulata essential oil (CREO). To induce COPD in rats, cigarette smoke (CS) exposure was used, while CREO and IB groups were administered through atomizing inhalation. The clinical signs, pathological lesions of the lung, percentages of antigen-presenting lung macrophages (CD11b/c+/CD86+ cells) and CD8+ T cells, and the content and mRNA expression of cytokines of the lung were analyzed. RESULTS The findings revealed that atomizing inhalation of Citrus reticulata essential oil had therapeutic effects on COPD rats. The treatment resulted in improvement in the body weight and mental status of COPD rats, reduced pathological injury of the lung, and increased proportion of CD11b/c+/CD86+ cells in lung macrophages, while also decreasing the number of CD8+ T cells. In addition, the Citrus Reticulata essential oil reduced the contents of IL-18, IL-17A, IL-12p70, and GM-CSF, downregulated the relative mRNA expression of IFN-γ, IL-4, and MMP-12, and upregulated the mRNA expression of IL-10. CONCLUSIONS Citrus reticulata essential oil can alleviate histological injury of the lung and regulate macrophages and CD8+ T cells in COPD rats. The study suggests that citrus reticulata essential oil could be a potential therapeutic agent for COPD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China
| | - Zhengqiang Yu
- Department of Technology, Sichuan Youngster Technology Co., Ltd, No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, China
| | - Juan Wang
- College of Culture and Education, Tianfu College of Swufe, Mianyang, 621000, China
| | - Qing Deng
- Department of Technology, Sichuan Youngster Technology Co., Ltd, No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, China
| | - Jiajia Deng
- Department of Technology, Sichuan Youngster Technology Co., Ltd, No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, China
| | - Zhenhua Sun
- Department of Technology, Sichuan Youngster Technology Co., Ltd, No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, China
| | - Qiaobo Ye
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhen Ye
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kaihua Qin
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China.
| |
Collapse
|
16
|
Faruqi MA, Khan MMKS, Mannino DM. Perspectives on Ensifentrine and Its Therapeutic Potential in the Treatment of COPD: Evidence to Date. Int J Chron Obstruct Pulmon Dis 2024; 19:11-16. [PMID: 38188891 PMCID: PMC10771716 DOI: 10.2147/copd.s385811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
Ensifentrine is a novel inhalational phosphodiesterase (PDE)3 and PDE4 inhibitor which improves bronchodilation and decreases inflammatory markers by acting locally on the bronchial tissue, with minimal systemic effects. Both preclinical and clinical trials have demonstrated benefits of this therapy, including improvement in lung function and reduction in exacerbations. This therapy is currently under review by the US Food and Drug Administration with a decision expected in 2024.
Collapse
Affiliation(s)
| | | | - David M Mannino
- University of Kentucky College of Medicine, Lexington, KY, USA
- COPD Foundation, Miami, FL, USA
| |
Collapse
|
17
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
18
|
Ruaro B, Pozzan R, Andrisano AG, Confalonieri M, Ambhore NS. Editorial: Evolution in respiratory pharmacology. Front Pharmacol 2023; 14:1329811. [PMID: 38044952 PMCID: PMC10691532 DOI: 10.3389/fphar.2023.1329811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Affiliation(s)
- Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, Trieste, Italy
| | - Riccardo Pozzan
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, Trieste, Italy
- Pulmonology Unit, Azienda Ospedaliera Santa Maria degli Angeli, Pordenone, Italy
| | - Alessia Giovanna Andrisano
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, Trieste, Italy
- Pulmonology Unit, Ospedale Civile di Gorizia, Gorizia, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, Trieste, Italy
| | | |
Collapse
|
19
|
de Jesus R, Hiesinger K, van Gemmeren M. Preparative Scale Applications of C-H Activation in Medicinal Chemistry. Angew Chem Int Ed Engl 2023; 62:e202306659. [PMID: 37283078 DOI: 10.1002/anie.202306659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
C-H activation is an attractive methodology to increase molecular complexity without requiring substrate prefunctionalization. In contrast to well-established cross-coupling methods, C-H activation is less explored on large scales and its use in the production of pharmaceuticals faces substantial hurdles. However, the inherent advantages, such as shorter synthetic routes and simpler starting materials, motivate medicinal chemists and process chemists to overcome these challenges, and exploit C-H activation steps for the synthesis of pharmaceutically relevant compounds. In this review, we will cover examples of drugs/drug candidates where C-H activation has been implemented on a preparative synthetic scale (range between 355 mg and 130 kg). The optimization processes will be described, and each example will be examined in terms of its advantages and disadvantages, providing the reader with an in-depth understanding of the challenges and potential of C-H activation methodologies in the production of pharmaceuticals.
