1
|
Gong X, Tan Z, Xu H, Jiang X, Chen L. Paeoniflorin Attenuates Oxidative Stress and Inflammation in Parkinson's Disease by Activating the HSF1-NRF1 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2131-2159. [PMID: 39663263 DOI: 10.1142/s0192415x24500824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study is to explore the effects of paeoniflorin (PF) on oxidative stress (OS) and inflammation in Parkinson's disease (PD) via the HSF1-NRF1 axis. SH-SY5Y cells were pretreated with PF and induced with α-synuclein preformed fibrils (PFF), followed by gain- and loss-of-function assays. Afterward, detection was conducted on cell viability, mitochondrial membrane potential ([Formula: see text]m), and reactive oxygen species (ROS), cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) levels. The binding of HSF1 to NRF1 promoter was evaluated. HSF1 and NRF1 expression was examined. Lastly, PD mouse models were established, followed by observation of the behavioral features of mice. Apoptosis; cleaved-Caspase 3, cleaved-Caspase 8, repulsive guidance molecule A (RGMa), GAP-43, and brain-derived neurotrophic factor (BDNF) expression; and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT), tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-6, and IL-10 levels were determined in mice and cells. HSF1 and NRF1 were downregulated, and HSF1 promoted NRF1 transcription and PF dose-dependently augmented HSF1 and NRF1 expression. PF dose-dependently reduced RGMa expression, ROS, MDA, TNF-α, IL-2, and IL-6 levels; mitigated apoptosis; and lowered cleaved-Caspase 3, cleaved-Caspase 8, COX-2, and iNOS expression while improving cell viability; increasing [Formula: see text]m, GAP-43, and BDNF expression; and raising SOD, GSH-Px, CAT, and IL-10 levels in PFF-induced SH-SY5Y cells. These effects were neutralized by HSF1 knockdown. In conclusion, PF dose-dependently activated the HSF1-NRF1 axis and alleviated OS and inflammation in PFF-treated mice, thereby impeding PD progression in mice.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Zhijian Tan
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Henghui Xu
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Xu Jiang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| |
Collapse
|
2
|
Gong XS, Wang HX, Yang XD, Yu ZY, Lin SJ, Zou ZT, Lv JN, Qian LY, Ruan YE, Si ZZ, Zhou Y, Liu Y. The effect of paeoniflorin on the rewarding effect of methamphetamine and the associated cognitive impairment in mice. Metab Brain Dis 2024; 40:27. [PMID: 39565442 DOI: 10.1007/s11011-024-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
Chronic exposure to methamphetamine (METH) has been suggested to cause METH use disorder and severe cognitive impairment. Paeoniflorin (PF) is a monoterpenoid glycoside with various beneficial effects, including anti-inflammatory, antioxidant and antidepressant. The current study was designed to investigate the effect of PF (30 mg/kg, i.p.) on the rewarding effect of METH (2.5 mg/kg, i.p.) and the associated cognitive impairment, using the animal model of conditioned place preference, new location reorganization test, new object reorganization test and Y-maze test. METH induced conditioned place preference, accompanied by increased expression of synapse-associated proteins in the ventral target areas (VTA) and nucleus accumbens (NAc). In addition, METH induced significant cognitive impairment and decreased the expression of synapse-associated proteins in the hippocampus (Hip). Administration of PF decreased the rewarding effect of METH and the expression of synapse-associated proteins in the VTA or NAc. PF was also effective to improve METH-induced cognitive impairment by upregulating the expression of synapse-associated proteins in the Hip. Therefore, PF could be a potential agent for the treatment of METH use disorder and the associated cognitive impairment.
Collapse
Affiliation(s)
- Xin-Shuang Gong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Hai-Xing Wang
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, China
| | - Xiang-Dong Yang
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhao-Ying Yu
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Shu-Jun Lin
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhi-Ting Zou
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Jia-Nan Lv
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Li-Yin Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yu-Er Ruan
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zi-Zhen Si
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yi Zhou
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, China
| | - Yu Liu
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Song M, Ruan Q, Wang D. Paeoniflorin alleviates toxicity and accumulation of 6-PPD quinone by activating ACS-22 in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117226. [PMID: 39442254 DOI: 10.1016/j.ecoenv.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
6-PPD quinone (6-PPDQ) is extensively existed in various environments. In Caenorhabditis elegans, exposure to 6-PPDQ could cause multiple toxic effects. In the current study, we further used C. elegans to investigate the effect of paeoniflorin (PF) treatment on 6-PPDQ toxicity and accumulation and the underlying mechanism. Treatment with PF (25-100 mg/L) inhibited 6-PPDQ toxicity on reproduction capacity and locomotion behavior and in inducing reactive oxygen species (ROS) production. Additionally, PF (25-100 mg/L) alleviated the dysregulation in expression of genes governing oxidative stress caused by 6-PPDQ exposure. Moreover, PF (25-100 mg/L) inhibited the enhancement in intestinal permeability caused by 6-PPDQ exposure and the accumulation of 6-PPDQ in the body of nematodes. In 6-PPDQ exposed nematodes, PF (25-100 mg/L) increased expression of acs-22 encoding a fatty acid transporter. RNAi of acs-22 could inhibit the beneficial effect of PF against 6-PPDQ toxicity in decreasing reproductive capacity and locomotion behavior, in inducing intestinal ROS production, and in enhancing intestinal permeability. RNAi of acs-22 could also suppress the PF beneficial effect against 6-PPDQ accumulation in the body of nematodes. Therefore, our results demonstrate the function of PF treatment against 6-PPDQ toxicity and accumulation in nematodes by activating the ACS-22.
