1
|
Rao N, Paek A, Contreras-Vidal JL, Parikh PJ. Entropy in Electroencephalographic Signals Modulates with Force Magnitude During Grasping - A Preliminary Report. J Mot Behav 2024; 56:665-677. [PMID: 39056321 PMCID: PMC11449659 DOI: 10.1080/00222895.2024.2373241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/22/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
The ability to hold objects relies on neural processes underlying grip force control during grasping. Brain activity lateralized to contralateral hemisphere averaged over trials is associated with grip force applied on an object. However, the involvement of neural variability within-trial during grip force control remains unclear. We examined dependence of neural variability over frontal, central, and parietal regions of interest (ROI) on grip force magnitude using noninvasive electroencephalography (EEG). We utilized our existing EEG dataset comprised of healthy young adults performing an isometric force control task, cued to exert 5, 10, or 15% of their maximum voluntary contraction (MVC) across trials and received visual feedback of their grip force. We quantified variability in EEG signal via sample entropy (sequence-dependent) and standard deviation (sequence-independent measure) over ROI. We found lateralized modulation in EEG sample entropy with force magnitude over central electrodes but not over frontal or parietal electrodes. However, modulation was not observed for standard deviation in the EEG activity. These findings highlight lateralized and spatially constrained modulation in sequence-dependent, but not sequence-independent component of EEG variability. We contextualize these findings in applications requiring finer precision (e.g., prosthesis), and propose directions for future studies investigating role of neural entropy in behavior.
Collapse
Affiliation(s)
- Nishant Rao
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, USA
- Yale Child Study Center, Yale University, New Haven, CT, USA
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Andrew Paek
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | | | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| |
Collapse
|
2
|
Brunfeldt AT, Desrochers PC, Kagerer FA. Structural Learning Benefits in a Visuomotor Adaptation Task Generalize to a Contralateral Effector. J Mot Behav 2024; 56:642-653. [PMID: 38989887 DOI: 10.1080/00222895.2024.2371503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Structural learning is characterized by facilitated adaptation following training on a set of sensory perturbations all belonging to the same structure (e.g., 'visuomotor rotations'). This generalization of learning is a core feature of the motor system and is often studied in the context of interlimb transfer. However, such transfer has only been demonstrated when participants learn to counter a specific perturbation in the sensory feedback of their movements; we determined whether structural learning in one limb generalized to the contralateral limb. We trained 13 participants to counter random visual feedback rotations between +/-90 degrees with the right hand and subsequently tested the left hand on a fixed rotation. The structural training group showed faster adaptation in the left hand in both feedforward and feedback components of reaching compared to 13 participants who trained with veridical reaching, with lower initial reaching error, and straighter, faster, and smoother movements than in the control group. The transfer was ephemeral - benefits were confined to roughly the first 20 trials. The results demonstrate that the motor system can extract invariant properties of seemingly random environments in one limb, and that this information can be accessed by the contralateral limb.
Collapse
Affiliation(s)
| | | | - Florian A Kagerer
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Koponen LM, Martinez M, Wood E, Murphy DLK, Goetz SM, Appelbaum LG, Peterchev AV. Transcranial magnetic stimulation input-output curve slope differences suggest variation in recruitment across muscle representations in primary motor cortex. Front Hum Neurosci 2024; 18:1310320. [PMID: 38384332 PMCID: PMC10879434 DOI: 10.3389/fnhum.2024.1310320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Measurement of the input-output (IO) curves of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) can be used to assess corticospinal excitability and motor recruitment. While IO curves have been used to study disease and pharmacology, few studies have compared the IO curves across the body. This study sought to characterize IO curve parameters across the dominant and non-dominant sides of upper and lower limbs in healthy participants. Laterality preferences were assessed in eight healthy participants and IO curves were measured bilaterally for the first dorsal interosseous (FDI), biceps brachii (BB), and tibialis anterior (TA) muscles. Results show that FDI has lower motor threshold than BB which is, in turn, lower than TA. In addition, both BB and TA have markedly shallower logarithmic IO curve slopes from small to large MEP responses than FDI. After normalizing these slopes by their midpoints to account for differences in motor thresholds, which could result from geometric factors such as the target depth, large differences in logarithmic slopes remain present between all three muscles. The differences in slopes between the muscles could not be explained by differences in normalized IO curve spreads, which relate to the extent of the cortical representation and were comparable across the muscles. The IO curve differences therefore suggest muscle-dependent variations in TMS-evoked recruitment across the primary motor cortex, which should be considered when utilizing TMS-evoked MEPs to study disease states and treatment effects.
Collapse
Affiliation(s)
- Lari M. Koponen
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Miles Martinez
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
| | - Eleanor Wood
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
| | - David L. K. Murphy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
| | - Stefan M. Goetz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Lawrence G. Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Ogawa A, Sakamoto M, Matsumoto A, Okusaki T, Sasaya R, Irie K, Liang N. Accuracy of Force Generation and Preparatory Prefrontal Oxygenation in Ballistic Hand Power and Precision Grips. J Mot Behav 2023; 56:226-240. [PMID: 37997191 DOI: 10.1080/00222895.2023.2283541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
It remains unclear whether accurate motor performance and cortical activation differ among grasping forms across several force levels. In the present study, a ballistic target force matching task (20%, 40%, 60%, and 80% of maximum voluntary force) with power grip, side pinch, and pulp pinch was utilized to explore the accuracy of the forces generated as well as the muscular activity of intrinsic and extrinsic hand muscles. By using near-infrared spectroscopy, we also examined bilateral dorsolateral prefrontal cortex (DLPFC) activation during the preparatory phase (initial 10 s) of the task. The accuracy of the power grip and pulp pinch was relatively higher than that of the side pinch, and the electromyographic activity of intrinsic hand muscles exhibited a similar trend for power grip and side pinch, while the opposite muscle recruitment pattern was observed for pulp pinch. The increment of DLPFC oxygenation across force levels differed among grasping forms, with greater activity at relatively higher levels in the power grip and side pinch, and at relatively lower levels in the pulp pinch. Taken together, the differential contribution of the DLPFC may be responsible for force generation depending on different grasping forms and force levels.