Collapse
Affiliation(s)
- Rita de Jesus
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Kerstin Hiesinger
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
20
|
Zinellu A, Mangoni AA. Arginine, Transsulfuration, and Folic Acid Pathway Metabolomics in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:2180. [PMID: 37681911 PMCID: PMC10486395 DOI: 10.3390/cells12172180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative stress to guide management and identify new therapeutic targets in patients with chronic obstructive pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric, ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6, and vitamin B12) metabolic pathways and COPD. We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable COPD had significantly lower methionine (standardized mean difference, SMD = -0.50, 95% CI -0.95 to -0.05, p = 0.029) and folic acid (SMD = -0.37, 95% CI -0.65 to -0.09, p = 0.009), and higher homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014), and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the SMD of homocysteine was significantly associated with the biological matrix assessed and the forced expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or analytical method used. Our study suggests that the presence of significant alterations in metabolites within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO registration number: CRD42023448036.).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
21
|
Anzueto A, Barjaktarevic IZ, Siler TM, Rheault T, Bengtsson T, Rickard K, Sciurba F. Ensifentrine, a Novel Phosphodiesterase 3 and 4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease: Randomized, Double-Blind, Placebo-controlled, Multicenter Phase III Trials (the ENHANCE Trials). Am J Respir Crit Care Med 2023; 208:406-416. [PMID: 37364283 PMCID: PMC10449067 DOI: 10.1164/rccm.202306-0944oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
Rationale: Ensifentrine is a novel, selective, dual phosphodiesterase (PDE)3 and PDE4 inhibitor with bronchodilator and antiinflammatory effects. Replicate phase III trials of nebulized ensifentrine were conducted (ENHANCE-1 and ENHANCE-2) to assess these effects in patients with chronic obstructive pulmonary disease (COPD). Objectives: To evaluate the efficacy of ensifentrine compared with placebo for lung function, symptoms, quality of life, and exacerbations in patients with COPD. Methods: These phase III, multicenter, randomized, double-blind, parallel-group, placebo-controlled trials were conducted between September 2020 and December 2022 at 250 research centers and pulmonology practices in 17 countries. Patients aged 40-80 years with moderate to severe symptomatic COPD were enrolled. Measurements and Main Results: Totals of 760 (ENHANCE-1) and 789 (ENHANCE-2) patients were randomized and treated, with 69% and 55% receiving concomitant long-acting muscarinic antagonists or long-acting β2-agonists, respectively. Post-bronchodilator FEV1 percentage predicted values were 52% and 51% of predicted normal. Ensifentrine treatment significantly improved average FEV1 area under the curve at 0-12 hours versus placebo (ENHANCE-1, 87 ml [95% confidence interval, 55, 119]; ENHANCE-2, 94 ml [65, 124]; both P < 0.001). Ensifentrine treatment significantly improved symptoms (Evaluating Respiratory Symptoms) and quality of life (St. George's Respiratory Questionnaire) versus placebo at Week 24 in ENHANCE-1 but not in ENHANCE-2. Ensifentrine treatment reduced the rate of moderate or severe exacerbations versus placebo over 24 weeks (ENHANCE-1, rate ratio, 0.64 [0.40, 1.00]; P = 0.050; ENHANCE-2, rate ratio, 0.57 [0.38, 0.87]; P = 0.009) and increased time to first exacerbation (ENHANCE-1, hazard ratio, 0.62 [0.39, 0.97]; P = 0.038; ENHANCE-2, hazard ratio, 0.58 [0.38, 0.87]; P = 0.009). Adverse event rates were similar to those for placebo. Conclusions: Ensifentrine significantly improved lung function in both trials, with results supporting exacerbation rate and risk reduction in a broad COPD population and in addition to other classes of maintenance therapies. Clinical trial registered with www. CLINICALTRIALS gov and EudraCT (ENHANCE-1, www. CLINICALTRIALS gov identifier NCT04535986, EudraCT identifier 2020-002086-34; ENHANCE-2, www. CLINICALTRIALS gov identifier NCT04542057, EudraCT identifier 2020-002069-32).
Collapse
Affiliation(s)
- Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, Texas
- University of Texas Health, San Antonio, Texas
| | - Igor Z. Barjaktarevic
- Division of Pulmonary and Critical Care, University of California, Los Angeles, Los Angeles, California
| | | | | | | | | | - Frank Sciurba
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Donohue JF, Rheault T, MacDonald-Berko M, Bengtsson T, Rickard K. Ensifentrine as a Novel, Inhaled Treatment for Patients with COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1611-1622. [PMID: 37533771 PMCID: PMC10392818 DOI: 10.2147/copd.s413436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Ensifentrine is a novel, potent, and selective dual inhibitor of phosphodiesterase (PDE)3 and PDE4 designed for delivery by inhalation that combines effects on airway inflammation, bronchodilation and ciliary function in bronchial epithelia. In Phase 2 studies in subjects with COPD, ensifentrine demonstrated clinically meaningful bronchodilation and improvements in symptoms and health-related quality of life when administered alone or in combination with current standard of care therapies. Ensifentrine is currently in late-stage clinical development for the maintenance treatment of patients with COPD. This review summarizes non-clinical data as well as Phase 1 and Phase 2 efficacy and safety results of nebulized ensifentrine relevant to the maintenance treatment of patients with COPD.
Collapse
Affiliation(s)
- James F Donohue
- Division of Pulmonary and Critical Care Medicine, University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
23
|
Laitano R, Calzetta L, Cavalli F, Cazzola M, Rogliani P. Delivering monoclonal antibodies via inhalation: a systematic review of clinical trials in asthma and COPD. Expert Opin Drug Deliv 2023; 20:1041-1054. [PMID: 37342873 DOI: 10.1080/17425247.2023.2228681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Advances in understanding the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD) led to investigation of biologic drugs targeting specific inflammatory pathways. No biologics are licensed for COPD while all the approved monoclonal antibodies (mAbs) for severe asthma treatment are systemically administered. Systemic administration is associated with low target tissue exposure and risk of systemic adverse events. Thus, delivering mAbs via inhalation may be an attractive approach for asthma and COPD treatment due to direct targeting of the airways. AREAS COVERED This systematic review of randomized control trials (RCTs) evaluated the potential role of delivering mAbs via inhalation in asthma and COPD treatment. Five RCTs were deemed eligible for a qualitative analysis. EXPERT OPINION Compared to systemic administration, delivering mAbs via inhalation is associated with rapid onset of action, greater efficacy at lower doses, minimal systemic exposure, and lower risk of adverse events. Although some of the inhaled mAbs included in this study showed a certain level of efficacy and safety in asthmatic patients, delivering mAbs via inhalation is still challenging and controversial. Further adequately powered and well-designed RCTs are needed to assess the potential role of inhaled mAbs in the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Rossella Laitano
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
24
|
Cazzola M, Hanania NA, Page CP, Matera MG. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1333-1352. [PMID: 37408603 PMCID: PMC10318108 DOI: 10.2147/copd.s419056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Airway inflammation, driven by different types of inflammatory cells and mediators, plays a fundamental role in COPD and its progression. Neutrophils, eosinophils, macrophages, and CD4+ and CD8+ T lymphocytes are key players in this process, although the extent of their participation varies according to the patient's endotype. Anti-inflammatory medications may modify the natural history and progression of COPD. However, since airway inflammation in COPD is relatively resistant to corticosteroid therapy, innovative pharmacological anti-inflammatory approaches are required. The heterogeneity of inflammatory cells and mediators in annethe different COPD endo-phenotypes requires the development of specific pharmacologic agents. Indeed, over the past two decades, several mechanisms that influence the influx and/or activity of inflammatory cells in the airways and lung parenchyma have been identified. Several of these molecules have been tested in vitro models and in vivo in laboratory animals, but only a few have been studied in humans. Although early studies have not been encouraging, useful information emerged suggesting that some of these agents may need to be further tested in specific subgroups of patients, hopefully leading to a more personalized approach to treating COPD.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