Collapse
Affiliation(s)
- Mingxuan Song
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinli Ruan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
5
|
Lu Y, Yin L, Yang W, Wu Z, Niu J. Antioxidant effects of Paeoniflorin and relevant molecular mechanisms as related to a variety of diseases: A review. Biomed Pharmacother 2024; 176:116772. [PMID: 38810407 DOI: 10.1016/j.biopha.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Paeoniflorin (PF), which is the main component of the Paeonia lactiflora Pall extract, is one of the traditional Chinese medicines. The pharmacological effects associated with PF include antioxidant, immunomodulatory, anti-inflammatory, anticancer, antidepressant-like and neuroprotective effects. Our previous studies had revealed that PF protected melanocytes and inhibited photodamage through the suppression of oxidative stress (OS). As OS plays a vital role in the progression of a variety of diseases, the capacity for PF to suppress OS may exert important effects upon them. However, no review exists on these antioxidant effects of PF as related to various diseases. Therefore, in this review we summarized studies involved with examining the antioxidant effects and molecular mechanisms of PF. Through its capacity to inhibit OS, PF has been shown to exert beneficial effects upon several systems including nervous, cardiac/vascular, digestive, and respiratory as well as specific diseases such as diabetes, autoimmune, pregnancy related, ocular, kidney, dermatology, along with suppression of distal flap necrosis, postoperative adhesions, and hearing loss. Such findings provide new insights and directions for future research directed at the development of PF as a natural antioxidant for the treatment of clinical diseases.
Collapse
Affiliation(s)
- Yansong Lu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lu Yin
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Wei Yang
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ze Wu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jun Niu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
6
|
Chen W, Huang C, Tang D, Wan J, Zhou X, Wu C, Yang X. Huangtu decoction alleviates chronic diarrhea of spleen-yang deficiency in mice by altering host metabolome and intestinal microbiota composition. Am J Transl Res 2024; 16:2248-2262. [PMID: 39006272 PMCID: PMC11236646 DOI: 10.62347/ihnx2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Huangtu decoction (HTD), a traditional Chinese medicine recipe, warms the spleen, nourishes the blood, and stops bleeding. It has been used to treat dysentery, gastrointestinal bleeding, diarrhea, and other symptoms caused by spleen-yang deficiency for more than 2,000 years in China. However, the mechanism underlying the treatment of chronic diarrhea due to spleen-yang deficiency (CDSD) using HTD remains unclear. AIMS This study investigated whether HTD could mediate intestinal flora and serum metabolites to improve CDSD symptoms using a mouse model. METHODS A CDSD mouse model induced by senna and an abnormal diet was constructed. The regulatory effects of HTD at 12.5, 25.0, and 50.0 g/kg/d on CDSD mice were assessed by measuring their bodyweight, diarrhea rate, loose stool rate, and histopathology. Changes in the intestinal flora of CDSD mice were analyzed by 16S rRNA gene sequencing. Untargeted serum metabolomic analysis was performed using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS). RESULTS HTD had a modulating effect on CDSD by reducing the weight loss, diarrhea rate, loose stool rate, and pathologic damage. Intestinal flora analysis showed that HTD altered the community composition by decreasing the abundance of Allobaculum, Lactobacillus, and Ruminococcus. Serum metabolomics revealed that ascorbate and aldarate metabolism, aldosterone synthesis and secretion, platelet activation, hypoxia-inducible factor 1 signaling pathway, inositol phosphate metabolism, phosphatidylinositol signaling, galactose metabolism, and alpha-linolenic acid metabolism were modulated after HTD treatment. CONCLUSION HTD may alleviate CDSD symptoms by reducing weight loss, diarrhea rate, loose stool rate, and pathologic damage caused by modeling and regulating intestinal flora and serum metabolites in CDSD mice.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 610091, Sichuan, China
| | - Chunyan Huang
- Department of Quality Assurance and Scientific Research, Chengdu Institute for Drug Control Chengdu 610045, Sichuan, China
| | - Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, China
| | - Jun Wan
- College of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031, Sichuan, China
| | - Xia Zhou
- College of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031, Sichuan, China
| | - Chunjie Wu
- Department of Quality Assurance and Scientific Research, Chengdu Institute for Drug Control Chengdu 610045, Sichuan, China
| | - Xiao Yang
- Department of Obstetrics, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 610091, Sichuan, China
| |
Collapse
|
7
|
Li W, Chen Y, Yang R, Hu Z, Wei S, Hu S, Xiong X, Wang M, Lubeiny A, Li X, Feng M, Dong S, Xie X, Nie C, Zhang J, Luo Y, Zhou Y, Liu R, Pan J, Kong DX, Hu X. A terpenoids database with the chemical content as a novel agronomic trait. Database (Oxford) 2024; 2024:baae027. [PMID: 38776380 PMCID: PMC11110934 DOI: 10.1093/database/baae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Natural products play a pivotal role in drug discovery, and the richness of natural products, albeit significantly influenced by various environmental factors, is predominantly determined by intrinsic genetics of a series of enzymatic reactions and produced as secondary metabolites of organisms. Heretofore, few natural product-related databases take the chemical content into consideration as a prominent property. To gain unique insights into the quantitative diversity of natural products, we have developed the first TerPenoids database embedded with Content information (TPCN) with features such as compound browsing, structural search, scaffold analysis, similarity analysis and data download. This database can be accessed through a web-based computational toolkit available at http://www.tpcn.pro/. By conducting meticulous manual searches and analyzing over 10 000 reference papers, the TPCN database has successfully integrated 6383 terpenoids obtained from 1254 distinct plant species. The database encompasses exhaustive details including isolation parts, comprehensive molecule structures, chemical abstracts service registry number (CAS number) and 7508 content descriptions. The TPCN database accentuates both the qualitative and quantitative dimensions as invaluable phenotypic characteristics of natural products that have undergone genetic evolution. By acting as an indispensable criterion, the TPCN database facilitates the discovery of drug alternatives with high content and the selection of high-yield medicinal plant species or phylogenetic alternatives, thereby fostering sustainable, cost-effective and environmentally friendly drug discovery in pharmaceutical farming. Database URL: http://www.tpcn.pro/.