Collapse
Affiliation(s)
- Akari Ogawa
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Sakamoto
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Amiri Matsumoto
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuei Okusaki
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ren Sasaya
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Irie
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Watanabe H, Ogoh S, Miyamoto N, Kanehisa H, Yoshitake Y. Greater task difficulty during unilateral motor tasks changes intracortical inhibition and facilitation in the ipsilateral primary motor cortex in young men. Neurosci Lett 2023; 808:137293. [PMID: 37169163 DOI: 10.1016/j.neulet.2023.137293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to clarify the changes in short-interval intracortical inhibition (SICI) and facilitation (ICF) in the ipsilateral primary motor cortex (iM1) when the task difficulty during unilateral force-matching tasks was manipulated. Twelve young male adults matched their left index finger abduction force to a displayed target force. Task difficulty was manipulated by varying the acceptable force range of the mean target force (5% MVC). Briefly, unilateral force-matching tasks with lesser and greater task difficulty (EASY and DIFF, respectively) were assigned acceptable force ranges of ± 7% and ± 0% of the target force, respectively. To evaluate SICI and ICF in iM1, paired-pulse transcranial magnetic stimulation with 2-ms and 10-ms interstimulus intervals was applied to correct motor-evoked potentials (MEPs) from the first dorsal interosseous muscle during each task. Test stimulus intensity to evoke the MEP with a peak-to-peak amplitude of approximately 0.5-1.5 mV for each task was lower in DIFF than in EASY (P = 0.001), indicating that DIFF increased corticospinal excitability of the ipsilateral hemisphere compared with EASY. The MEPs in SICI and ICF were significantly larger in DIFF than in EASY (P < 0.050). These results suggest that greater corticospinal excitability in the ipsilateral hemisphere during DIFF is associated with reduced SICI and increased ICF.
Collapse
Affiliation(s)
- Hironori Watanabe
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya, Kagoshima 8912393, Japan; Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-Shi, Saitama 3508585, Japan; Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Naokazu Miyamoto
- Faculty of Health and Sports Science, Juntendo University, 1-1 Hiraka-gakuendai, Inzai, Chiba 2701695, Japan
| | - Hiroaki Kanehisa
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya, Kagoshima 8912393, Japan
| | - Yasuhide Yoshitake
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya, Kagoshima 8912393, Japan; Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan; School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Rao N, Paek A, Contreras-Vidal JL, Parikh PJ. Lateralized Neural Entropy modulates with Grip Force during Precision Grasping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539751. [PMID: 37214821 PMCID: PMC10197571 DOI: 10.1101/2023.05.07.539751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
When holding a coffee mug filled to the brim, we strive to avoid spilling the coffee. This ability relies on the neural processes underlying the control of finger forces on a moment-to-moment basis. The brain activity lateralized to the contralateral hemisphere averaged over a trial and across the trials is known to be associated with the magnitude of grip force applied on an object. However, the mechanistic involvement of the variability in neural signals during grip force control remains unclear. In this study, we examined the dependence of neural variability over the frontal, central, and parietal regions assessed using noninvasive electroencephalography (EEG) on grip force magnitude during an isometric force control task. We hypothesized laterally specific modulation in EEG variability with higher magnitude of the grip force exerted during grip force control. We utilized an existing EEG dataset (64 channel) comprised of healthy young adults, who performed an isometric force control task while receiving visual feedback of the force applied. The force magnitude to be exerted on the instrumented object was cued to participants during the task, and varied pseudorandomly among 5, 10, and 15% of their maximum voluntary contraction (MVC) across the trials. We quantified neural variability via sample entropy (sequence-dependent measure) and standard deviation (sequence-independent measure) of the temporal EEG signal over the frontal, central, and parietal electrodes. The EEG sample entropy over the central electrodes showed lateralized, nonlinear, localized, modulation with force magnitude. Similar modulation was not observed over frontal or parietal EEG activity, nor for standard deviation in the EEG activity. Our findings highlight specificity in neural control of grip forces by demonstrating the modulation in sequence-dependent but not sequence-independent component of EEG variability. This modulation appeared to be lateralized, spatially constrained, and functionally dependent on the grip force magnitude. We discuss the relevance of these findings in scenarios where a finer precision is essential to enable grasp application, such as prosthesis and associated neural signal integration, and propose directions for future studies investigating the mechanistic role of neural entropy in grip force control.
Collapse
|
7
|
Efficacy of contralaterally controlled functional electrical stimulation compared to cyclic neuromuscular electrical stimulation and task-oriented training for recovery of hand function after stroke: study protocol for a multi-site randomized controlled trial. Trials 2022; 23:397. [PMID: 35549747 PMCID: PMC9097385 DOI: 10.1186/s13063-022-06303-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multi-site studies in stroke rehabilitation are important for determining whether a technology and/or treatment can be successfully administered by sites other than the originating site and with similar positive outcomes. This study is the first multi-site clinical trial of a novel intervention for post-stroke upper limb rehabilitation called contralaterally controlled functional electrical stimulation (CCFES). Previous pilot and single-site studies showed positive effects of CCFES on upper limb impairment and hand dexterity in stroke survivors. The main purpose of this study is to confirm and demonstrate the efficacy of CCFES in a larger group of most likely responders across multiple clinical sites. METHODS Up to 129 stroke survivors with moderate to severe upper extremity hemiparesis at 4 clinical trial sites will be randomized to CCFES, cyclic neuromuscular electrical stimulation (cNMES), or task-oriented-training (TOT). Participants will receive 12 weeks of group-specific therapy. Blinded assessments of upper limb impairment and activity limitation, quality of life, and neurophysiology will be used to compare outcomes at baseline, after treatment, and up to 6 months post-treatment. The primary endpoint is change in dexterity from baseline to 6 months post-treatment. DISCUSSION Loss of hand function following stroke is a major rehabilitation problem affecting millions of people per year globally. More effective rehabilitation therapies are needed to restore hand function in these individuals. This study will determine whether CCFES therapy produces greater improvements in upper extremity function than cNMES or TOT, and will begin to elucidate the different mechanisms underlying each of the three treatments. This multi-site study is a critical step in advancing a novel method of rehabilitation toward clinical translation and widespread dissemination. TRIAL REGISTRATION ClinicalTrials.gov NCT03574623 . Registered prior to first enrollment; July 2, 2018.
Collapse
|
8
|
Buetler KA, Penalver-Andres J, Özen Ö, Ferriroli L, Müri RM, Cazzoli D, Marchal-Crespo L. "Tricking the Brain" Using Immersive Virtual Reality: Modifying the Self-Perception Over Embodied Avatar Influences Motor Cortical Excitability and Action Initiation. Front Hum Neurosci 2022; 15:787487. [PMID: 35221950 PMCID: PMC8863605 DOI: 10.3389/fnhum.2021.787487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 02/02/2023] Open
Abstract
To offer engaging neurorehabilitation training to neurologic patients, motor tasks are often visualized in virtual reality (VR). Recently introduced head-mounted displays (HMDs) allow to realistically mimic the body of the user from a first-person perspective (i.e., avatar) in a highly immersive VR environment. In this immersive environment, users may embody avatars with different body characteristics. Importantly, body characteristics impact how people perform actions. Therefore, alternating body perceptions using immersive VR may be a powerful tool to promote motor activity in neurologic patients. However, the ability of the brain to adapt motor commands based on a perceived modified reality has not yet been fully explored. To fill this gap, we "tricked the brain" using immersive VR and investigated if multisensory feedback modulating the physical properties of an embodied avatar influences motor brain networks and control. Ten healthy participants were immersed in a virtual environment using an HMD, where they saw an avatar from first-person perspective. We slowly transformed the surface of the avatar (i.e., the "skin material") from human to stone. We enforced this visual change by repetitively touching the real arm of the participant and the arm of the avatar with a (virtual) hammer, while progressively replacing the sound of the hammer against skin with stone hitting sound via loudspeaker. We applied single-pulse transcranial magnetic simulation (TMS) to evaluate changes in motor cortical excitability associated with the illusion. Further, to investigate if the "stone illusion" affected motor control, participants performed a reaching task with the human and stone avatar. Questionnaires assessed the subjectively reported strength of embodiment and illusion. Our results show that participants experienced the "stone arm illusion." Particularly, they rated their arm as heavier, colder, stiffer, and more insensitive when immersed with the stone than human avatar, without the illusion affecting their experienced feeling of body ownership. Further, the reported illusion strength was associated with enhanced motor cortical excitability and faster movement initiations, indicating that participants may have physically mirrored and compensated for the embodied body characteristics of the stone avatar. Together, immersive VR has the potential to influence motor brain networks by subtly modifying the perception of reality, opening new perspectives for the motor recovery of patients.