25
|
Matera MG, Hanania NA, Maniscalco M, Cazzola M. Pharmacotherapies in Older Adults with COPD: Challenges and Opportunities. Drugs Aging 2023:10.1007/s40266-023-01038-0. [PMID: 37316689 DOI: 10.1007/s40266-023-01038-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Older adults have a higher prevalence of chronic obstructive pulmonary disease (COPD), which will likely increase substantially in the coming decades owing to aging populations and increased long-term exposure to risk factors for this disease. COPD in older adults is characterized by low-grade chronic systemic inflammation, known as inflamm-aging. It contributes substantially to age-associated pulmonary changes that are clinically expressed by reduced lung function, poor health status, and limitations in activities of daily living. In addition, inflamm-aging has been associated with the onset of many comorbidities commonly encountered in COPD. Furthermore, physiologic changes that are often seen with aging can influence the optimal treatment of older patients with COPD. Therefore, variables such as pharmacokinetics, pharmacodynamics, polypharmacy, comorbidities, adverse drug responses, drug interactions, method of administration, and social and economic issues that impact nutrition and adherence to therapy must be carefully evaluated when prescribing medication to these patients because each of them alone or together may affect the outcome of treatment. Current COPD medications focus mainly on alleviating COPD-related symptoms, so alternative treatment approaches that target the disease progression are being investigated. Considering the importance of inflamm-aging, new anti-inflammatory molecules are being evaluated, focusing on inhibiting the recruitment and activation of inflammatory cells, blocking mediators of inflammation thought to be important in the recruitment or activation of these inflammatory cells or released by these cells. Potential therapies that may slow the aging processes by acting on cellular senescence, blocking the processes that cause it (senostatics), eliminating senescent cells (senolytics), or targeting the ongoing oxidative stress seen with aging need to be evaluated.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
26
|
Plichta J, Kuna P, Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: recent developments and future perspectives. Front Immunol 2023; 14:1207641. [PMID: 37334374 PMCID: PMC10272527 DOI: 10.3389/fimmu.2023.1207641] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic inflammatory diseases of the lung are some of the leading causes of mortality and significant morbidity worldwide. Despite the tremendous burden these conditions put on global healthcare, treatment options for most of these diseases remain scarce. Inhaled corticosteroids and beta-adrenergic agonists, while effective for symptom control and widely available, are linked to severe and progressive side effects, affecting long-term patient compliance. Biologic drugs, in particular peptide inhibitors and monoclonal antibodies show promise as therapeutics for chronic pulmonary diseases. Peptide inhibitor-based treatments have already been proposed for a range of diseases, including infectious disease, cancers and even Alzheimer disease, while monoclonal antibodies have already been implemented as therapeutics for a range of conditions. Several biologic agents are currently being developed for the treatment of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and pulmonary sarcoidosis. This article is a review of the biologics already employed in the treatment of chronic inflammatory pulmonary diseases and recent progress in the development of the most promising of those treatments, with particular focus on randomised clinical trial outcomes.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
27
|
Jeon T, Luther DC, Goswami R, Bell C, Nagaraj H, Anil Cicek Y, Huang R, Mas-Rosario JA, Elia JL, Im J, Lee YW, Liu Y, Scaletti F, Farkas ME, Mager J, Rotello VM. Engineered Polymer-siRNA Polyplexes Provide Effective Treatment of Lung Inflammation. ACS NANO 2023; 17:4315-4326. [PMID: 36802503 PMCID: PMC10627429 DOI: 10.1021/acsnano.2c08690] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.
Collapse
Affiliation(s)
- Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Charlotte Bell
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Javier A. Mas-Rosario
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
| | - James L. Elia
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungkyun Im
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Michelle E. Farkas
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
28
|
Matera MG, Calzetta L, Cazzola M, Ora J, Rogliani P. Biologic therapies for chronic obstructive pulmonary disease. Expert Opin Biol Ther 2023; 23:163-173. [PMID: 36527286 DOI: 10.1080/14712598.2022.2160238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a disorder characterized by a complicated chronic inflammatory response that is resistant to corticosteroid therapy. As a result, there is a critical need for effective anti-inflammatory medications to treat people with COPD. Using monoclonal antibodies (mAbs) to inhibit cytokines and chemokines or their receptors could be a potential approach to treating the inflammatory component of COPD. AREAS COVERED The therapeutic potential that some of these mAbs might have in COPD is reviewed. EXPERT OPINION No mAb directed against cytokines or chemokines has shown any therapeutic impact in COPD patients, apart from mAbs targeting the IL-5 pathway that appear to have statistically significant, albeit weak, effect in patients with eosinophilic COPD. This may reflect the complexity of COPD, in which no single cytokine or chemokine has a dominant role. Because the umbrella term COPD encompasses several endotypes with diverse underlying processes, mAbs targeting specific cytokines or chemokines should most likely be evaluated in limited and focused populations.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| |
Collapse
|
29
|
Yu HH, Chen YC, Su HP, Chen L, Chen HH, Lin KYA, Lin CH. Comparative pulmonary toxicity assessment of tungsten trioxide and tungsten trioxide hydrate nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158885. [PMID: 36169020 DOI: 10.1016/j.scitotenv.2022.158885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Tungsten trioxide (WO3)-based nanoparticles (NPs) are gaining popularity because of their exciting potential for photocatalytic applications; however, the toxic potential of WO3-based NPs remains a concern. In this study, we evaluated the toxic risk of WO3 NPs and hydrated WO3 NPs (WO3·H2O NPs) using lung cells and explored the underlying mechanism. WO3 NPs and WO3·H2O NPs significantly decreased the number of viable cells (59.5 %-85.8 % of control) and promoted apoptosis in human alveolar basal epithelial A549 cells after a 24-h exposure. Both WO3 NPs and WO3·H2O NPs reduced the expression of heme oxygenase-1 (0.15-0.33 folds of control) and superoxide dismutase 2 (0.31-0.66 folds of control) and increased reactive oxygen species production (1.4-2.6 folds of control) and 8-hydroxy-2'-deoxyguanosine accumulation (1.22-1.43 folds of control). The results showed that WO3 NPs have higher cytotoxicity and oxidative potential than WO3·H2O NPs. In addition, the WO3 NP cellular uptake rate was significantly higher than the WO3·H2O NPs uptake rate in pulmonary cells. The greater extent of oxidative adverse effects induced by WO3-based NPs appears to be related to the enhanced particle uptake. WO3 NPs and WO3·H2O NPs exposure led to the secretion of inflammatory factor interleukin 6 (1.63-3.42 folds of control). Decreases in serpin family A member 1 gene expression (0.28-0.58 folds of control) and increases in the oxidation of neutrophil elastase inhibitor (1.34-1.62 folds of control) in pulmonary cells also suggest that exposure to WO3 NPs and WO3·H2O NPs raises the risk of developing chronic obstructive pulmonary disease. Taken together, our findings indicate that the toxic risk of WO3 NPs and WO3·H2O NPs must be considered when manufacturing and applying WO3-based NPs.