Collapse
Affiliation(s)
- Wenqian Li
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinliang Chen
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruofei Yang
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zilong Hu
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaozhong Wei
- Colorectal cancer clinical research center of HuBei Province,Colorectal cancer clinical research center of Wuhan, Hubei Cancer Hospital,Tongji Medical College, Huazhong University of Science and Technology,, Wuhan, Hubei 430069, China
| | - Sheng Hu
- Colorectal cancer clinical research center of HuBei Province,Colorectal cancer clinical research center of Wuhan, Hubei Cancer Hospital,Tongji Medical College, Huazhong University of Science and Technology,, Wuhan, Hubei 430069, China
| | - Xinjun Xiong
- Research Center for Rural Revitalization, Power China Kunming Engineering Corporation Limited, Kunming 650051, China
| | - Meijuan Wang
- Shennongjia Academy of Forestry, Shennongjia, Hubei 442400 China
| | | | - Xiaohua Li
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Minglei Feng
- Research Center for Rural Revitalization, Power China Kunming Engineering Corporation Limited, Kunming 650051, China
| | - Shuang Dong
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinlu Xie
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Nie
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyi Zhang
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhao Luo
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichen Zhou
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruodi Liu
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhai Pan
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - De-Xin Kong
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuebo Hu
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan 430070, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Liu J, Wei B, Ma Q, Shi D, Pan X, Liu Z, Li J, Zhao P. Network pharmacology and experimental validation on yangjing zhongyu decoction against diminished ovarian reserve. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117023. [PMID: 37567422 DOI: 10.1016/j.jep.2023.117023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diminished ovarian reserve (DOR) was considered a refractory reproductive endocrine condition that negatively affected female reproductivity. Yangjing Zhongyu Decoction (YJZYD) had effects on treating infertility. However, there were few studies on the mechanisms of YJZYD preserving ovarian reserve. AIM OF THE STUDY To explore the possible mechanisms of YJZYD against DOR by UPLC-ESI-MS/MS, network pharmacology, and experimental validation. METHODS The chemicals of YJZYD were measured by UPLC-ESI-MS/MS. The correlating targets of YJZYD and DOR were identified by the ETCM database, GeneCards database, and PubMed database. The common targets were employed with the DAVID database and visualized with the PPI network. GO and KEGG enrichment analyses were carried out to explore biological progression and pathways. In vivo experiments, energy production was assessed by ATP, and apoptosis rate was analyzed by TUNEL. The serum FSH, AMH, and E2 levels were evaluated by ELISA. Western blotting and immunohistochemistry were used to measure the expression of SIRT1, PGC1α, NRF1, COX IV, FSHR, CYP19A1, PI3K, p-Akt, Akt, Bcl-2, and Bax. RESULTS 132 components in YJZYD were identified by UPLC-ESI-MS/MS. 149 overlapped targets were extracted from YJZYD and DOR, and the top 20 common targets included AKT1 and CYP19A1. ATP binding was involved in GO analysis. In the KEGG enrichment analysis, the metabolic pathway was the top, and the PI3K-Akt signaling pathway was included. In vivo experiments, YJZYD improved ovarian index and histomorphology. After YJZYD treatment, serum FSH, E2, and AMH were well-modulated, and the content of ATP was up-regulated. Besides, the expression of Bax was suppressed in ovarian tissue, while the expressions of SIRT1, PGC1α, NRF1, COX IV, FSHR, CYP19A1, PI3K, Bcl-2, and p-Akt/Akt were enhanced. CONCLUSION YJZYD could attenuate reproductive endocrine disturbance and ovarian lesions in vivo by mediating steroidogenesis, energy metabolism, and cell apoptosis. This study uncovered the mechanisms of YJZYD against DOR, providing a theoretical basis for further study.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bowen Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Danning Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Pan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
9
|
Wang T, Gao L, Tan J, Zhuoma D, Yuan R, Li B, Huang S. The Neuroprotective Effect of Sophocarpine against Glutamate-Induced HT22 Cell Cytotoxicity. J Oleo Sci 2024; 73:359-370. [PMID: 38433000 DOI: 10.5650/jos.ess23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Neuronal cell death and dysfunction of the central nervous system can be caused by oxidative stress, which is associated with the development of neurodegenerative diseases. Sophocarpine, an alkaloid compound derived from Sophora moorcroftiana (Benth.) Baker seeds, has a wide range of medicinal value. This study sought to determine how sophocarpine exerts neuroprotective effects by inhibited oxidative stress and apoptosis in mouse hippocampus neuronal (HT22) cells. 20mM glutamate-induced HT22 cells were used to develop an in vitro model of oxidative stress damage. The Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability. According to the instructions on the kits to detect reactive oxygen species (ROS) levels and oxidative stress indicators. HT22 cells were examined using immunofluorescence and Western Blotting to detect Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) expression. The expression of proteins and messenger RNA (mRNA) for heme oxygenase-1 (HO-1) was examined by Western Blotting and Quantitative real time polymerase chain reaction (qRT-PCR). Mitochondrial membrane potential (MMP) and Cell apoptosis were used by 5, 5', 6, 6'-Tetrachloro-1, 1', 3, 3'-tetraethyl-imidacarbocyanine iodide (JC- 1) kit and Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End Labeling (TUNEL) apoptosis assay kit, respectively. Finally, the expression of pro-apoptotic proteins was detected by Western Blotting. The result demonstrated that sophocarpine (1.25 μM-10 μM) can significantly inhibit glutamate-induced cytotoxicity and ROS generation, improve the activity of antioxidant enzymes. Sophocarpine increased the expression of HO-1 protein and mRNA and the nuclear translocation of Nrf2 to play a cytoprotective role; however, cells were transfected with small interfering RNA targeting HO-1 (si-HO-1) reversed the above effects of sophocarpine. In addition, sophocarpine significantly inhibited glutamate induced mitochondrial depolarization and further inhibited cell apoptosis by reducing the expression level of caspase-related proteins.
