1
|
Assogna M, Premi E, Gazzina S, Benussi A, Ashton NJ, Zetterberg H, Blennow K, Gasparotti R, Padovani A, Tadayon E, Romanella S, Sprugnoli G, Pascual-Leone A, Di Lorenzo F, Koch G, Borroni B, Santarnecchi E. Association of Choroid Plexus Volume With Serum Biomarkers, Clinical Features, and Disease Severity in Patients With Frontotemporal Lobar Degeneration Spectrum. Neurology 2023; 101:e1218-e1230. [PMID: 37500561 PMCID: PMC10516270 DOI: 10.1212/wnl.0000000000207600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Choroid plexus (ChP) is emerging as a key brain structure in the pathophysiology of neurodegenerative disorders. In this observational study, we investigated ChP volume in a large cohort of patients with frontotemporal lobar degeneration (FTLD) spectrum to explore a possible link between ChP volume and other disease-specific biomarkers. METHODS Participants included patients meeting clinical criteria for a probable syndrome in the FTLD spectrum. Structural brain MRI imaging, serum neurofilament light (NfL), serum phosphorylated-Tau181 (p-Tau181), and cognitive and behavioral data were collected. MRI ChP volumes were obtained from an ad-hoc segmentation model based on a Gaussian Mixture Models algorithm. RESULTS Three-hundred and sixteen patients within FTLD spectrum were included in this study, specifically 135 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD), 75 primary progressive aphasia, 46 progressive supranuclear palsy, and 60 corticobasal syndrome. In addition, 82 age-matched healthy participants were recruited as controls (HCs). ChP volume was significantly larger in patients with FTLD compared with HC, across the clinical subtype. Moreover, we found a significant difference in ChP volume between HC and patients stratified for disease-severity based on CDR plus NACC FTLD, including patients at very early stage of the disease. Interestingly, ChP volume correlated with serum NfL, cognitive/behavioral deficits, and with patterns of cortical atrophy. Finally, ChP volume seemed to discriminate HC from patients with FTLD better than other previously identified brain structure volumes. DISCUSSION Considering the clinical, pathologic, and genetic heterogeneity of the disease, ChP could represent a potential biomarker across the FTLD spectrum, especially at the early stage of disease. Further longitudinal studies are needed to establish its role in disease onset and progression. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that choroid plexus volume, as measured on MRI scan, can assist in differentiating patients with FTLD from healthy controls and in characterizing disease severity.
Collapse
Affiliation(s)
- Martina Assogna
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Enrico Premi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Stefano Gazzina
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alberto Benussi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Nicholas J Ashton
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Henrik Zetterberg
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Kaj Blennow
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Roberto Gasparotti
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alessandro Padovani
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Ehsan Tadayon
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Sara Romanella
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giulia Sprugnoli
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alvaro Pascual-Leone
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Francesco Di Lorenzo
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giacomo Koch
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Barbara Borroni
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Emiliano Santarnecchi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy.
| |
Collapse
|
2
|
Resting state functional brain networks associated with emotion processing in frontotemporal lobar degeneration. Mol Psychiatry 2022; 27:4809-4821. [PMID: 35595978 PMCID: PMC9734056 DOI: 10.1038/s41380-022-01612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
This study investigated the relationship between emotion processing and resting-state functional connectivity (rs-FC) of the brain networks in frontotemporal lobar degeneration (FTLD). Eighty FTLD patients (including cases with behavioral variant of frontotemporal dementia, primary progressive aphasia, progressive supranuclear palsy syndrome, motor neuron disease) and 65 healthy controls underwent rs-functional MRI. Emotion processing was tested using the Comprehensive Affect Testing System (CATS). In patients and controls, correlations were investigated between each emotion construct and rs-FC changes within critical networks. Mean rs-FC of the clusters significantly associated with CATS scoring were compared among FTLD groups. FTLD patients had pathological CATS scores compared with controls. In controls, increased rs-FC of the cerebellar and visuo-associative networks correlated with better scores in emotion-matching and discrimination tasks, respectively; while decreased rs-FC of the visuo-spatial network was related with better performance in the affect-matching and naming. In FTLD, the associations between rs-FC and CATS scores involved more brain regions, such as orbitofrontal and middle frontal gyri within anterior networks (i.e., salience and default-mode), parietal and somatosensory regions within visuo-spatial and sensorimotor networks, caudate and thalamus within basal-ganglia network. Rs-FC changes associated with CATS were similar among all FTLD groups. In FTLD compared to controls, the pattern of rs-FC associated with emotional processing involves a larger number of brain regions, likely due to functional specificity loss and compensatory attempts. These associations were similar across all FTLD groups, suggesting a common physiopathological mechanism of emotion processing breakdown, regardless the clinical presentation and pattern of atrophy.