Collapse
Affiliation(s)
- Hsin Her Yu
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Han-Pang Su
- Third Research Division, Taiwan Research Institute, New Taipei City 251030, Taiwan
| | - Liliang Chen
- Johnson & Johnson Medical (Suzhou) Ltd., Suzhou 215126, China
| | - Hung-Hsiang Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
30
|
Analysis of the Clinical Efficacy and Molecular Mechanism of Xuefu Zhuyu Decoction in the Treatment of COPD Based on Meta-Analysis and Network Pharmacology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2615580. [PMID: 36479314 PMCID: PMC9720234 DOI: 10.1155/2022/2615580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is becoming a major public health burden worldwide. It is urgent to explore more effective and safer treatment strategy for COPD. Notably, Xuefu Zhuyu Decoction (XFZYD) is widely used to treat respiratory system diseases, including COPD, in China. Objective This study is aimed at comprehensively evaluating the therapeutic effects and molecular mechanism of XFZYD on COPD. Methods Original clinical studies were searched from eight literature databases. Meta-analysis was conducted using the Review Manager software (version 5.4.1). Network pharmacology and molecular docking experiments were utilized to explore the mechanisms of action of XFZYD. Results XFZYD significantly enhanced the efficacy of clinical treatment and improved the pulmonary function and hypoventilation of COPD patients. In addition, XFZYD significantly improved the hypercoagulability of COPD patients. The subgroup analysis suggested that XFZYD exhibited therapeutic effects on both stable and acute exacerbation of COPD. XFZYD exerted its therapeutic effects on COPD through multicomponent, multitarget, and multipathway characteristics. The intervention of the PI3K-AKT pathway may be the critical mechanism. Conclusion The application of XFZYD based on symptomatic relief and supportive treatment is a promising clinical decision. More preclinical and clinical studies are still needed to evaluate the safety and therapeutic effects of long-term use of XFZYD on COPD.
Collapse
|
31
|
Effect of Endurance Training in COPD Patients Undergoing Pulmonary Rehabilitation: A Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4671419. [PMID: 36118836 PMCID: PMC9473914 DOI: 10.1155/2022/4671419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Background The efficacy of endurance training (ET) on patients with chronic obstructive pulmonary disease (COPD) has been controversial. This study was aimed at meta-analyzing the effect of ET in COPD patients undergoing pulmonary rehabilitation. Methods The literature retrieval was performed in databases to screen relevant literature. Inclusion criteria were as follows: (1) subjects—COPD patients; (2) inclusion of interventional and control groups; (3) intervention measures—the interventional group received whole-body ET and other lung rehabilitation training, while the control group did not receive intervention or other lung rehabilitation training; (4) outcome indicators which included at least one of the following—6MWD, modified Medical Research Council questionnaire (mMRC), and COPD Assessment Test (CAT); and (5) study type—randomized controlled trials (RCTs). The Cochrane risk-of-bias tool was used to assess the risk of bias. The chi-square test was used to evaluate the magnitude of heterogeneity. Subgroup analysis was used to explore the source of heterogeneity. A funnel plot and Egger's test were used to evaluate publication bias. Results The 6MWD in the ET group was significantly higher than that in the control group (MD = 47.20, 95% CI [28.60, 65.79], P < 0.00001). Significant heterogeneity (P < 0.00001, I2 = 76%) without publication bias (P > 0.05) was noted. Subgroup analysis showed that the 6MWD of the ET group was significantly larger than that of the control group without heterogeneity (P = 0.63, I2 = 0%; P = 0.59, I2 = 0%) in both the no training subgroup (MD = 79.26, 95% CI [72.69, 85.82], P < 0.00001) and other rehabilitation training group (MD = 23.64, 95% CI [6.70, 40.57], P = 0.006). The mMRC score (MD = −0.72, 95% CI [-1.09, -0.34], P = 0.002) and CAT (MD = −6.07, 95% CI [-7.28, -4.87], P < 0.00001) of the ET group were significantly lower than those of the control group. There was no heterogeneity (P = 0.32, I2 = 15%; P = 0.16, I2 = 41%). Conclusion ET can improve patients' motor function and reduce dyspnea. ET might be incorporated as an important part of lung rehabilitation training.
Collapse
|
32
|
Carzaniga L, Linney ID, Rizzi A, Delcanale M, Schmidt W, Knight CK, Pastore F, Miglietta D, Carnini C, Cesari N, Riccardi B, Mileo V, Venturi L, Moretti E, Blackaby WP, Patacchini R, Accetta A, Biagetti M, Bassani F, Tondelli M, Murgo A, Battipaglia L, Villetti G, Puccini P, Catinella S, Civelli M, Rancati F. Discovery of Clinical Candidate CHF-6366: A Novel Super-soft Dual Pharmacology Muscarinic Antagonist and β 2 Agonist (MABA) for the Inhaled Treatment of Respiratory Diseases. J Med Chem 2022; 65:10233-10250. [PMID: 35901125 DOI: 10.1021/acs.jmedchem.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of molecules embedding two distinct pharmacophores acting as muscarinic antagonists and β2 agonists (MABAs) promises to be an excellent opportunity to reduce formulation issues and boost efficacy through cross-talk and allosteric interactions. Herein, we report the results of our drug discovery campaign aimed at improving the therapeutic index of a previous MABA series by exploiting the super soft-drug concept. The incorporation of a metabolic liability, stable at the site of administration but undergoing rapid systemic metabolism, to generate poorly active and quickly eliminated fragments was pursued. Our SAR studies yielded MABA 29, which demonstrated a balanced in vivo profile up to 24 h, high instability in plasma and the liver, as well as sustained exposure in the lung. In vitro safety and non-GLP toxicity studies supported the nomination of 29 (CHF-6366) as a clinical candidate, attesting to the successful development of a novel super-soft MABA compound.