Collapse
Affiliation(s)
- Tong Wang
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Liying Gao
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Jiahua Tan
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Dongzhi Zhuoma
- Department of Pharmacy, Medical College, Tibet University
| | - Ruiying Yuan
- Department of Pharmacy, Medical College, Tibet University
| | - Bin Li
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
- Department of Pharmacy, Medical College, Tibet University
| | - Shan Huang
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| |
Collapse
|
10
|
Li M, Tang D, Xu R, Zhang S, Chen Y, Peng W. Uncovering quality markers of Yiqi-Tongluo capsule against myocardial ischemia and optimization of its extraction process. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1230:123926. [PMID: 37956469 DOI: 10.1016/j.jchromb.2023.123926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Myocardial ischemia (MI), a condition in which the heart is unable to function due to insufficient blood and oxygen supply, is a major cause of death from coronary heart disease (CHD). Yiqi Tongluo capsule (YTC) is a Chinese patent drug which commonly used for treatment of MI in clinic. However, the related active components of YTC for treatment of MI were still uncovered. This paper is aimed to study the quality markers (Q-markers) of YTC and further optimize the extraction process of YTC based on Q-markers, providing research foundation for the further modern pharmaceutical preparations of YTC. We firstly used UPLC-QTOF-MS to analyze the constituents of YTC absorbed in blood, then isoprenaline (ISO) induced H9c2 cell model was used further screen the active constituents with protective effects on cardiomyocytes. After that, the orthogonal table (L9 (34)) was used to optimize the extraction process with three levels of 4 factors (water addition, immersion time, extraction time and decoction times). Finally, the HPLC fingerprint of 15 batches of optimized YTC was established. In our present study, a total of 33 components were identified in YTC, of which 10 components were absorbed in blood. Among the 10 components, 8 compounds had significant protective effects on ISO stimulated H9c2 cells, including Paeoniflorin, Ferulic acid, Calycosin, Senkyunolide A, N-butylphthalide, Z-ligustilide, LevistilideA, and Astragaloside IV, which were considered as the Q-markers of YTC. The optimized extraction process based on Q-marker as follows: soaking 1 h, then adding 8 times water to extract 3 times by decoction, each extraction lasts 1.5 h. The HPLC fingerprint of optimized YTC was established with 15 batches of YTC samples, and the optimized YTC samples has no significant toxicity to the heart, liver, spleen, lungs, and brain tissues of rats.
Collapse
Affiliation(s)
- Meiyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Dandan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Sirong Zhang
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China
| | - Yu Chen
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China.
| |
Collapse
|
11
|
Liu Z, Zhong L, Wang L, Li M, Chen C. Integrating network pharmacology and experimental studies for uncovering the molecular mechanisms of Dioscorea bulbifera L. in the treatment of thyroid cancer. Heliyon 2023; 9:e18886. [PMID: 37600377 PMCID: PMC10432970 DOI: 10.1016/j.heliyon.2023.e18886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Thyroid cancer (TC), a common endocrine malignant tumor with a higher incidence in females than in males, is a serious threat to human life and health. Although current clinical treatments can alleviate this disease, the recurrence rate remains high. Tuber Dioscoreae Bulbiferae, also called Huang-Yao-Zi (HYZ), has remarkable curative properties, few side effects and is used for the treatment of sore throat, goiter, hemoptysis, and other diseases in traditional Chinese medicine (TCM). Existing clinical studies have found that HYZ can improve the clinical symptoms of TC patients and reduce tumor volume, while in vitro studies have found that HYZ can induce the death of thyroid cancer cells. However, the mechanism of HYZ in the treatment of TC is still unclear. Methods In this study, based on network pharmacology and bioinformatics, the target and molecular mechanism of HYZ in the treatment of TC were preliminarily explored. The results suggest that the antithyroid cancer effect of HYZ may be related to the PI3K-Akt and focal adhesion pathways. Then, a TC cell model was established to further explore the detail molecular mechanisms. Results Fortunately, HYZ induced apoptosis in KMH-2 cells and regulated the expression of apoptosis-related proteins and genes. At the same time, HYZ can also significantly inhibit the migration and invasion of TC cells. Further studies showed that the pharmacological activities of HYZ were related to the regulation of the PI3K-Akt and focal adhesion pathways. Conclusion Our study provides a reference for further animal or clinical studies investigating the effectiveness and molecular mechanisms of HYZ against thyroid cancer.
Collapse
Affiliation(s)
- Ziqi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lian Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lingyu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Meiyan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chao Chen
- Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Scienceand Technology of China, Chengdu 610072, P.R. China
| |
Collapse
|
12
|
Li RL, Duan HX, Wang LY, Liang Q, Wu C, Peng W. Amides from Zanthoxylum bungeanum Maxim. (Rutaceae) are promising natural agents with neuroprotective activities. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
13
|
Yang L, Chen Y, Jia Z, Yuan X, Liu J. Electrostatic assembly of gold nanoparticle and metal-organic framework nanoparticles attenuates amyloid β aggregate-mediated neurotoxicity. J Mater Chem B 2023; 11:4453-4463. [PMID: 37158054 DOI: 10.1039/d3tb00281k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The deposition of amyloid β (Aβ) is a conventional pathological hallmark of Alzheimer's disease (AD). Consequently, the inhibition of Aβ aggregation combined with the disaggregation of Aβ fibrils is an important therapeutic method for AD treatment. In this study, a gold nanoparticle-decorated porous metal organic framework MIL-101(Fe) (AuNPs@PEG@MIL-101) was created as an Aβ inhibitor. The high positively charged MIL-101 induced a high number of Aβ40 to be absorbed or aggregated on the surface of nanoparticles. In addition, AuNPs improved the surface property of MIL-101, causing it to uniformly bind Aβ monomers and Aβ fibrils. Thus, this framework can efficiently suppress extracellular Aβ monomer fibrillation and disrupt the preformed Aβ fibers. AuNPs@PEG@MIL-101 also decreases intracellular Aβ40 aggregation and the amount of Aβ40 immobilized on the cell membrane, thus protecting PC12 cells from Aβ40-induced microtubular defects and cell membrane damage. In summary, AuNPs@PEG@MIL-101 shows great potential for application in AD therapy.