Collapse
|
3
|
Cruz-Sanabria F, Reyes PA, Triviño-Martínez C, García-García M, Carmassi C, Pardo R, Matallana DL. Exploring Signatures of Neurodegeneration in Early-Onset Older-Age Bipolar Disorder and Behavioral Variant Frontotemporal Dementia. Front Neurol 2021; 12:713388. [PMID: 34539558 PMCID: PMC8446277 DOI: 10.3389/fneur.2021.713388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Older-age bipolar disorder (OABD) may involve neurocognitive decline and behavioral disturbances that could share features with the behavioral variant of frontotemporal dementia (bvFTD), making the differential diagnosis difficult in cases of suspected dementia. Objective: To compare the neuropsychological profile, brain morphometry, and structural connectivity patterns between patients diagnosed with bvFTD, patients classified as OABD with an early onset of the disease (EO-OABD), and healthy controls (HC). Methods: bvFTD patients (n = 25, age: 66 ± 7, female: 64%, disease duration: 6 ± 4 years), EO-OABD patients (n = 17, age: 65 ± 9, female: 71%, disease duration: 38 ± 8 years), and HC (n = 28, age: 62 ± 7, female: 64%) were evaluated through neuropsychological tests concerning attention, memory, executive function, praxis, and language. Brain morphometry was analyzed through surface-based morphometry (SBM), while structural brain connectivity was assessed through diffusion tensor imaging (DTI). Results: Both bvFTD and EO-OABD patients showed lower performance in neuropsychological tests of attention, verbal fluency, working memory, verbal memory, and praxis than HC. Comparisons between EO-OABD and bvFTD showed differences limited to cognitive flexibility delayed recall and intrusion errors in the memory test. SBM analysis demonstrated that several frontal, temporal, and parietal regions were altered in both bvFTD and EO-OABD compared to HC. In contrast, comparisons between bvFTD and EO-OABD evidenced differences exclusively in the right temporal pole and the left entorhinal cortex. DTI analysis showed alterations in association and projection fibers in both EO-OABD and bvFTD patients compared to HC. Commissural fibers were found to be particularly affected in EO-OABD. The middle cerebellar peduncle and the pontine crossing tract were exclusively altered in bvFTD. There were no significant differences in DTI analysis between EO-OABD and bvFTD. Discussion: EO-OABD and bvFTD may share an overlap in cognitive, brain morphometry, and structural connectivity profiles that could reflect common underlying mechanisms, even though the etiology of each disease can be different and multifactorial.