Collapse
Affiliation(s)
- Karin A. Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Joaquin Penalver-Andres
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Psychosomatic Medicine, Department of Neurology, University Hospital of Bern (Inselspital), Bern, Switzerland
| | - Özhan Özen
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Luca Ferriroli
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - René M. Müri
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital of Bern (Inselspital), University of Bern, Bern, Switzerland
| | - Dario Cazzoli
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital of Bern (Inselspital), University of Bern, Bern, Switzerland
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
9
|
Dai W, Nakagawa K, Nakajima T, Kanosue K. Determinants of Neural Plastic Changes Induced by Motor Practice. Front Hum Neurosci 2021; 15:613867. [PMID: 33584230 PMCID: PMC7875877 DOI: 10.3389/fnhum.2021.613867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
Short-term motor practice leads to plasticity in the primary motor cortex (M1). The purpose of this study is to investigate the factors that determine the increase in corticospinal tract (CST) excitability after motor practice, with special focus on two factors; “the level of muscle activity” and “the presence/absence of a goal of keeping the activity level constant.” Fifteen healthy subjects performed four types of rapid thumb adduction in separate sessions. In the “comfortable task” (C) and “forceful task” (F), the subjects adducted their thumb using comfortable and strong forces. In the “comfortable with a goal task” (CG) and “forceful with a goal task” (FG), subjects controlled the muscle activity at the same level as in the C and F, respectively, by adjusting the peak electromyographic amplitude within the target ranges. Paired associative stimulation (PAS), which combines peripheral nerve (median nerve) stimulation and transcranial magnetic stimulation (TMS), with an inter-stimulus interval of 25 ms (PAS25) was also done. Before and after the motor tasks and PAS25, TMS was applied to the M1. None of the four tasks showed any temporary changes in behavior, meaning no learning occurred. Motor-evoked potential (MEP) amplitude increased only after the FG and it exhibited a positive correlation with the MEP increase after PAS25, suggesting that FG and PAS25 share at least similar plasticity mechanisms in the M1. Resting motor threshold (RMT) decreased only after FG, suggesting that FG would also be associated with the membrane depolarization of M1 neurons. These results suggest task-dependent plasticity from the synergistic effect of forceful muscle activity and of setting a goal of keeping the activity level constant.
Collapse
Affiliation(s)
- Wen Dai
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
10
|
Carson RG. Inter‐hemispheric inhibition sculpts the output of neural circuits by co‐opting the two cerebral hemispheres. J Physiol 2020; 598:4781-4802. [DOI: 10.1113/jp279793] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Richard G. Carson
- Trinity College Institute of Neuroscience and School of Psychology Trinity College Dublin Dublin 2 Ireland
- School of Psychology Queen's University Belfast Belfast BT7 1NN UK
- School of Human Movement and Nutrition Sciences University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
11
|
Carment L, Dupin L, Guedj L, Térémetz M, Cuenca M, Krebs MO, Amado I, Maier MA, Lindberg PG. Neural noise and cortical inhibition in schizophrenia. Brain Stimul 2020; 13:1298-1304. [PMID: 32585356 DOI: 10.1016/j.brs.2020.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neural information processing is subject to noise and this leads to variability in neural firing and behavior. Schizophrenia has been associated with both more variable motor control and impaired cortical inhibition, which is crucial for excitatory/inhibitory balance in neural commands. HYPOTHESIS In this study, we hypothesized that impaired intracortical inhibition in motor cortex would contribute to task-related motor noise in schizophrenia. METHODS We measured variability of force and of electromyographic (EMG) activity in upper limb and hand muscles during a visuomotor grip force-tracking paradigm in patients with schizophrenia (N = 25), in unaffected siblings (N = 17) and in healthy control participants (N = 25). Task-dependent primary motor cortex (M1) excitability and inhibition were assessed using transcranial magnetic stimulation (TMS). RESULTS During force maintenance patients with schizophrenia showed increased variability in force and EMG, despite similar mean force and EMG magnitudes. Compared to healthy controls, patients with schizophrenia also showed increased M1 excitability and reduced cortical inhibition during grip-force tracking. EMG variability and force variability correlated negatively to cortical inhibition in patients with schizophrenia. EMG variability also correlated positively to negative symptoms. Siblings had similar variability and cortical inhibition compared to controls. Increased EMG and force variability indicate enhanced motor noise in schizophrenia, which relates to reduced motor cortex inhibition. CONCLUSION The findings suggest that excessive motor noise in schizophrenia may arise from an imbalance of M1 excitation/inhibition of GABAergic origin. Thus, higher motor noise may provide a useful marker of impaired cortical inhibition in schizophrenia.
Collapse
Affiliation(s)
- Loïc Carment
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France.
| | - Lucile Dupin
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| | - Laura Guedj
- Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Maxime Térémetz
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| | - Macarena Cuenca
- Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Centre de Recherche Clinique, Hôpital Sainte-Anne, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Isabelle Amado
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Marc A Maier
- Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Université de Paris, CNRS UMR, 8002, Paris, France
| | - Påvel G Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| |
Collapse
|
12
|
Rao N, Parikh PJ. Fluctuations in Human Corticospinal Activity Prior to Grasp. Front Syst Neurosci 2019; 13:77. [PMID: 31920572 PMCID: PMC6933951 DOI: 10.3389/fnsys.2019.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022] Open
Abstract
Neuronal firing rate variability prior to movement onset contributes to trial-to-trial variability in primate behavior. However, in humans, whether similar mechanisms contribute to trial-to-trial behavioral variability remains unknown. We investigated the time-course of trial-to-trial variability in corticospinal excitability (CSE) using transcranial magnetic stimulation (TMS) during a self-paced reach-to-grasp task. We hypothesized that CSE variability will be modulated prior to the initiation of reach and that such a modulation would explain trial-to-trial behavioral variability. Able-bodied individuals were visually cued to plan their grip force before exertion of either 30% or 5% of their maximum pinch force capacity on an object. TMS was delivered at six time points (0.5, 0.75, 1, 1.1, 1.2, and 1.3 s) following a visual cue that instructed the force level. We first modeled the relation between CSE magnitude and its variability at rest (n = 12) to study the component of CSE variability pertaining to the task but not related to changes in CSE magnitude (n = 12). We found an increase in CSE variability from 1.2 to 1.3 s following the visual cue at 30% but not at 5% of force. This effect was temporally dissociated from the decrease in CSE magnitude that was observed from 0.5 to 0.75 s following the cue. Importantly, the increase in CSE variability explained at least ∼40% of inter-individual differences in trial-to-trial variability in time to peak force rate. These results were found to be repeatable across studies and robust to different analysis methods. Our findings suggest that the neural mechanisms underlying modulation in CSE variability and CSE magnitude are distinct. Notably, the extent of modulation in variability in corticospinal system prior to grasp within individuals may explain their trial-to-trial behavioral variability.