Collapse
Affiliation(s)
- Licong Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yutong Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Zhi Jia
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Xiaoyu Yuan
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Meng K, Liu Y, Ruan L, Chen L, Chen Y, Liang Y. Suppression of apoptosis in osteocytes, the potential way of natural medicine in the treatment of osteonecrosis of the femoral head. Biomed Pharmacother 2023; 162:114403. [PMID: 37003034 DOI: 10.1016/j.biopha.2023.114403] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVES In the field of orthopedics, osteonecrosis of the femoral head (ONFH) is a common and refractory condition sometimes known as "immortal cancer" due to its complicated etiology, difficult treatment, and high disability rate. This paper's main goal is to examine the most recent literature on the pro-apoptotic effects of traditional Chinese medicine TCM monomers or compounds on osteocytes and to provide a summary of the potential signal routes. METHODS The last ten years' worth of literature on ONFH as well as the anti-ONFH effects of aqueous extracts and monomers from traditional Chinese medicine were compiled. CONCLUSIONS When all the relevant signal pathways are considered, the key apoptotic routes include those mediated by the mitochondrial pathway, the MAPK signaling pathway, the PI3K/Akt signaling pathway, the Wnt/-catenin signaling pathway, the HIF-1 signaling network, etc. As a result, we anticipate that this study will shed light on the value of TCM and its constituent parts for treating ONFH by inducing apoptosis in osteocytes and offer some guidance for the future development of innovative medications as anti-ONFH medications in clinical settings.
Collapse
Affiliation(s)
- Kairui Meng
- Neijiang Hospital of Traditional Chinese Medicine. Chengdu University of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, P.R. China
| | - Yicheng Liu
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China.
| | - Lvqiang Ruan
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| | - Lijuan Chen
- Neijiang Hospital of Traditional Chinese Medicine. Chengdu University of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, P.R. China
| | - Ying Chen
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| | - Ying Liang
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| |
Collapse
|
15
|
Hou Y, Zhang Y, Jiang S, Xie N, Zhang Y, Meng X, Wang X. Salidroside intensifies mitochondrial function of CoCl 2-damaged HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154568. [PMID: 36610162 DOI: 10.1016/j.phymed.2022.154568] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salidroside (Sal), an active component from Rhodiola crenulata, has been confirmed to exert neuroprotective effects against hypoxia. However, its molecular mechanisms of intensifying mitochondrial function still largely unknown. In the present study, we aimed to explore the mechanisms by which Sal heightened mitochondrial function in CoCl2-induced HT22 hypoxic injury. METHODS The hypoxic condition of HT22 cells was performed by CoCl2 stimulus. We then investigated the effects of Sal on the viability of hypoxic HT22 cells by cell counting kit-8. The contents of lactate dehydrogenase (LDH) release in cultured supernatant were detected by using commercial biochemical kit. Superoxide free radical scavenging activity, total antioxidant capacity assay kit with ferric reducing ability of plasma and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) methods were employed to detect the free radical scavenging ability and antioxidant capacity of Sal. Meanwhile, intracellular reactive oxygen species (ROS), Ca2+ and mitochondrial membrane potential (MMP) were determined by corresponding specific labeled probes. Mitochondrial morphology was tested by Mito-tracker green with confocal microscopy. Hoechst 33342 and Annexin V-FITC/propidium iodide staining were also employed to evaluate the effect of Sal on cell apoptosis. Oxygen consumption rate (OCR), real-time ATP production and proton efflux rate were measured using a Seahorse analyzer. Additionally, the potential interactions of Sal with PI3K-AKT signaling pathway-related proteins were predicted and tested by molecular docking, molecular dynamics simulation (MDS) and localized surface plasmon resonance (LSPR) techniques, respectively. Furthermore, the protein levels of p-PI3K, PI3K, p-AKT, AKT, p-JNK, JNK, p-p38 and p38 were estimated by western blot analysis. RESULTS Sal alleviated CoCl2-induced hypoxic injury in HT22 cells as evidenced by increased cell viability and decreased LDH release. In vitro antioxidant test confirmed that Sal had marvelous antioxidant abilities. The protected mitochondrial function by Sal treatment was illustrated by the decrease of ROS, Ca2+, mitochondrial fragment and the increase of MMP. In addition, Sal ameliorated the apoptosis of HT22 cells by decreasing Hoechst 33342 positive cells and the rate of apoptotic cells. Enhancement of energy metabolism in HT22 by Sal was demonstrated by increased OCR, real-time ATP generation and proton efflux rate. The molecular docking confirmed the potential binding of Sal to PI3K, AKT and CaMK II proteins with calculated binding energy of -1.32, -4.21 and -4.38 kcal/mol, respectively. The MDS test revealed the average hydrogen bond of complex Sal-PI3K and Sal-AKT were 0.79 and 4.46, respectively. The results of LSPR verified the potential binding of Sal to proteins PI3K, AKT and HIF-1α with affinity values of 5.20 × 10 - 3, 2.83 × 10 - 3 and 3.97 × 10 - 3 KD, respectively. Western blot analysis further argued that Sal consolidated the levels of p-PI3K and p-AKT. Meanwhile, Sal could downregulate the proteins expression of p-JNK and p-p38. CONCLUSION Collectively, our findings suggested that Sal can intensify mitochondrial function of CoCl2-simulated hypoxia injury in HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway. Sal is a potential agent for mitochondrial protection against hypoxia with the underlying molecular mechanisms of energy metabolism being further elucidated.