Collapse
Affiliation(s)
- Francy Cruz-Sanabria
- Department of Translational Research, New Surgical, and Medical Technologies, University of Pisa, Pisa, Italy
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pablo Alexander Reyes
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Radiology Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Cristian Triviño-Martínez
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Milena García-García
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rodrigo Pardo
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana L. Matallana
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Mental Health Department, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|
4
|
Waugh RE, Danielian LE, Shoukry RFS, Floeter MK. Longitudinal changes in network homogeneity in presymptomatic C9orf72 mutation carriers. Neurobiol Aging 2021; 99:1-10. [PMID: 33421737 PMCID: PMC11428095 DOI: 10.1016/j.neurobiolaging.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The risk for carriers of repeat expansion mutations in C9orf72 to develop amyotrophic lateral sclerosis and frontotemporal dementia increases with age. Functional magnetic resonance imaging studies have shown reduced connectivity in symptomatic carriers, but it is not known whether connectivity declines throughout life as an acceleration of the normal aging pattern. In this study, we examined intra-network homogeneity (NeHo) in 5 functional networks in 15 presymptomatic C9+ carriers over an 18-month period and compared to repeated scans in 34 healthy controls and 27 symptomatic C9+ carriers. The longitudinal trajectory of NeHo in the somatomotor, dorsal attention, and default mode networks in presymptomatic carriers differed from aging controls and symptomatic carriers. In somatomotor networks, NeHo increased over time in regions adjacent to regions where symptomatic carriers had reduced NeHo. In the default network, the posterior cingulate exhibited age-dependent increases in NeHo. These findings are evidence against the proposal that the decline in functional connectivity seen in symptomatic carriers represents a lifelong acceleration of the healthy aging process.
Collapse
Affiliation(s)
- Rebecca E Waugh
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Danielian
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rachel F Smallwood Shoukry
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary Kay Floeter
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Bejanin A, Tammewar G, Marx G, Cobigo Y, Iaccarino L, Kornak J, Staffaroni AM, Dickerson BC, Boeve BF, Knopman DS, Gorno-Tempini M, Miller BL, Jagust WJ, Boxer AL, Rosen HJ, Rabinovici GD. Longitudinal structural and metabolic changes in frontotemporal dementia. Neurology 2020; 95:e140-e154. [PMID: 32591470 PMCID: PMC7455324 DOI: 10.1212/wnl.0000000000009760] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/13/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare the sensitivity of structural MRI and 18F-fludeoxyglucose PET (18FDG-PET) to detect longitudinal changes in frontotemporal dementia (FTD). METHODS Thirty patients with behavioral variant FTD (bvFTD), 7 with nonfluent/agrammatic variant primary progressive aphasia (nfvPPA), 16 with semantic variant primary progressive aphasia (svPPA), and 43 cognitively normal controls underwent 2-4 MRI and 18FDG-PET scans (total scans/visit = 270) as part of the Frontotemporal Lobar Degeneration Neuroimaging Initiative study. Linear mixed-effects models were carried out voxel-wise and in regions of interest to identify areas showing decreased volume or metabolism over time in patients as compared to controls. RESULTS At baseline, patients with bvFTD showed bilateral temporal, dorsolateral, and medial prefrontal atrophy/hypometabolism that extended with time into adjacent structures and parietal lobe. In nfvPPA, baseline atrophy/hypometabolism in supplementary motor cortex extended with time into left greater than right precentral, dorsolateral, and dorsomedial prefrontal cortex. In svPPA, baseline atrophy/hypometabolism encompassed the anterior temporal and medial prefrontal cortex and longitudinal changes were found in temporal, orbitofrontal, and lateral parietal cortex. Across syndromes, there was substantial overlap in the brain regions showing volume and metabolism loss. Even though the pattern of metabolic decline was more extensive, metabolic changes were also more variable and sample size estimates were similar or higher for 18FDG-PET compared to MRI. CONCLUSION Our findings demonstrated the sensitivity of 18FDG-PET and structural MRI for tracking disease progression in FTD. Both modalities showed highly overlapping patterns of longitudinal change and comparable sample size estimates to detect longitudinal changes in future clinical trials.