Collapse
Affiliation(s)
- Laura Carzaniga
- Chemistry Research and Drug Design Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Ian D Linney
- Medicinal Chemistry Department, Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL Essex, United Kingdom
| | - Andrea Rizzi
- Chemistry Research and Drug Design Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Delcanale
- Chemistry Research and Drug Design Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Wolfgang Schmidt
- Medicinal Chemistry Department, Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL Essex, United Kingdom
| | - Christopher K Knight
- Medicinal Chemistry Department, Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL Essex, United Kingdom
| | - Fiorella Pastore
- Pharmacology Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniela Miglietta
- Pharmacology Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Chiara Carnini
- Project Leader, Corporate Drug Development, Chiesi Farmaceutici S.p.A Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Nicola Cesari
- Pharmacokinetics Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Benedetta Riccardi
- Pharmacokinetics Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Mileo
- Analytics and Early Formulation Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Luca Venturi
- Analytics and Early Formulation Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Elisa Moretti
- Analytics and Early Formulation Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Wesley P Blackaby
- Medicinal Chemistry Department, Charles River, Chesterford Research Park, Saffron Walden, CB10 1XL Essex, United Kingdom
| | - Riccardo Patacchini
- Project Leader, Corporate Drug Development, Chiesi Farmaceutici S.p.A Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alessandro Accetta
- Chemistry Research and Drug Design Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Matteo Biagetti
- Chemistry Research and Drug Design Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Franco Bassani
- Pharmacology Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Marina Tondelli
- Pharmacology Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Annalisa Murgo
- Pharmacology Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Loredana Battipaglia
- Safety & Toxicology Department, Chiesi Farmaceutici S.p.A Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gino Villetti
- Pharmacology Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Pharmacokinetics Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Catinella
- Analytics and Early Formulation Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Head of Global Research & Preclinical Development, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - Fabio Rancati
- Chemistry Research and Drug Design Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
33
|
Effects of Roflumilast on Patients with Chronic Obstructive Pulmonary Disease Treated with Inhaled Corticosteroid/Long-Acting β2 Agonist: A Meta-analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8101099. [PMID: 35915771 PMCID: PMC9338846 DOI: 10.1155/2022/8101099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
Objective Roflumilast is a novel therapeutic drug for chronic obstructive pulmonary disease (COPD). This study was designed to evaluate the efficacy and safety of roflumilast combining inhaled corticosteroid (ICS)/long-acting β2 agonist (LABA) in treating COPD patients through the meta-analysis. Methods Randomized controlled trials of roflumilast combining ICS/LABA in treating patients with severe and profound COPD were searched from PubMed, Cochrane Library, and Embase databases from their establishment to February 2022. The quality of included studies was assessed by Cochrane risk bias assessment tool. The main outcomes of these studies should include at least one of the following clinical outcome indicators: forced expiratory volume in one second (FEV1), exacerbation rate, and adverse events (AEs) such as diarrhea, nasopharyngitis, and headache. Results Six articles were included in the study, including 9,715 patients. Meta-analysis revealed that compared with placebo, roflumilast gained superiority for severe COPD patients treated with ICS/LABA combinations in FEV1 before bronchodilator administration (MD = 46.62, 95% CI (30.69, 62.55), P < 0.00001), FEV1 after bronchodilator administration (MD = 45.62, 95% CI (34.95, 56.28), P < 0.00001), and COPD exacerbation rate (RR = 0.90, 95% CI (0.87, 0.94), P = 0.001). In terms of safety, the incidence of diarrhea, headache, nausea, weight loss, back pain, loss of appetite, and insomnia was notably higher in the roflumilast group than in the placebo group. Conclusion Roflumilast is suggested to be significantly effective for severe COPD patients with ICS/LABA combination therapy, which reduces the exacerbation rate but also leads to PDE4 inhibitor-related adverse reactions.
Collapse
|
34
|
The Efficacy and Safety of Xinjia Xuanbai Chengqi Granules in Acute Exacerbation of COPD: A Multicentre, Randomised, Double-Blind, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7366320. [PMID: 35783528 PMCID: PMC9246576 DOI: 10.1155/2022/7366320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Purpose The study aimed to explore the efficacy and safety of Xinjia Xuanbai Chengqi granules (XJXBCQ) combined with conventional medicine in the treatment of acute exacerbation of chronic pulmonary disease (AECOPD). Patients and Methods. This multicentre, double-blind, parallel, placebo-controlled, randomised clinical trial conducted in China from January 2019 to February 2021 recruited 330 participants who were allocated into three groups. All participants underwent conventional basic treatment with oxygen therapy, antibiotics, and a bronchodilator. Besides, group A received XJXBCQ granules and budesonide suspension for inhalation; group B received XJXBCQ granules and half dosage of budesonide suspension; and group C received budesonide suspension and a placebo. All therapies lasted for 5 days, and participants were followed up for 30 days after discharge. The primary outcomes were efficacy, traditional Chinese medicine (TCM) syndrome score, and clinical symptom score. Secondary outcomes included the blood gas analysis, serum inflammatory markers, adverse events, mortality, theoretical discharge time, actual hospitalisation time, proportion of patients requiring invasive mechanical ventilation, proportion of patients transferred to an intensive care unit (ICU), and readmission rate within 30 days after discharge. Results XJXBCQ adjunct with conventional treatment could significantly improve the total efficacy (P < 0.05). Meanwhile, group A showed significantly better results than group C in the TCM syndrome score, phlegm score, and Wexner constipation score (P < 0.05). For modified British medical research council (mMRC), on day 3 (−0.17, 95% confidence interval [CI]: −0.33–−0.01) and day 4 (−0.20, 95% CI: −0.39–−0.02), group A performed statistically better than group C. No significant differences in other secondary outcomes were detected. Conclusion XJXBCQ is beneficial and safe for AECOPD treatment and could be considered an adjunctive therapy for promoting the relief of clinical symptoms. This trial is registered with ChiCTR1800016915.