Collapse
Affiliation(s)
- Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengnan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Lan Z, Zhang Y, Lin H, Sun Y, Wang S, Meng J. Efficient monitoring for the nutrient changes in stir-fried Moutan Cortex using non-destructive near-infrared spectroscopy sensors. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Zhang T, Zhang Q, Zheng W, Tao T, Li RL, Wang LY, Peng W, Wu CJ. Fructus Zanthoxyli extract improves glycolipid metabolism disorder of type 2 diabetes mellitus via activation of AMPK/PI3K/Akt pathway: Network pharmacology and experimental validation. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:543-560. [PMID: 35965234 DOI: 10.1016/j.joim.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli (FZ) against type 2 diabetes mellitus (T2DM) based on network pharmacology and experimental validation. METHODS Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry, and gas chromatography-mass spectrometry were used to identify the constituents of FZ. Next, the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases (including Gene Expression Omnibus database and Swiss Target Prediction online database), and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the pathway was verified by in vitro experiments, and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM. RESULTS A total of 43 components were identified from FZ, and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM. The dug component-target network indicated that PPARA, PPARG, PIK3R3, JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM. Interestingly, the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in HepG2 cells. Moreover, FZ treatment was able to promote the AMPK and PI3K/Akt expressions in HepG2 cells. CONCLUSION Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ting Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Li-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
18
|
Yang F, Chen ZR, Yang XH, Xu Y, Ran NJ, Liu MJ, Jin SG, Jia HN, Zhang Y. Monomethyl lithospermate alleviates ischemic stroke injury in middle cerebral artery occlusion mice in vivo and protects oxygen glucose deprivation/reoxygenation induced SHSY-5Y cells in vitro via activation of PI3K/Akt signaling. Front Pharmacol 2022; 13:1024439. [PMID: 36313310 PMCID: PMC9606694 DOI: 10.3389/fphar.2022.1024439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a fatal neurological disease, which seriously threatens human health and life. Ischemic stroke (IS) is the most common type of stroke in clinic. Its pathogenesis is very complex, mainly caused by nerve damage caused by brain blood supply disorder. Previous studies have confirmed that natural products play important roles in improving neurological disorders. Furthermore, our previous results also suggested that Shenxiong Tongmai granule, a clinically used herbal medicines’ prescription, has a good ameliorating effect on IS. In the present study, we found that Monomethyl lithospermate (MOL), a constituent of Shenxiong Tongmai granule, significantly improved the neurological damage in middle cerebral artery occlusion (MCAO) rats. MOL can significantly improve the neurological deficit score of MCAO rats, and improve the damage of hippocampal neurons caused by ischemia-reperfusion (IR). At the same time, we also found that MOL could reduce the level of oxidative stress in the brain tissues of MCAO rats. Furthermore, the oxygen and glucose deprivation/Reoxygenation (OGD/R)-induced SHSY-5Y cell model was established in vitro to investigate the pharmacological activity and molecular mechanisms of MOL in improving the nerve injury of IS rats. The results showed that MOL could increase the cell viability of SHSY-5Y cells, inhibit the mitochondrial membrane potential (MMOP) collapse and suppress apoptosis. In addition, MOL also ameliorated the elevated oxidative stress level caused by OGR/R treatment in SHSY-5Y cells. Further mechanistic studies showed that MOL could activate the PI3K/AKT pathway via promoting the phosphorylation of PI3K and AKT in MCAO rats and OGR/R-induced SHSY-5Y cells, which could be partially blocked by addition of PI3K/AKT pathway inhibitor of LY294002. Taken together, our current study suggested that MOL exerts a protective effect against neural damage caused by IS in vivo and in vitro by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fang Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ze-Ran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu-Hong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning-Jing Ran
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei-Jun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuo-Guo Jin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shuo-Guo Jin, ; Hua-Nan Jia, ; Yang Zhang,
| | - Hua-Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shuo-Guo Jin, ; Hua-Nan Jia, ; Yang Zhang,
| | - Yang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shuo-Guo Jin, ; Hua-Nan Jia, ; Yang Zhang,
| |
Collapse
|
19
|
Li RL, Wang LY, Duan HX, Zhang Q, Guo X, Wu C, Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front Pharmacol 2022; 13:937289. [PMID: 36210852 PMCID: PMC9535092 DOI: 10.3389/fphar.2022.937289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| |
Collapse
|
20
|
Tang D, Liang Q, Zhang M, Li M, Zhang Q, Zhang S, Ai L, Wu C. Anti-depression effectiveness of essential oil from the fruits of Zanthoxylum bungeanum maxim. on chronic unpredictable mild stress-induced depression behavior in mice. Front Pharmacol 2022; 13:999962. [PMID: 36204228 PMCID: PMC9530639 DOI: 10.3389/fphar.2022.999962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
The fruits of Zanthoxylum bungeanum Maxim. Was a popular traditional Chinese herbal medicine for pain relief, itching prevention, and diarrhea relief. The fruits of Zanthoxylum bungeanum Maxim. Essential oil (HEO) had an effect of improving anxiety and other emotional disorders. In this paper, we aim to systematically research the antidepressant effects of HEO on Chronic Mild Unpredictable Stimulation (CUMS) mice and explore the relevant molecular mechanisms. Experimental mice were exposed to CUMS for 8 weeks. Meanwhile, for 8 weeks, Sertraline hydrochloride (20 mg/kg/day) and HEO (50, 100, and 150 mg/kg/day) were administered by gavage. HEO treatment increased residence time of central zone in OFT and open-arm in EPM test but decreased immobility times in FST and TST. Moreover, HEO treatment improved the levels of 5-HT, DA, NE, and BDNF, but reduced CRF and CORT levels of the HPA axis in the hippocampus. Network pharmacology predicted the possible mechanisms for the antidepressant effects of HEO by regulation of PI3K/Akt signaling pathway. The mRNA expression of PI3K and Akt were increased, and immunofluorescence results in the hippocampus indicated that HEO treatment could increase the phosphorylation of PI3K and Akt. Besides, the viability of CORT-treated PC12 cells was significantly improved by HEO treatment. The AO-EB staining, MOMP analysis, and flow cytometry analysis results showed HEO inhibiting the CORT-induced apoptosis in PC12 cells significantly. Besides, the phosphorylation of PI3K and Akt in COTR-induced PC12 cells could increase by HEO treatment. In conclusion, HEO ameliorated depression behavior induced by CUMS, potentially via regulating HPA axis and activating PI3K/Akt signaling pathway to reduce neuronal apoptosis.