Collapse
Affiliation(s)
- Alexandre Bejanin
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley.
| | - Gautam Tammewar
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Gabe Marx
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Yann Cobigo
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Leonardo Iaccarino
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - John Kornak
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Adam M Staffaroni
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Bradford C Dickerson
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Bradley F Boeve
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - David S Knopman
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Marilu Gorno-Tempini
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Bruce L Miller
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - William J Jagust
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Adam L Boxer
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Howard J Rosen
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| | - Gil D Rabinovici
- From the Memory and Aging Center, Department of Neurology (A.B., G.T., G.M., Y.C., L.I., J.K., A.M.S., M.G.-T., B.L.M., A.L.B., H.J.R., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California San Francisco; Frontotemporal Disorders Unit (B.C.D.), Department of Neurology, Massachusetts General Hospital, Boston; and Harvard Medical School, Charleston; Department of Neurology (B.F.B., D.S.K.), Mayo Clinic, Rochester, MN; Molecular Biophysics and Integrated Bioimaging Division (W.J.J., G.D.R.), Lawrence Berkeley National Laboratory, CA; and Helen Wills Neuroscience Institute (G.D.R.), University of California Berkeley
| |
Collapse
|
6
|
Mulkey MA, Everhart DE, Hardin SR. Fronto-temporal dementia: a case study and strategies and support for caregivers. Br J Community Nurs 2019; 24:544-549. [PMID: 31674230 DOI: 10.12968/bjcn.2019.24.11.544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fronto-temporal dementia, also known as fronto-temporal lobular degeneration, is the second most common form of early-onset dementia with a prevalence equal to Alzheimer's dementia. Behavioural variant fronto-temporal dementia primarily involves the frontal and temporal lobes of the brain. Myelination of nerve fibres in these areas allow for highly synchronized action potential timing. Diagnosis is often significantly delayed because symptoms are insidious and appear as personality and behavioural changes such as lack of inhibition, apathy, depression, and being socially inappropriate rather than exhibiting marked memory reductions. In this article, a case study illustrates care strategies and family education. Management of severe behavioural symptoms requires careful evaluation and monitoring. Support is especially important and beneficial in the early to middle stages of dementia when nursing home placement may not be required based on the individual's condition.
Collapse
Affiliation(s)
- Malissa A Mulkey
- Neuroscience Clinical Nurse Specialist, Center for Advanced Practice, Duke University Hospital, Durham, North Carolina, USA
| | - D Erik Everhart
- Interim Director and Professor, Department of Psychology, East Carolina University, Greenville, North Carolina, USA
| | - Sonya R Hardin
- Dean and Professor, School of Nursing, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Bertoux M, Ramanan S, Slachevsky A, Wong S, Henriquez F, Musa G, Delgado C, Flanagan E, Bottlaender M, Sarazin M, Hornberger M, Dubois B. So Close Yet So Far: Executive Contribution to Memory Processing in Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2018; 54:1005-1014. [PMID: 27567869 DOI: 10.3233/jad-160522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Memory impairment in behavioral variant frontotemporal dementia (bvFTD) is traditionally considered to be mild and attributed to prefrontal cortex dysfunction. Recent studies, however, indicated that some patients can present with a memory impairment of the hippocampal type, showing storage and consolidation deficits in addition to the more executive/prefrontal related encoding and strategic difficulties. OBJECTIVE This study aimed to study the relationship between executive functions (EF) and memory processes in bvFTD via a data-driven approach. METHOD Participants consisted of 71 bvFTD (among which 60.6% had a lumbar puncture showing non-Alzheimer biomarker profile) and 60 controls (among which 45% had amyloid imaging showing a normal profile). EF were assessed by the Frontal Assessment Battery, semantic/lexical verbal fluency tests, and forward/backward digit spans. Patients were split into amnestic (n = 33) and non-amnestic (n = 38) subgroups based on normative data (total recall score) from the Free and Cued Selective Reminding Test (FCSRT). Relationships between FCSRT subscores and EF measures were explored through hierarchical clustering analysis, partial correlation analysis with an EF component, and automated linear modeling. RESULTS Convergent findings across the statistical approaches show that, overall, memory performance was independent from EF in bvFTD whereas the relationship was stronger in controls. Indeed, in bvFTD, memory performance did not cluster with EF, was not correlated with the EF component, and was only partially (4% - 12.7%) predicted by EF. DISCUSSION These findings show that executive dysfunctions cannot solely explain the memory deficits occurring in bvFTD. Indeed, some patients present with a genuine amnesia affecting storage and consolidation abilities, which are independent from executive dysfunctions. On the clinical level, this study highlights the importance of revising the neuropsychological diagnosis criteria for bvFTD.