Collapse
Affiliation(s)
| | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| |
Collapse
|
13
|
Effects of acute and chronic unilateral resistance training variables on ipsilateral motor cortical excitability and cross-education: A systematic review. Phys Ther Sport 2019; 40:143-152. [DOI: 10.1016/j.ptsp.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/09/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
|
14
|
Colomer-Poveda D, Romero-Arenas S, Lundbye-Jensen J, Hortobágyi T, Márquez G. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men. J Appl Physiol (1985) 2019; 127:1128-1139. [PMID: 31436513 DOI: 10.1152/japplphysiol.01106.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the effects of acute resistance training (RT) intensity on motor-evoked potentials (MEPs) generated by transcranial magnetic brain stimulation and on cervicomedullary motor-evoked potentials (CMEPs) produced by electrical stimulation of the corticospinal tract. In four experimental sessions, 14 healthy young men performed 12 sets of eight isometric contractions of the elbow flexors at 0 (Control session), 25, 50, and 75% of the maximal voluntary contraction (MVC). Before and after each session, MEPs, CMEPs, and the associated twitch forces were recorded at rest. MEPs increased by 39% (P < 0.05 versus 25% in the control condition, Effect size (ES) = 1.04 and 1.76, respectively) after the 50% session and by 70% (P < 0.05 vs. all other conditions, ES = 0.91-2.49) after the 75% session. In contrast, CMEPs increased similarly after the 25%, 50%, and 75% sessions with an overall increase of 27% (P < 0.05 vs. control condition, ES = 1.34). The amplitude of maximal compound muscle action potentials (Mmax) was unchanged during the experiment. The MEP- and CMEP-associated twitch forces also increased after RT, but training intensity affected only the increases in MEP twitch forces. The data tentatively suggest that the intensity of muscle contraction used in acute bouts of RT affects cortical excitability.NEW & NOTEWORTHY Resistance training (RT) can acutely increase the efficacy of the corticospinal-motoneuronal synapse, motoneuron excitability and motor cortical excitability. We show that motor-evoked potential generated by transcranial magnetic stimulation but not cervicomedullary electrical stimulation increased in proportion to the intensity of training used during a single session of RT. The data suggest that the intensity of muscle contraction used in acute bouts of RT affects cortical excitability.
Collapse
Affiliation(s)
- David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Salvador Romero-Arenas
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
15
|
Watanabe H, Mizuguchi N, Mayfield DL, Yoshitake Y. Corticospinal Excitability During Actual and Imaginary Motor Tasks of Varied Difficulty. Neuroscience 2018; 391:81-90. [DOI: 10.1016/j.neuroscience.2018.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/29/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
16
|
Archer DB, Kang N, Misra G, Marble S, Patten C, Coombes SA. Visual feedback alters force control and functional activity in the visuomotor network after stroke. NEUROIMAGE-CLINICAL 2017; 17:505-517. [PMID: 29201639 PMCID: PMC5700823 DOI: 10.1016/j.nicl.2017.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 11/27/2022]
Abstract
Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.
Collapse
Affiliation(s)
- Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Nyeonju Kang
- Division of Sport Science, Incheon National University, Incheon, South Korea
| | - Gaurav Misra
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Shannon Marble
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Carolynn Patten
- Neural Control of Movement Lab, Department of Physical Therapy, University of Florida and Malcolm-Randall VA Medical Center, Gainesville, FL, United States
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
17
|
Lim YM, Kang YR, Kang SY. Somatosensory and Motor Functions in Smartphone Systematic Users and Non-Users. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Corticospinal excitability for hand muscles during motor imagery of foot changes with imagined force level. PLoS One 2017; 12:e0185547. [PMID: 28957398 PMCID: PMC5619792 DOI: 10.1371/journal.pone.0185547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022] Open
Abstract
The object of this study was to clarify whether corticospinal excitability controlling hand muscles changes concurrently with increases in the imagined contraction level of foot dorsiflexion. Twelve participants performed actual and imagined dorsiflexion of their right foot at three different EMG levels (10, 40 or 80% of the maximum voluntary contraction). During isometric actual- or imagined- dorsiflexion, transcranial magnetic stimulation (TMS) was delivered to the right hand area of the left primary motor cortex. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). During actual contraction, MEP amplitudes of ECR and FCR increased with an increased EMG level of dorsiflexion. Similarly, during imagery contraction, MEP amplitudes of ECR and FCR increased with the intensity of imagery contraction. Furthermore, a correlation between MEP amplitude during actual contraction and imagery contraction was observed for both ECR and FCR. Motor imagery of foot contraction induced an enhancement of corticospinal excitability for hand muscles that was dependent on the imagined contraction levels, just as what was observed when there was an actual contraction.