Collapse
Affiliation(s)
- Dandan Tang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Qi Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengmeng Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiyan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Li Ai
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Li Ai, ; Chunjie Wu,
| | - Chunjie Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Li Ai, ; Chunjie Wu,
| |
Collapse
|
21
|
Sun JY, Liu YT, Jiang SN, Guo PM, Wu XY, Yu J. Essential oil from the roots of Paeonia lactiflora pall. has protective effect against corticosterone-induced depression in mice via modulation of PI3K/Akt signaling pathway. Front Pharmacol 2022; 13:999712. [PMID: 36188568 PMCID: PMC9523509 DOI: 10.3389/fphar.2022.999712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
For thousands of years, the roots of Paeonia lactiflora Pall (PLP) has been considered by traditional Chinese medicine as a drug that can improve mental or emotional disorders, including depression, anxiety and affective disorders. Unfortunately, the research on the mechanism of action and active ingredients of this beneficial drug is not comprehensive. This study focused on the activity of essential oil from PLP (EOP), systematically studied the antidepressant effect of EOP for the first time, and discussed the potential mechanism of its antidepressant effect. In this study, we used a mouse model of corticosterone (CORT)-induced depression, and found that EOP had a significant antidepressant effect on the symptoms of CORT-induced depression in mice, and significantly down-regulated the levels of CRH, ACTH and cortisol in the brain tissues of mice. In addition, we found that EOP treatment alleviated CORT-induced hippocampal neuron injury in mice In vitro experiments. It was also found that EOP could inhibit CORT-induced apoptosis and improve the proliferation ability and cell viability of PC12 cells. Further, with the help of network analysis, it was revealed that PI3K-Akt might be one of the main signaling pathways of EOP against CORT-induced hippocampal neuron apoptosis. In this study, we also found that EOP up-regulated the phosphorylation of PI3K and Akt in CORT-induced mouse hippocampal neurons and PC12 cells, and promoted the nuclear transcription of Nrf2 in CORT-induced PC12 cells. In conclusion, with the integrated approach, we demonstrated that EOP exerted anti-apoptotic effects on hippocampal neurons through PI3K/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jia-Yi Sun
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Tong Liu
- The Third Affiliated Hospital of Chengdu University of TCM/Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Sheng-Nan Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng-Mei Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin-Yu Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xin-Yu Wu, ; Jia Yu,
| | - Jia Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xin-Yu Wu, ; Jia Yu,
| |
Collapse
|
22
|
Li R, Wang L, Zhang Q, Duan H, Qian D, Yang F, Xia J. Alpiniae oxyphyllae fructus possesses neuroprotective effects on H 2O 2 stimulated PC12 cells via regulation of the PI3K/Akt signaling Pathway. Front Pharmacol 2022; 13:966348. [PMID: 36091821 PMCID: PMC9454318 DOI: 10.3389/fphar.2022.966348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Backgroud: Alzheimer's disease (AD) is a typical neurodegenerative disease, which occurs in the elderly population. Alpiniae oxyphyllae Fructus (AOF) is a traditional Chinese medicine that has potential therapeutic effect on AD, but the mechanism behind it is unclear. Methods: Firstly, the main chemical components of AOF were identified by LC-MS, while the main active ingredients and targets were screened by TCMSP database. At the same time, AD-related target proteins were obtained using Genecards and OMIM databases. PPI was constructed by cross-linking AOF and AD targets, and GO enrichment analysis and KEGG pathway enrichment analysis were performed to identify the relevant biological processes and signaling pathways. Finally, based on the H2O2-stimulated PC12 cell, flow cytometry, WB and immunofluorescence experiments were performed to verify the protective effect of AOF on AD. Results: We identified 38 active ingredients with 662 non-repetitive targets in AOF, of which 49 were potential therapeutic AD targets of AOF. According to the GO and KEGG analysis, these potential targets are mainly related to oxidative stress and apoptosis. The role of AOF in the treatment of AD is mainly related to the PI3K/AKT signaling pathway. Protocatechuic acid and nootkatone might be the main active ingredients of AOF. In subsequent experiments, the results of CCK-8 showed that AOF mitigated PC12 cell damage induced by H2O2. Kits, flow cytometry, and laser confocal microscopy indicated that AOF could decrease ROS and increase the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), while AOF could also increase mitochondrial membrane potential (MMP), thereby inhibiting apoptosis. Finally, immunofluorescence and WB results showed that AOF inhibited the expression of BAX and caspase-3 in PC12 cells, and promoted the expression of Bcl-2. At the same time, the phosphorylation levels of PI3K and Akt proteins were also significantly increased. Conclusion: This study suggests that AOF had the potential to treat AD by suppressing apoptosis induced by oxidative stress via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ruolan Li
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingyu Wang
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Huxinyue Duan
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xia
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Wang L, Li R, Zhang Q, Liu J, Tao T, Zhang T, Wu C, Ren Q, Pu X, Peng W. Pyracantha fortuneana (Maxim.) Li: A comprehensive review of its phytochemistry, pharmacological properties, and product development. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.940900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pyracantha fortuneana (Maxim.) Li has been used as a herbal medicine in China in its long history. Since ancient times, the fruits of P. fortuneana has been considered a functional food to improve various diseases. Many bioactive substances, including proanthocyanidins, phenols, polysaccharides, and dietary fibers, have been isolated and identified from the P. fortuneana, which possess diverse biological properties both in vitro and in vivo. Although the researches on the P. fortuneana have achieved extensive progress, the systematic study of its biological activities is still relatively lacking. In addition, accumulating researches focus on the landscape value of the P. fortuneana and the development of its by-products. The by-products of P. fortuneana, which show good development potentials in the field of agricultural production and environmental protection, are important for improving the economic value of P. fortuneana and its significance. After extensive reviewing and analyzing the existing published articles, books, and patents, this study aims to a systematic and summarized research trends of P. fortuneana and its phytochemical compositions, nutritional values, pharmacological effects and health benefits of its extracts/monomers, which would be beneficial for the future development of this medicinal plant as functional food or drugs.