Collapse
Affiliation(s)
- Maxime Bertoux
- Norwich Medical School, University of East Anglia, UK.,Centre de Référence Démence Rares, Pitié-Salpêtrière, Paris, France.,Sorbonne Universités, Paris VI, France
| | | | - Andrea Slachevsky
- Department of Physiopathology and Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile.,Gerosciences Center for Brain Health and Metabolism, Santiago, Chile
| | | | - Fernando Henriquez
- Cognitive Neurology and Dementia, Neurology Department, Hospital del Salvador, Santiago, Chile
| | - Gada Musa
- Cognitive Neurology and Dementia, Neurology Department, Hospital del Salvador, Santiago, Chile
| | - Carolina Delgado
- Cognitive Neurology and Dementia, Neurology Department, Hospital del Salvador, Santiago, Chile
| | - Emma Flanagan
- Norwich Medical School, University of East Anglia, UK
| | | | - Marie Sarazin
- Centre Psychiatrie & Neurosciences, Sainte-Anne, Paris, France
| | | | - Bruno Dubois
- Centre de Référence Démence Rares, Pitié-Salpêtrière, Paris, France.,Sorbonne Universités, Paris VI, France
| |
Collapse
|
8
|
Merck C, Corouge I, Jonin PY, Desgranges B, Gauvrit JY, Belliard S. What semantic dementia teaches us about the functional organization of the left posterior fusiform gyrus. Neuropsychologia 2017; 106:159-168. [PMID: 28951166 DOI: 10.1016/j.neuropsychologia.2017.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
After demonstrating the relative preservation of fruit and vegetable knowledge in patients with semantic dementia (SD), we sought to identify the neural substrate of this unusual category effect. Nineteen patients with SD performed a semantic sorting task and underwent a morphometric 3T MRI scan. The grey-matter volumes of five regions within the temporal lobe were bilaterally computed, as well as those of two recently described areas (FG1 and FG2) within the posterior fusiform gyrus. In contrast to the other semantic categories we tested, fruit and vegetable scores were only predicted by left FG1 volume. We therefore found a specific relationship between the volume of a subregion within the left posterior fusiform gyrus and performance on fruits and vegetables in SD. We argue that the left FG1 is a convergence zone for the features that might be critical to successfully sort fruits and vegetables. We also discuss evidence for a functional specialization of the fusiform gyrus along two axes (lateral medial and longitudinal), depending on the nature of the concepts and on the level of processing complexity required by the ongoing task.
Collapse
Affiliation(s)
- Catherine Merck
- Service de neurologie, CMRR, CHU Pontchaillou, Rennes, France; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France.