Collapse
|
35
|
Cazzola M, Ora J, Calzetta L, Rogliani P, Matera MG. The future of inhalation therapy in chronic obstructive pulmonary disease. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100092. [PMID: 35243334 PMCID: PMC8866667 DOI: 10.1016/j.crphar.2022.100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
Abstract
The inhaled route is critical for the administration of drugs to treat patients suffering from COPD, but there is still an unmet need for new and innovative inhalers to address some limitations of existing products that do not make them suitable for many COPD patients. The treatment of COPD, currently limited to the use of bronchodilators, corticosteroids, and antibiotics, requires a significant expansion of the therapeutic armamentarium that is closely linked to the widening of knowledge on the pathogenesis and evolution of COPD. The great interest in the development of new drugs that may be able to interfere in the natural history of the disease is leading to the synthesis of numerous new molecules, of which however only a few have entered the stages of clinical development. On the other hand, further improvement of inhaled drug delivery could be an interesting possibility because it targets the organ of interest directly, requires significantly less drug to exert the pharmacological effect and, by lowering the amount of drug needed, reduces the cost of therapy. Unfortunately, however, the development of new inhaled drugs for use in COPD is currently too slow.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Maria Gabriella Matera
- Pharmacology Unit, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
36
|
Ke L, Chen L, Yaling Y, Can G, Jun L, Chuan Z. Investigation on the Pathological Mechanism of Frequent Exacerbators With Chronic Obstructive Pulmonary Disease Based on the Characteristics of Respiratory Flora. Front Med (Lausanne) 2022; 8:816802. [PMID: 35127772 PMCID: PMC8811034 DOI: 10.3389/fmed.2021.816802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common obstructive respiratory disease characterized by persistent respiratory symptoms and limited airflow due to airway obstruction. The present study investigates the distribution characteristics of respiratory tract flora in both frequent and infrequent exacerbators of COPD. The 16S sequencing technique was adopted to differentiate the inherent differences of respiratory tract flora between frequent exacerbators and infrequent exacerbators. Additionally, cell counting kit 8 (CCK8), lactate dehydrogenase (LDH) test, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and western blot were carried out in human bronchial epithelial cells cultured in vitro and the regulatory effects of differential flora were verified. The results revealed that the observed species index, Chao1 index, and the ACE estimator of COPD frequent exacerbators were markedly higher than those of COPD infrequent exacerbators. The top five strains of COPD frequent exacerbators included g_Streptococcus (15.565%), g_Prevotella (10.683%), g_Veillonella (6.980%), g_Haemophilus (5.601%), and g_Neisseria (4.631%). Veillonella parvula generated obvious cytotoxicity and substantially reduced the activity of human bronchial epithelial cells (p < 0.01). Furthermore, the results of flow cytometry indicated that the proportion of human bronchial epithelial cells in both the S phase and G2 phase decreased following Veillonella parvula treatment indicated that Veillonella parvula inhibited cell proliferation. Meanwhile, being treated using Veillonella parvula, the expressions of interleukin-1 (IL-1), IL-6, Tumor Necrosis Factor α (TNF-α), and p-nuclear factor kappa B (NF-κB) of the cells were increased markedly (p < 0.01). Taken together, the current research demonstrated that the relative abundance of Veillonella in COPD frequent exacerbators was higher than that of infrequent exacerbators. Veillonella parvula activated the inflammatory pathway, ultimately destroyed the cell viability, and greatly impaired the activity of human bronchial epithelial cells, thereby inhibiting cell proliferation.
Collapse
Affiliation(s)
- Li Ke
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
- *Correspondence: Li Ke
| | - Luo Chen
- Department of Respiratory and Critical Care, Chongqing the Seventh People's Hospital, Chongqing, China
| | - Yuan Yaling
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
| | - Gao Can
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
| | - Lin Jun
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
| | - Zhang Chuan
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
| |
Collapse
|
37
|
Araújo NPDS, de Matos NA, Oliveira M, de Souza ABF, Castro TDF, Machado-Júnior PA, de Souza DMS, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Quercetin Improves Pulmonary Function and Prevents Emphysema Caused by Exposure to Cigarette Smoke in Male Mice. Antioxidants (Basel) 2022; 11:antiox11020181. [PMID: 35204064 PMCID: PMC8868486 DOI: 10.3390/antiox11020181] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.
Collapse
Affiliation(s)
- Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil;
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
- Correspondence:
| |
Collapse
|
38
|
Li Y, Zhang Q, Li L, Hao D, Cheng P, Li K, Li X, Wang J, Wang Q, Du Z, Ji H, Chen H. LKB1 deficiency upregulates RELM-α to drive airway goblet cell metaplasia. Cell Mol Life Sci 2021; 79:42. [PMID: 34921639 PMCID: PMC8738459 DOI: 10.1007/s00018-021-04044-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
Targeting airway goblet cell metaplasia is a novel strategy that can potentially reduce the chronic obstructive pulmonary disease (COPD) symptoms. Tumor suppressor liver kinase B1 (LKB1) is an important regulator of the proliferation and differentiation of stem/progenitor cells. In this study, we report that LKB1 expression was downregulated in the lungs of patients with COPD and in those of cigarette smoke-exposed mice. Nkx2.1Cre; Lkb1f/f mice with conditional loss of Lkb1 in mouse lung epithelium displayed airway mucus hypersecretion and pulmonary macrophage infiltration. Single-cell transcriptomic analysis of the lung tissues from Nkx2.1Cre; Lkb1f/f mice further revealed that airway goblet cell differentiation was altered in the absence of LKB1. An organoid culture study demonstrated that Lkb1 deficiency in mouse airway (club) progenitor cells promoted the expression of FIZZ1/RELM-α, which drove airway goblet cell differentiation and pulmonary macrophage recruitment. Additionally, monocyte-derived macrophages in the lungs of Nkx2.1Cre; Lkb1f/f mice exhibited an alternatively activated M2 phenotype, while expressing RELM-α, which subsequently aggravated airway goblet cell metaplasia. Our findings suggest that the LKB1-mediated crosstalk between airway progenitor cells and macrophages regulates airway goblet cell metaplasia. Moreover, our data suggest that LKB1 agonists might serve as a potential therapeutic option to treat respiratory disorders associated with goblet cell metaplasia.
Collapse
Affiliation(s)
- Yu Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qiuyang Zhang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Li Li
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - De Hao
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Kuan Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qi Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Zhongchao Du
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China.
| |
Collapse
|
39
|
Gulati N, Chellappan DK, MacLoughlin R, Dua K, Dureja H. Inhaled nano-based therapeutics for inflammatory lung diseases: Recent advances and future prospects. Life Sci 2021; 285:119969. [PMID: 34547339 DOI: 10.1016/j.lfs.2021.119969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory lung diseases related morbidity and mortality impose a significant financial burden. Inflammation is a hallmark of many diseases of the respiratory system which is directly or indirectly linked to adverse health conditions, air pollution, rapid lifestyle changes, and regular outbreaks of microbial infections. The unique anatomical and physiological features of the lungs make them an ideal target organ in the treatment of inflammatory respiratory disease and with the help of inhaled therapy lungs can be targeted directly. The principal objective of this review is to present the comprehensive role of inhaled nano-based therapeutics such as liposomes, niosomes, nanoparticles, nanoemulsion, nanosuspension, and exosomes in the treatment and management of inflammatory respiratory diseases. Inhaled nanomedicines provide targeted diagnosis and treatment, improved drug solubility and distribution, prevent first-pass hepatic metabolism, improved patient compliance, and reduced drug side effects. They overcome several biological barriers in the human body and provide immediate, and quick-onset of action. Future research should be focused on improving the therapeutic efficiency of inhaled nanocarriers and to carry out in-depth mechanistic studies to translate current scientific knowledge for the efficient management of inflammatory lung diseases with minimal or no toxicity.