Collapse
|
24
|
Li J, Wang X, Xun S, Guo Q, Wang Y, Jia Y, Wang W, Wang Y, Li T, Tang T, Zou J, Wang M, Yang M, Wang F, Zhang X, Wang C. Study of the Mechanism of Antiemetic Effect of Lavandula angustifolia Mill. Essential Oil Based on Ca 2+/CaMKII/ERK1/2 Pathway. Drug Des Devel Ther 2022; 16:2407-2422. [PMID: 35923932 PMCID: PMC9341382 DOI: 10.2147/dddt.s366597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To investigate the effective components and possible mechanism of action of Lavandula angustifolia Mill. essential oil (LEO) in preventing vomiting through the olfactory pathway. Materials and Methods A new network pharmacology-based method was established to analyze main components and pathways of LEO involved in antiemetic effects by introducing component content; biological activities of key proteins of the olfactory pathway and their corresponding compounds were verified by molecular docking technique; and finally pica in a rat model was established to verify the molecular mechanism of antiemetic effects of LEO by enzyme-linked immunosorbent assay (ELISA) to determine the serum 5-HT, substance P, and DA levels in each group and by immunohistochemistry to determine the contents of 5-HT3R, CaMKII and ERK1/2 proteins in the medulla oblongata tissue. Results Network pharmacology combined with molecular docking analysis showed that the mechanism of the antiemetic effect of LEO may be related to (2Z)-3,7-dimethyl-2,6-octadienyl acetate, linalyl acetate, butanoic acid, hexyl ester, 4-hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, acetate, .tau.-cadinol and other active ingredients, which regulate the cyclic adenosine monophosphate (cAMP) signaling pathway and the expression of BRAF, PDE and other targets on the pathway. An ELISA revealed that LEO reduced the levels of 5-hydroxytryptamine (5-HT), substance P, and dopamine in serum compared with the model group (P <0.05). Immunohistochemical analysis showed that LEO decreased the expression of 5-HT3R, CaMKII, and ERK1/2 proteins in the medulla oblongata of rats compared with the model group (P <0.01). Conclusion LEO may achieve the antiemetic effect by reducing the content of 5-HT and inhibiting its related receptors, thereby regulating downstream Ca2+/CaMKII/ERK1/2 pathway of the cAMP signaling pathway.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Xiao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Shining Xun
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Qiuting Guo
- Xianyang Vocational Technical College, Xianyang, People’s Republic of China
| | - Yao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yanzuo Jia
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Wenfei Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yujiao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Taotao Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Tiantian Tang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Junbo Zou
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Mei Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Ming Yang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Fang Wang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Xiaofei Zhang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Changli Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| |
Collapse
|
25
|
A Novel Based-Network Strategy to Identify Phytochemicals from Radix Salviae Miltiorrhizae (Danshen) for Treating Alzheimer's Disease. Molecules 2022; 27:molecules27144463. [PMID: 35889336 PMCID: PMC9317794 DOI: 10.3390/molecules27144463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that strikes millions worldwide. Herein, we demonstrate a new approach based on network target to identify anti-AD compounds from Danshen. Network pharmacology and molecular docking were employed to establish the DS-AD network, which mainly involved apoptosis of neuron cells. Then network scoring was confirmed via Connectivity Map analysis. M308 (Danshenxinkun D) was an anti-AD candidate with a high score (p < 0.01). Furthermore, we conducted ex vivo experiments with H2O2-treated PC12 cells to verify the neuroprotective effect of Salvia miltiorrhiza-containing plasma (SMP), and UPLC-Q-TOF/MS and RT-qPCR were performed to demonstrate the anti-AD activity of M308 from SMP. Results revealed that SMP could enhance cell viability and level of acetylcholine. AO/EB staining and Mitochondrial membrane potential (MMP) analysis showed that SMP significantly suppressed apoptosis, which may be due to anti-oxidative stress activity. Moreover, the effects of M308 and SMP on expressions of PSEN1, DRD2, and APP mRNA were consistent, and M308 can significantly reverse the expression of PSEN1 and DRD2 mRNA in H2O2-treated PC12 cells. The strategy based on the network could be employed to identify anti-AD compounds from Chinese herbs. Notably, M308 stands out as a promising anti-AD candidate for development.
Collapse
|
26
|
Tang Y. Editorial: Nutraceuticals. Curr Opin Pharmacol 2022; 66:102265. [PMID: 35830773 DOI: 10.1016/j.coph.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Key Laboratory of Sichuan Province, 37 Shi-er Qiao Road, Chengdu 610075, China.
| |
Collapse
|
27
|
Zhang T, Liu Z, Sun X, Liu Z, Zhang L, Zhang Q, Peng W, Wu C. Botany, traditional uses, phytochemistry, pharmacological and toxicological effects of Croton tiglium Linn.: a comprehensive review. J Pharm Pharmacol 2022; 74:1061-1084. [PMID: 35723937 DOI: 10.1093/jpp/rgac040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Croton tiglium Linn. (Euphorbiaceae) is an ancient medicinal plant that has been used for a long time, which is widely distributed in tropical and subtropical regions. And it is widely used for defecation, induced labour, treatment of gastrointestinal diseases, headache, as well as rheumatoid arthritis. KEY FINDINGS Approximately 150 compounds have been isolated and identified from the seeds, stems, leaves and branches of C. tiglium, including fatty acids, terpenoids, alkaloids, the plants proteins and other types of components. Based on a wide range of biological properties, C. tiglium has a wide range of pharmacological effects, such as antitumor, anti-HIV, analgesic, anti-inflammatory and antibacterial effects. SUMMARY The review aims to provide a critical and comprehensive evaluation of the botany, phytochemistry, pharmacology and toxicity of C. tiglium, with a vision for promoting further pharmaceutical research to explore its complete potential for better clinical application. The tigliane diterpenoids have been the most studied compounds isolated from C. tiglium, which showing a variety of biological activities, but there is insufficient evidence to explain the mechanism of action. In addition, C. tiglium may have potential toxic effects, and it is necessary to reduce the toxic effects to ensure the safety of clinical medication, which may promote the discovery and development of new drugs.
Collapse
Affiliation(s)
- Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zibo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ziqi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Lilin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
28
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:919-929. [DOI: 10.1093/jpp/rgac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/03/2022] [Indexed: 11/14/2022]
|