Collapse
|
19
|
Lei Y, Perez MA. Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. J Physiol 2017; 595:6203-6217. [PMID: 28513860 DOI: 10.1113/jp274504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS It has long been known that the somatosensory cortex gates sensory inputs from the contralateral side of the body. Here, we examined the contribution of the ipsilateral somatosensory cortex (iS1) to sensory gating during index finger voluntary activity. The amplitude of the P25/N33, but not other somatosensory evoked potential (SSEP) components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition between S1s and intracortical inhibition in the S1 modulated the amplitude of the P25/N33. Note that changes in interhemispheric inhibition between S1s correlated with changes in cortical circuits in the ipsilateral motor cortex. Our findings suggest that cortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans. ABSTRACT An important principle in the organization of the somatosensory cortex is that it processes afferent information from the contralateral side of the body. The role of the ipsilateral somatosensory cortex (iS1) in sensory gating in humans remains largely unknown. Using electroencephalographic (EEG) recordings over the iS1 and electrical stimulation of the ulnar nerve at the wrist, we examined somatosensory evoked potentials (SSEPs; P14/N20, N20/P25 and P25/N33 components) and paired-pulse SSEPs between S1s (interhemispheric inhibition) and within (intracortical inhibition) the iS1 at rest and during tonic index finger voluntary activity. We found that the amplitude of the P25/N33, but not other SSEP components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition increased the amplitude of the P25/N33 and intracortical inhibition reduced the amplitude of the P25/N33, suggesting a cortical origin for this effect. The P25/N33 receives inputs from the motor cortex, so we also examined the contribution of distinct sets of cortical interneurons by testing the effect of ulnar nerve stimulation on motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the ipsilateral motor cortex with the coil in the posterior-anterior (PA) and anterior-posterior (AP) orientation. Afferent input attenuated PA, but not AP, MEPs during voluntary activity compared with rest. Notably, changes in interhemispheric inhibition correlated with changes in PA MEPs. Our novel findings suggest that interhemispheric projections between S1s and intracortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Centre, 1201 NW 16th Street, Miami, FL, 33125, USA
| |
Collapse
|
20
|
Smith MC, Stinear JW, Alan Barber P, Stinear CM. Effects of non-target leg activation, TMS coil orientation, and limb dominance on lower limb motor cortex excitability. Brain Res 2016; 1655:10-16. [PMID: 27840187 DOI: 10.1016/j.brainres.2016.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/15/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022]
Abstract
Transcranial magnetic stimulation (TMS) is used to examine corticospinal tract integrity after stroke, however, generating motor-evoked potentials (MEPs) in the lower limb (LL) can be difficult. Previous studies have used activation of the target leg to facilitate MEPs in the LL but this may not be possible after stroke due to hemiplegia. The dominance of the target limb may also be important, however the neurophysiological effects of LL dominance are not known. We investigated whether voluntary activation of the non-target leg combined with optimal TMS coil orientation increases corticomotor excitability in healthy adults, and whether limb dominance influences these results. TMS was delivered to induce a posterior-anterior (PA) and a medial-lateral (ML) cortical current in 22 healthy adults. MEPs were recorded in tibialis anterior (TA) with the participant at rest and when activating the non-target leg. We found that non-target leg activation increased corticomotor excitability in the target leg (reduced rest motor threshold (RMT) and MEP latency, and increased recruitment curve slope). ML cortical current also reduced RMT and MEP latency. The degree of footedness correlated with the degree of RMT asymmetry, with a PA but not ML cortical current direction. In summary, cross-facilitation by activating the non-target leg in a task requiring postural stabilisation and inducing ML current increase corticomotor excitability regardless of limb dominance. This protocol may have practical application in testing CST integrity after stroke when paretic limb thresholds are high, by increasing the likelihood of eliciting a MEP.
Collapse
Affiliation(s)
- Marie-Claire Smith
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James W Stinear
- Department of Exercise Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - P Alan Barber
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Cathy M Stinear
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
21
|
Zult T, Goodall S, Thomas K, Hortobágyi T, Howatson G. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions. J Neurophysiol 2015; 113:2262-70. [PMID: 25632077 DOI: 10.1152/jn.00686.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/15/2015] [Indexed: 01/28/2023] Open
Abstract
Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions.
Collapse
Affiliation(s)
- Tjerk Zult
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands;
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands; Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| |
Collapse
|
22
|
The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res 2015; 233:679-89. [DOI: 10.1007/s00221-014-4183-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
|
23
|
Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev 2014; 47:22-35. [DOI: 10.1016/j.neubiorev.2014.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
|
24
|
Mizuguchi N, Nakata H, Kanosue K. Activity of right premotor-parietal regions dependent upon imagined force level: an fMRI study. Front Hum Neurosci 2014; 8:810. [PMID: 25339893 PMCID: PMC4189331 DOI: 10.3389/fnhum.2014.00810] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/23/2014] [Indexed: 11/21/2022] Open
Abstract
In this study, we utilized functional magnetic resonance imaging (fMRI) to measure blood oxygenation level-dependent (BOLD) signals. This allowed us to evaluate the relationship between brain activity and imagined force level. Subjects performed motor imagery of repetitive right hand grasping with three different levels of contractile force; 10%, 30%, and 60% of their maximum voluntary contraction (MVC). We observed a common activation among each condition in the following brain regions; the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), supplementary motor area (SMA), premotor area (PM), insula, and inferior parietal lobule (IPL). In addition, the BOLD signal changes were significantly larger at 60% MVC than at 10% MVC in the right PM, the right IPL, and the primary somatosensory cortex (SI). These findings indicate that during motor imagery right fronto-parietal activity increases as the imagined contractile force level is intensified. The present finding that the right brain activity during motor imagery is clearly altered depending on the imagined force level suggests that it may be possible to decode intended force level during the motor imagery of patients or healthy subjects.
Collapse
Affiliation(s)
- Nobuaki Mizuguchi
- Faculty of Sport Sciences, Waseda University Tokorozawa, Saitama, Japan
| | - Hiroki Nakata
- Faculty of Sport Sciences, Waseda University Tokorozawa, Saitama, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University Tokorozawa, Saitama, Japan
| |
Collapse
|
25
|
Primary motor cortex and ipsilateral control: A TMS study. Neuroscience 2014; 270:20-6. [DOI: 10.1016/j.neuroscience.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022]
|
26
|
Heetkamp J, Hortobágyi T, Zijdewind I. Increased bilateral interactions in middle-aged subjects. Front Aging Neurosci 2014; 6:5. [PMID: 24478699 PMCID: PMC3901301 DOI: 10.3389/fnagi.2014.00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/10/2014] [Indexed: 11/13/2022] Open
Abstract
A hallmark of the age-related neural reorganization is that old versus young adults execute typical motor tasks by a more diffuse neural activation pattern including stronger ipsilateral activation during unilateral tasks. Whether such changes in neural activation are present already at middle age and affect bimanual interactions is unknown. We compared the amount of associated activity, i.e., muscle activity and force produced by the non-task hand and motor evoked potentials (MEPs) produced by magnetic brain stimulation between young (mean 24 years, n = 10) and middle-aged (mean 50 years, n = 10) subjects during brief unilateral (seven levels of % maximal voluntary contractions, MVCs) and bilateral contractions (4 × 7 levels of % MVC combinations), and during a 120-s-long MVC of sustained unilateral index finger abduction. During the force production, the excitability of the ipsilateral (iM1) or contralateral primary motor cortex (cM1) was assessed. The associated activity in the "resting" hand was ~2-fold higher in middle-aged (28% of MVC) versus young adults (11% of MVC) during brief unilateral MVCs. After controlling for the background muscle activity, MEPs in iM1 were similar in the two groups during brief unilateral contractions. Only at low (bilateral) forces, MEPs evoked in cM1 were 30% higher in the middle-aged versus young adults. At the start of the sustained contraction, the associated activity was higher in the middle-aged versus young subjects and increased progressively in both groups (30 versus 15% MVC at 120 s, respectively). MEPs were greater at the start of the sustained contraction in middle-aged subjects but increased further during the contraction only in young adults. Under these experimental conditions, the data provide evidence for the reorganization of neural control of unilateral force production as early as age 50. Future studies will determine if the altered neural control of such inter-manual interactions are of functional significance.