Collapse
Affiliation(s)
- Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
40
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|
41
|
Cazzola M, Ora J, Cavalli F, Rogliani P, Matera MG. An Overview of the Safety and Efficacy of Monoclonal Antibodies for the Chronic Obstructive Pulmonary Disease. Biologics 2021; 15:363-374. [PMID: 34475751 PMCID: PMC8407524 DOI: 10.2147/btt.s295409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Several mAbs have been tested or are currently under clinical evaluation for the treatment of COPD. They can be subdivided into those that aim to block specific pro-inflammatory and pro-neutrophilic cytokines and chemokines, such as TNF-α, IL-1β, CXCL8 and IL-1β, and those that act on T2-mediated inflammation, respectively, by blocking IL-5 and/or its receptor, preventing IL-4 and IL-13 signaling, affecting IL-33 pathway and blocking TSLP. None of these approaches has proved to be effective, probably because in COPD there is no dominant cytokine or chemokine and, therefore, a single mAb cannot be effective on all pathways. With a more in-depth understanding of the numerous pheno/endotypic pathways that play a role in COPD, it may eventually be possible to identify those specific patients in whom some of these cytokines or chemokines might predominate. In this case, it will be possible to implement a personalized treatment, but the use of each mAb will only be reserved for a very limited number of subjects.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Francesco Cavalli
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
42
|
He Z, Peng H, Gao M, Liang G, Zeng M, Zhang X. p300/Sp1-Mediated High Expression of p16 Promotes Endothelial Progenitor Cell Senescence Leading to the Occurrence of Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2021; 2021:5599364. [PMID: 34456628 PMCID: PMC8397552 DOI: 10.1155/2021/5599364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a common chronic disease and develops rapidly into a grave public health problem worldwide. However, what exactly causes the occurrence of COPD remains largely unclear. Here, we are trying to explore whether the high expression of p16 mediated by p300/Sp1 can cause chronic obstructive pulmonary disease through promoting the senescence of endothelial progenitor cells (EPCs). METHODS Peripheral blood EPCs were isolated from nonsmoking non-COPD, smoking non-COPD, and smoking COPD patients. The expressions of p16, p300, and senescence-related genes were detected by RT-PCR and Western Blot. Then, we knocked down or overexpressed Sp1 and p300 and used the ChIP assay to detect the histone H4 acetylation level in the promoter region of p16, CCK8 to detect cell proliferation, flow cytometry to detect the cell cycle, and β-galactosidase staining to count the proportion of senescent cells. RESULTS The high expression of p16 was found in peripheral blood EPCs of COPD patients; the cigarette smoke extract (CSE) led to the increase of p16. The high expression of p16 in EPCs promoted cell cycle arrest and apoptosis. The CSE-mediated high expression of p16 promoted cell senescence. The expression of p300 was increased in peripheral blood EPCs of COPD patients. Moreover, p300/Sp1 enhanced the histone H4 acetylation level in the promoter region of p16, thereby mediating the senescence of EPCs. And knockdown of p300/Sp1 could rescue CSE-mediated cell senescence. CONCLUSION p300/Sp1 enhanced the histone H4 acetylation level in the p16 promoter region to mediate the senescence of EPCs.
Collapse
Affiliation(s)
- Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Huaihuai Peng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China
| | - Min Gao
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Guibin Liang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China
| | - Menghao Zeng
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Xuefeng Zhang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
43
|
Cazzola M, Matera MG, Calzetta L, Rogliani P. Editorial overview: Respiratory: Pulmonary pharmacology-The emergence of new treatments in pulmonary medicine is finally providing real therapeutic perspectives. Curr Opin Pharmacol 2021; 60:54-58. [PMID: 34352485 PMCID: PMC8327753 DOI: 10.1016/j.coph.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy.
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Camapia Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| |
Collapse
|
44
|
Na N, Guo SL, Zhang YY, Ye M, Zhang N, Wu GX, Ma LW. Value of refined care in patients with acute exacerbation of chronic obstructive pulmonary disease. World J Clin Cases 2021; 9:5840-5849. [PMID: 34368303 PMCID: PMC8316959 DOI: 10.12998/wjcc.v9.i21.5840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Under physiological conditions, sputum produced during acute exacerbation of chronic obstructive pulmonary disease (AECOPD) can move passively with the cilia in the airway; the sputum is gradually excreted from the depth of the airways through the stimulation of the coughing reflex on the sensory nerve on the surface of the airway. However, when the sputum is thick, the cough is weak, or the tracheal cilia are abnormal, sputum accumulation may occur and affect the exchange of oxygen and carbon dioxide in the lung. Furthermore, the presence of pathogenic microorganisms in sputum may cause or aggravate the symptoms of pulmonary infection in patients, which is the main factor leading to AECOPD. Therefore, promoting effective drainage of sputum and maintaining airway opening are key points requiring clinical attention.
AIM To explore the effect of refined nursing strategies in patients with AECOPD and dysphagia.
METHODS We selected 126 patients with AECOPD and difficulty of expectoration at our hospital, and divided them into a refined care group and a routine care group, with 63 cases each, using a random number table. The two groups of patients were treated with expectorant, anti-infection, oxygen inhalation, and other basic treatment measures; patients in the refined care group were given refined nursing intervention during hospitalization, and the routine care group received conventional nursing intervention. The differences in sputum expectoration, negative pressure suction rate, blood gas parameters, dyspnea score measured through the tool developed by the Medical Research Council (MRC), and quality of life were compared between the two groups.
RESULTS After 7 d of intervention, the sputum expectoration effect of the refined care group was 62.30%, the effective rate was 31.15%, and the inefficiency rate was 6.56%. The sputum expectoration effect of the routine care group was 44.07%, the effective rate was 42.37%, and the inefficiency rate was 13.56%. The refined care group had better sputum expectoration than the routine care group (P < 0.05). The negative pressure suction rate in the refined care group was significantly lower than that of the routine care group during the treatment (22.95% vs 44.07%, P < 0.05). Before the intervention, the arterial oxygen saturation (PaO2) and arterial carbon dioxide saturation (PaCO2) values were not significantly different between the two groups (P > 0.05); the PaO2 and PaCO2 values in the refined care group were comparable to those in the routine care group after 7 d of intervention (P > 0.05). Before the intervention, there was no significant difference in the MRC score between the two groups (P > 0.05); the MRC score of the refined care group was lower than that of the routine care group after 7 d of intervention, but the difference was not statistically significant (P > 0.05). Before intervention, there was no significant difference in the symptoms, activities, disease impact, or St. George’s Respiratory questionnaire (SGRQ) total scores between the two groups (P> 0.05). After 7 days of intervention, the symptoms, activities, and total score of SGRQ of the refined care group were higher than those of the routine care group, but the difference was not statistically significant (P > 0.05).