Collapse
Affiliation(s)
- Jolien Heetkamp
- Department of Neuroscience, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , UK
| | - Inge Zijdewind
- Department of Neuroscience, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
27
|
Uehara K, Funase K. Contribution of ipsilateral primary motor cortex activity to the execution of voluntary movements in humans: A review of recent studies. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Tazoe T, Komiyama T. Interlimb neural interactions in the corticospinal pathways. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Bunday KL, Oudega M, Perez MA. Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury. PLoS One 2013; 8:e76747. [PMID: 24146921 PMCID: PMC3798423 DOI: 10.1371/journal.pone.0076747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022] Open
Abstract
Crossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls. Using transcranial magnetic stimulation we elicited motor evoked potentials (MEPs) in the resting first dorsal interosseous, biceps brachii, and tibialis anterior muscles when the contralateral side remained at rest or performed 70% of maximal voluntary contraction (MVC) into index finger abduction, elbow flexion, and ankle dorsiflexion, respectively. By testing MEPs in muscles with motoneurons located at different spinal cord segments we were able to relate the neurological level of injury to be above, at, or below the location of the motoneurons of the muscle tested. We demonstrate that in patients the size of MEPs was increased to a similar extent as in controls in muscles above the injury during 70% of MVC compared to rest. MEPs remained unchanged in muscles at and within 5 segments below the injury during 70% of MVC compared to rest. However, in muscles beyond 5 segments below the injury the size of MEPs increased similar to controls and was aberrantly high, 2-fold above controls, in muscles distant (>15 segments) from the injury. These aberrantly large MEPs were accompanied by larger F-wave amplitudes compared to controls. Thus, our findings support the view that corticospinal degeneration does not spread rostral to the lesion, and highlights the potential of caudal regions distant from an injury to facilitate residual corticospinal output after SCI.
Collapse
Affiliation(s)
- Karen L. Bunday
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Martin Oudega
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Monica A. Perez
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ibey RJ, Staines WR. Corticomotor excitability changes seen in the resting forearm during contralateral rhythmical movement and force manipulations: a TMS study. Behav Brain Res 2013; 257:265-74. [PMID: 24070855 DOI: 10.1016/j.bbr.2013.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to examine changes in corticomotor excitability to a resting wrist extensor muscle during contralateral rhythmical isotonic and static isometric wrist contractions (flexion/extension) at different loads and positions, using transcranial magnetic stimulation (TMS). TMS-induced motor-evoked potentials (MEPs) were recorded from the relaxed right extensor carpi radialis (ECR) and flexor carpi radialis (FCR) respectively, while the left arm underwent unimanual manipulations. Rhythmical isotonic (0.5 Hz) flexion and extension movements of the left wrist under 3 load conditions (no, low and high force) and a frequency matched passive movement condition were collected, along with isometric flexion/extension contractions in each position (low and high force). TMS was delivered at eight positions (4 in the flexion phase and 4 in the extension phase) during the continuous movement conditions and each of these positions was sampled with isometric contraction. The potentials evoked by TMS in right ECR were potentiated when the left ECR was engaged, independent of position within that phase of contraction or contraction type (isotonic and isometric). Motor cortical excitability of the resting right ECR increased as load demands increased to the left wrist. Passive rhythmical movement did not influence excitability to the resting ECR implying that voluntary motor drive is required. Our findings indicated that the increase in corticomotor drive during both rhythmic isotonic and static isometric contractions of the opposite limb is likely mediated by interhemispheric interactions between cortical motor areas. Improving our understanding of these cortical networks can be useful in future methods to enhance neuroplasticity through neurorehabilitation methods.
Collapse
Affiliation(s)
- R J Ibey
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | | |
Collapse
|
31
|
Mizuguchi N, Umehara I, Nakata H, Kanosue K. Modulation of corticospinal excitability dependent upon imagined force level. Exp Brain Res 2013; 230:243-9. [PMID: 23877227 DOI: 10.1007/s00221-013-3649-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/07/2013] [Indexed: 11/29/2022]
Abstract
Motor imagery is defined as the mental execution of a movement without any muscle activity. In the present study, corticospinal excitability was assessed by motor evoked potentials (MEPs) when the subjects imagined isometric elbow flexion at various force levels. Electromyography was recorded from the right brachioradialis, the biceps brachii and the triceps brachii muscles. First, the maximum voluntary contraction (MVC) of elbow flexion was recorded in each subject. Subjects practiced performing 10, 30 and 60 % MVC using visual feedback. After the practice, MEPs were recorded during the imagery of elbow flexion with the forces of 10, 30 and 60 % MVC without any feedback. After the MEPs recording, we assigned subjects to reproduce the actual elbow flexion force at 10, 30 and 60 % MVC. The MEPs amplitudes in the brachioradialis and biceps brachii in the 60 % MVC condition were significantly greater than those in the 10 % MVC condition (p < 0.05). These findings suggest that the enhancement of corticospinal excitability during motor imagery is associated with an increase in imagined force level.
Collapse
Affiliation(s)
- Nobuaki Mizuguchi
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | | | | | | |
Collapse
|
32
|
Bradnam LV, Stinear CM, Byblow WD. Ipsilateral motor pathways after stroke: implications for non-invasive brain stimulation. Front Hum Neurosci 2013; 7:184. [PMID: 23658541 PMCID: PMC3647244 DOI: 10.3389/fnhum.2013.00184] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/23/2013] [Indexed: 12/17/2022] Open
Abstract
In humans the two cerebral hemispheres have essential roles in controlling the upper limb. The purpose of this article is to draw attention to the potential importance of ipsilateral descending pathways for functional recovery after stroke, and the use of non-invasive brain stimulation (NBS) protocols of the contralesional primary motor cortex (M1). Conventionally NBS is used to suppress contralesional M1, and to attenuate transcallosal inhibition onto the ipsilesional M1. There has been little consideration of the fact that contralesional M1 suppression may also reduce excitability of ipsilateral descending pathways that may be important for paretic upper limb control for some patients. One such ipsilateral pathway is the cortico-reticulo-propriospinal pathway (CRPP). In this review we outline a neurophysiological model to explain how contralesional M1 may gain control of the paretic arm via the CRPP. We conclude that the relative importance of the CRPP for motor control in individual patients must be considered before using NBS to suppress contralesional M1. Neurophysiological, neuroimaging, and clinical assessments can assist this decision making and facilitate the translation of NBS into the clinical setting.
Collapse
Affiliation(s)
- Lynley V Bradnam
- Brain Research Laboratory, Centre for Neuroscience, School of Medicine, Flinders University Adelaide, SA, Australia ; Effectiveness of Therapy Group, Centre for Clinical Change and Healthcare Research, School of Medicine, Flinders University Adelaide, SA, Australia
| | | | | |
Collapse
|
33
|
Change in the ipsilateral motor cortex excitability is independent from a muscle contraction phase during unilateral repetitive isometric contractions. PLoS One 2013; 8:e55083. [PMID: 23383063 PMCID: PMC3561368 DOI: 10.1371/journal.pone.0055083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate the difference in a muscle contraction phase dependence between ipsilateral (ipsi)- and contralateral (contra)-primary motor cortex (M1) excitability during repetitive isometric contractions of unilateral index finger abduction using a transcranial magnetic stimulation (TMS) technique. Ten healthy right-handed subjects participated in this study. We instructed them to perform repetitive isometric contractions of the left index finger abduction following auditory cues at 1 Hz. The force outputs were set at 10, 30, and 50% of maximal voluntary contraction (MVC). Motor evoked potentials (MEP) were obtained from the right and left first dorsal interosseous muscles (FDI). To examine the muscle contraction phase dependence, TMS of ipsi-M1 or contra-M1 was triggered at eight different intervals (0, 20, 40, 60, 80, 100, 300, or 500 ms) after electromyogram (EMG) onset when each interval had reached the setup triggering level. Furthermore, to demonstrate the relationships between the integrated EMG (iEMG) in the active left FDI and the ipsi-M1 excitability, we assessed the correlation between the iEMG in the left FDI for the 100 ms preceding TMS onset and the MEP amplitude in the resting/active FDI for each force output condition. Although contra-M1 excitability was significantly changed after the EMG onset that depends on the muscle contraction phase, the modulation of ipsi-M1 excitability did not differ in response to any muscle contraction phase at the 10% of MVC condition. Also, we found that contra-M1 excitability was significantly correlated with iEMG in all force output conditions, but ipsi-M1 excitability was not at force output levels of below 30% of MVC. Consequently, the modulation of ipsi-M1 excitability was independent from the contraction phase of unilateral repetitive isometric contractions at least low force output.
Collapse
|
34
|
Chen LL, Lee D, Fukushima K, Fukushima J. Submovement composition of head movement. PLoS One 2012; 7:e47565. [PMID: 23139749 PMCID: PMC3489904 DOI: 10.1371/journal.pone.0047565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
Limb movement is smooth and corrections of movement trajectory and amplitude are barely noticeable midflight. This suggests that skeletomuscular motor commands are smooth in transition, such that the rate of change of acceleration (or jerk) is minimized. Here we applied the methodology of minimum-jerk submovement decomposition to a member of the skeletomuscular family, the head movement. We examined the submovement composition of three types of horizontal head movements generated by nonhuman primates: head-alone tracking, head-gaze pursuit, and eye-head combined gaze shifts. The first two types of head movements tracked a moving target, whereas the last type oriented the head with rapid gaze shifts toward a target fixed in space. During head tracking, the head movement was composed of a series of episodes, each consisting of a distinct, bell-shaped velocity profile (submovement) that rarely overlapped with each other. There was no specific magnitude order in the peak velocities of these submovements. In contrast, during eye-head combined gaze shifts, the head movement was often comprised of overlapping submovements, in which the peak velocity of the primary submovement was always higher than that of the subsequent submovement, consistent with the two-component strategy observed in goal-directed limb movements. These results extend the previous submovement composition studies from limb to head movements, suggesting that submovement composition provides a biologically plausible approach to characterizing the head motor recruitment that can vary depending on task demand.
Collapse
Affiliation(s)
- Lewis L Chen
- Department of Otolaryngology, Neurobiology and Anatomical Sciences, Ophthalmology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | |
Collapse
|
35
|
Age-related differences in corticospinal excitability and inhibition during coordination of upper and lower limbs. Neurobiol Aging 2012; 33:1484.e1-14. [DOI: 10.1016/j.neurobiolaging.2011.12.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/09/2011] [Accepted: 12/13/2011] [Indexed: 11/23/2022]
|
36
|
Master S, Tremblay F. Task-related enhancement in corticomotor excitability during haptic sensing with the contra- or ipsilateral hand in young and senior adults. BMC Neurosci 2012; 13:27. [PMID: 22416786 PMCID: PMC3325869 DOI: 10.1186/1471-2202-13-27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/14/2012] [Indexed: 11/16/2022] Open
Abstract
Background Haptic sensing with the fingers represents a unique class of manipulative actions, engaging motor, somatosensory and associative areas of the cortex while requiring only minimal forces and relatively simple movement patterns. Using transcranial magnetic stimulation (TMS), we investigated task-related changes in motor evoked potential (MEP) amplitude associated with unimanual haptic sensing in two related experiments. In Experiment I, we contrasted changes in the excitability of the hemisphere controlling the task hand in young and old adults under two trial conditions, i.e. when participants either touched a fine grating (smooth trials) or touched a coarse grating to detect its groove orientation (grating trials). In Experiment II, the same contrast between tasks was performed but with TMS applied over the hemisphere controlling the resting hand, while also addressing hemispheric (right vs. left) and age differences. Results In Experiment I, a main effect of trial type on MEP amplitude was detected (p = 0.001), MEPs in the task hand being ~50% larger during grating than smooth trials. No interaction with age was detected. Similar results were found for Experiment II, trial type having a large effect on MEP amplitude in the resting hand (p < 0.001) owing to selective increase in MEP size (~2.6 times greater) for grating trials. No interactions with age or side (right vs. left) were detected. Conclusions Collectively, these results indicate that adding a haptic component to a simple unilateral finger action can elicit robust corticomotor facilitation not only in the working hemisphere but also in the opposite hemisphere. The fact that this facilitation seems well preserved with age, when task difficulty is adjusted, has some potential clinical implications.
Collapse
Affiliation(s)
- Sabah Master
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
37
|
Bunday KL, Perez MA. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury. J Neurophysiol 2012; 107:2901-11. [PMID: 22357796 DOI: 10.1152/jn.00850.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In uninjured humans, it is well established that voluntary contraction of muscles on one side of the body can facilitate transmission in the contralateral corticospinal pathway. This crossed facilitatory effect may favor interlimb coordination and motor performance. Whether this aspect of corticospinal function is preserved after chronic spinal cord injury (SCI) is unknown. Here, using transcranial magnetic stimulation, we show in patients with chronic cervical SCI (C(5)-C(8)) that the size of motor evoked potentials (MEPs) in a resting intrinsic hand muscle remained unchanged during increasing levels of voluntary contraction with a contralateral distal or proximal arm muscle. In contrast, MEP size in a resting hand muscle was increased during the same motor tasks in healthy control subjects. The magnitude of voluntary electromyography was negatively correlated with MEP size after chronic cervical SCI and positively correlated in healthy control subjects. To examine the mechanisms contributing to MEP crossed facilitation we examined short-interval intracortical inhibition (SICI), interhemispheric inhibition (IHI), and motoneuronal behavior by testing F waves and cervicomedullary MEPs (CMEPs). During strong voluntary contractions SICI was unchanged after cervical SCI and decreased in healthy control subjects compared with rest. F-wave amplitude and persistence and CMEP size remained unchanged after cervical SCI and increased in healthy control subjects compared with rest. In addition, during strong voluntary contractions IHI was unchanged in cervical SCI compared with rest. Our results indicate that GABAergic intracortical circuits, interhemispheric glutamatergic projections between motor cortices, and excitability of index finger motoneurons are neural mechanisms underlying, at least in part, the lack of crossed corticospinal facilitation observed after SCI. Our data point to the spinal motoneurons as a critical site for modulating corticospinal transmission after chronic cervical SCI.