CONCLUSION AECOPD with thick sputum, weak coughing reflex, and abnormal tracheal cilia function will lead to sputum accumulation and affect the exchange of oxygen and carbon dioxide in the lung. Patients with AECOPD who have difficulty expectorating sputum may undergo refined nursing strategies that will promote expectoration, alleviate clinical symptoms, and improve the quality of life.
Collapse
Affiliation(s)
- Na Na
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Su-Ling Guo
- Department of Hematology, The Eighth Medical Center, General Hospital of Chinese PLA, Beijing 100091, China
| | - Ying-Ying Zhang
- Operation Room, The Fourth People’s Hospital of Jinan, Jinan 250031, Shandong Province, China
| | - Mei Ye
- Department of Gynecology and Pediatrics, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Na Zhang
- Department of Cardiovascular Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Gui-Xia Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Le-Wei Ma
- Department of Respiratory and Critical Care Medicine, Jinan Central Hospital, Jinan 250013, Shandong Province, China
| |
Collapse
|
45
|
Is it time to look beyond bronchodilators and corticosteroids in treating COPD? FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2021-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
46
|
Effects of (a Combination of) the Beta 2-Adrenoceptor Agonist Indacaterol and the Muscarinic Receptor Antagonist Glycopyrrolate on Intrapulmonary Airway Constriction. Cells 2021; 10:cells10051237. [PMID: 34069899 PMCID: PMC8157597 DOI: 10.3390/cells10051237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/01/2022] Open
Abstract
Expression of bronchodilatory β2-adrenoceptors and bronchoconstrictive muscarinic M3-receptors alter with airway size. In COPD, (a combination of) β2-agonists and muscarinic M3-antagonists (anticholinergics) are used as bronchodilators. We studied whether differential receptor expression in large and small airways affects the response to β2-agonists and anticholinergics in COPD. Bronchoprotection by indacaterol (β2-agonist) and glycopyrrolate (anticholinergic) against methacholine- and EFS-induced constrictions of large and small airways was measured in guinea pig and human lung slices using video-assisted microscopy. In guinea pig lung slices, glycopyrrolate (1, 3 and 10 nM) concentration-dependently protected against methacholine- and EFS-induced constrictions, with no differences between large and small intrapulmonary airways. Indacaterol (0.01, 0.1, 1 and 10 μM) also provided concentration-dependent protection, which was greater in large airways against methacholine and in small airways against EFS. Indacaterol (10 μM) and glycopyrrolate (10 nM) normalized small airway hyperresponsiveness in COPD lung slices. Synergy of low indacaterol (10 nM) and glycopyrrolate (1 nM) concentrations was greater in LPS-challenged guinea pigs (COPD model) compared to saline-challenged controls. In conclusion, glycopyrrolate similarly protects large and small airways, whereas the protective effect of indacaterol in the small, but not the large, airways depends on the contractile stimulus used. Moreover, findings in a guinea pig model indicate that the synergistic bronchoprotective effect of indacaterol and glycopyrrolate is enhanced in COPD.
Collapse
|
47
|
Matera MG, Calzetta L, Annibale R, Russo F, Cazzola M. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol 2021; 14:1015-1027. [PMID: 33957839 DOI: 10.1080/17512433.2021.1925537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The persistent inflammation that characterizes COPD and affects its natural course also impacting on symptoms has prompted research to find molecules that can regulate the inflammatory process but still available anti-inflammatory therapies provide little or no benefit in COPD patients. Consequently, numerous anti-inflammatory molecules that are effective in animal models of COPD have been or are being evaluated in humans. AREAS COVERED In this article we describe several classes of drugs that target the cellular components of inflammation under clinical development for COPD. EXPERT OPINION Although the results of many clinical trials with new molecules have often been disappointing, several studies are underway to investigate whether some of these molecules may be effective in treating specific subgroups of COPD patients. Indeed, the current perspective is to apply a more personalized treatment to the patient. This means being able to better define the patient's inflammatory state and treat it in a targeted manner. Unfortunately, the difficulty in translating encouraging experimental data into human clinical trials, the redundancy in the effects induced by signal-transmitting substances and the nonspecific effects of many classes that are undergoing clinical trials, do not yet allow specific inflammatory cell types to be targeted.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Francesco Russo
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
48
|
Matera MG, Ora J, Cavalli F, Rogliani P, Cazzola M. New Avenues for Phosphodiesterase Inhibitors in Asthma. J Exp Pharmacol 2021; 13:291-302. [PMID: 33758554 PMCID: PMC7979323 DOI: 10.2147/jep.s242961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Phosphodiesterases (PDEs) are isoenzymes ubiquitously expressed in the lungs where they catalyse cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (GMP), which are fundamental second messengers in asthma, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signaling pathways and, consequently, myriad biological responses. The superfamily of PDEs is composed of 11 families with a distinct substrate specificity, molecular structure and subcellular localization. Experimental studies indicate a possible role in asthma mainly for PDE3, PDE4, PDE5 and PDE7. Consequently, drugs that inhibit PDEs may offer novel therapeutic options for the treatment of this disease. Areas Covered In this article, we describe the progress made in recent years regarding the possibility of using PDE inhibitors in the treatment of asthma. Expert Opinion Many data indicate the potential benefits of PDE inhibitors as an add-on treatment especially in severe asthma due to their bronchodilator and/or anti-inflammatory activity, but no compound has yet reached the market as asthma treatment mainly because of their limited tolerability. Therefore, there is a growing interest in developing new PDE inhibitors with an improved safety profile. In particular, the research is focused on the development of drugs capable of interacting simultaneously with different PDEs, or to be administered by inhalation. CHF 6001 and RPL554 are the only molecules that currently are under clinical development but there are several new agents with interesting pharmacological profiles. It will be stimulating to assess the impact of such agents on individual treatable traits in specially designed studies.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Francesco Cavalli
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Paola Rogliani
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|