Collapse
Affiliation(s)
- Karen L Bunday
- Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
38
|
DeJong SL, Lang CE. The bilateral movement condition facilitates maximal but not submaximal paretic-limb grip force in people with post-stroke hemiparesis. Clin Neurophysiol 2012; 123:1616-23. [PMID: 22248812 DOI: 10.1016/j.clinph.2011.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Although healthy individuals have less force production capacity during bilateral muscle contractions compared to unilateral efforts, emerging evidence suggests that certain aspects of paretic upper limb task performance after stroke may be enhanced by moving bilaterally instead of unilaterally. We investigated whether the bilateral movement condition affects grip force differently on the paretic side of people with post-stroke hemiparesis, compared to their non-paretic side and both sides of healthy young adults. METHODS Within a single session, we compared: (1) maximal grip force during unilateral vs. bilateral contractions on each side, and (2) force contributed by each side during a 30% submaximal bilateral contraction. RESULTS Healthy controls produced less grip force in the bilateral condition, regardless of side (-2.4% difference), and similar findings were observed on the non-paretic side of people with hemiparesis (-4.5% difference). On the paretic side, however, maximal grip force was increased by the bilateral condition in most participants (+11.3% difference, on average). During submaximal bilateral contractions in each group, the two sides each contributed the same percentage of unilateral maximal force. CONCLUSIONS The bilateral condition facilitates paretic limb grip force at maximal, but not submaximal levels. SIGNIFICANCE In some people with post-stroke hemiparesis, the paretic limb may benefit from bilateral training with high force requirements.
Collapse
Affiliation(s)
- Stacey L DeJong
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, United States
| | | |
Collapse
|
39
|
Schambra HM, Abe M, Luckenbaugh DA, Reis J, Krakauer JW, Cohen LG. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol 2011; 106:652-61. [PMID: 21613597 DOI: 10.1152/jn.00210.2011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Convergent findings point to a left-sided specialization for the representation of learned actions in right-handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill learning. In the present study, we explored this question by comparing the effects of anodal transcranial direct current stimulation (tDCS) over either left or right motor cortex (M1) on motor skill learning in either hand, using a tDCS montage to better isolate stimulation to one hemisphere. Results were compared with those previously found with a montage more commonly used in the field. Six groups trained for three sessions on a visually guided sequential pinch force modulation task with their right or left hand and received right M1, left M1, or sham tDCS. A linear mixed-model analysis for motor skill showed a significant main effect for stimulation group (left M1, right M1, sham) but not for hand (right, left) or their interaction. Left M1 tDCS induced significantly greater skill learning than sham when hand data were combined, a result consistent not only with the hypothesized left hemisphere specialization for motor skill learning but also with possible increased left M1 responsiveness to tDCS. The unihemispheric montage effect size was one-half that of the more common montage, and subsequent power analysis indicated that 75 subjects per group would be needed to detect differences seen with only 12 subjects with the customary bihemispheric montage.
Collapse
Affiliation(s)
- Heidi M Schambra
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bldg 10, 7D54, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Foley JA, Della Sala S. Do shorter Cortex papers have greater impact? Cortex 2011; 47:635-42. [PMID: 21463860 DOI: 10.1016/j.cortex.2011.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 01/02/2023]
|
41
|
van den Berg FE, Swinnen SP, Wenderoth N. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization. PLoS One 2011; 6:e17742. [PMID: 21408031 PMCID: PMC3052419 DOI: 10.1371/journal.pone.0017742] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/11/2011] [Indexed: 12/31/2022] Open
Abstract
Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1ipsi) to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS) to investigate whether representations of the wrist flexor (FCR) and extensor (ECR) in M1ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1ipsi than in the right. In experiment 2, we tested whether the modulations of M1ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI). We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.
Collapse
Affiliation(s)
- Femke E. van den Berg
- Motor Control Laboratory, Research Centre for Motor Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Motor Control Laboratory, Research Centre for Motor Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nicole Wenderoth
- Motor Control Laboratory, Research Centre for Motor Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
42
|
Howatson G, Taylor MB, Rider P, Motawar BR, McNally MP, Solnik S, DeVita P, Hortobágyi T. Ipsilateral motor cortical responses to TMS during lengthening and shortening of the contralateral wrist flexors. Eur J Neurosci 2011; 33:978-90. [PMID: 21219480 DOI: 10.1111/j.1460-9568.2010.07567.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unilateral lengthening contractions provide a greater stimulus for neuromuscular adaptation than shortening contractions in the active and non-active contralateral homologous muscle, although little is known of the potential mechanism. Here we examined the possibility that corticospinal and spinal excitability vary in a contraction-specific manner in the relaxed right flexor carpi radialis (FCR) when humans perform unilateral lengthening and shortening contractions of the left wrist flexors at the same absolute force. Corticospinal excitability in the relaxed right FCR increased more during lengthening than shortening at 80% and 100% of maximum voluntary contraction (MVC). Short-interval intracortical inhibition diminished during shortening contractions, and it became nearly abolished during lengthening. Intracortical facilitation lessened during shortening but increased during lengthening. Interhemispheric inhibition to the 'non-active' motor cortex diminished during shortening, and became nearly abolished during lengthening at 90% MVC. The amplitude of the Hoffman reflex in the relaxed right FCR decreased during and remained depressed for 20 s after lengthening and shortening of the left wrist flexors. We discuss the possibility that instead of the increased afferent input, differences in the descending motor command and activation of brain areas that link function of the motor cortices during muscle lengthening vs. shortening may cause the contraction-specific modulation of ipsilateral motor cortical output. In conclusion, ipsilateral motor cortex responses to transcranial magnetic stimulation are contraction-specific; unilateral lengthening and shortening contractions reduced contralateral spinal excitability, but uniquely modulated ipsilateral corticospinal excitability and the networks involved in intracortical and interhemispheric connections, which may have clinical implications.
Collapse
Affiliation(s)
- Glyn Howatson
- Department of Sport and Exercise Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Asymmetrical modulation of corticospinal excitability in the contracting and resting contralateral wrist flexors during unilateral shortening, lengthening and isometric contractions. Exp Brain Res 2010; 206:59-69. [DOI: 10.1007/s00221-010-2397-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
44
|
|
45
|
Foley JA, Della Sala S. Geographical distribution of Cortex publications. Cortex 2010; 46:410-9. [DOI: 10.1016/j.cortex.2009.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 01/05/2023]
|
46
|
Emotion and motor preparation: A transcranial magnetic stimulation study of corticospinal motor tract excitability. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2009; 9:380-8. [PMID: 19897791 DOI: 10.3758/cabn.9.4.380] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
On tickling brains to investigate minds. Cortex 2009; 45:1021-4. [DOI: 10.1016/j.cortex.2009.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/19/2022]
|