| | - Isabelle Corouge
- University of Rennes 1, Faculté de Médecine, Rennes F-35065, France; Inria, Rennes Research Center, Rennes F-35042, France; Inserm, U1228, ERL VISAGES, Rennes F-35042, France; CNRS, UMR 6074, IRISA, Rennes F-35042, France
| | | | - Béatrice Desgranges
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Jean-Yves Gauvrit
- University of Rennes 1, Faculté de Médecine, Rennes F-35065, France; Inria, Rennes Research Center, Rennes F-35042, France; Inserm, U1228, ERL VISAGES, Rennes F-35042, France; CNRS, UMR 6074, IRISA, Rennes F-35042, France; CHU Rennes, Neuroradiology Dept, Rennes F-35033, France; Service de Radiologie, CHU Pontchaillou, Rennes, France
| | - Serge Belliard
- Service de neurologie, CMRR, CHU Pontchaillou, Rennes, France; Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| |
Collapse
|
9
|
Gordon E, Rohrer JD, Fox NC. Advances in neuroimaging in frontotemporal dementia. J Neurochem 2017; 138 Suppl 1:193-210. [PMID: 27502125 DOI: 10.1111/jnc.13656] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a clinically and neuroanatomically heterogeneous neurodegenerative disorder with multiple underlying genetic and pathological causes. Whilst initial neuroimaging studies highlighted the presence of frontal and temporal lobe atrophy or hypometabolism as the unifying feature in patients with FTD, more detailed studies have revealed diverse patterns across individuals, with variable frontal or temporal predominance, differing degrees of asymmetry, and the involvement of other cortical areas including the insula and cingulate, as well as subcortical structures such as the basal ganglia and thalamus. Recent advances in novel imaging modalities including diffusion tensor imaging, resting-state functional magnetic resonance imaging and molecular positron emission tomography imaging allow the possibility of investigating alterations in structural and functional connectivity and the visualisation of pathological protein deposition. This review will cover the major imaging modalities currently used in research and clinical practice, focusing on the key insights they have provided into FTD, including the onset and evolution of pathological changes and also importantly their utility as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. Validating neuroimaging biomarkers that are able to accomplish these tasks will be crucial for the ultimate goal of powering upcoming clinical trials by correctly stratifying patient enrolment and providing sensitive markers for evaluating the effects and efficacy of disease-modifying therapies. This review describes the key insights provided by research into the major neuroimaging modalities currently used in research and clinical practice, including what they tell us about the onset and evolution of FTD and how they may be used as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Elizabeth Gordon
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| |
Collapse
|
10
|
Sedeño L, Piguet O, Abrevaya S, Desmaras H, García-Cordero I, Baez S, Alethia de la Fuente L, Reyes P, Tu S, Moguilner S, Lori N, Landin-Romero R, Matallana D, Slachevsky A, Torralva T, Chialvo D, Kumfor F, García AM, Manes F, Hodges JR, Ibanez A. Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia. Hum Brain Mapp 2017; 38:3804-3822. [PMID: 28474365 DOI: 10.1002/hbm.23627] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/29/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023] Open
Abstract
Biomarkers represent a critical research area in neurodegeneration disease as they can contribute to studying potential disease-modifying agents, fostering timely therapeutic interventions, and alleviating associated financial costs. Functional connectivity (FC) analysis represents a promising approach to identify early biomarkers in specific diseases. Yet, virtually no study has tested whether potential FC biomarkers prove to be reliable and reproducible across different centers. As such, their implementation remains uncertain due to multiple sources of variability across studies: the numerous international centers capable conducting FC research vary in their scanning equipment and their samples' socio-cultural background, and, more troublingly still, no gold-standard method exists to analyze FC. In this unprecedented study, we aim to address both issues by performing the first multicenter FC research in the behavioral-variant frontotemporal dementia (bvFTD), and by assessing multiple FC approaches to propose a gold-standard method for analysis. We enrolled 52 bvFTD patients and 60 controls from three international clinics (with different fMRI recording parameters), and three additional neurological patient groups. To evaluate FC, we focused on seed analysis, inter-regional connectivity, and several graph-theory approaches. Only graph-theory analysis, based on weighted-matrices, yielded consistent differences between bvFTD and controls across centers. Also, graph metrics robustly discriminated bvFTD from the other neurological conditions. The consistency of our findings across heterogeneous contexts highlights graph-theory as a potential gold-standard approach for brain network analysis in bvFTD. Hum Brain Mapp 38:3804-3822, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucas Sedeño
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Olivier Piguet
- Neuroscience Research Australia, Sydney, Australia and School of Medical Sciences, The University of New South Wales, Sydney, Australia.,School of Psychology, Central Clinical School & Brain and Mind Centre, University of Sydney; Neuroscience Research Australia; ARC Centre of Excellence in Cognition and its Disorders, New South Wales, Australia
| | - Sofía Abrevaya
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Horacio Desmaras
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Indira García-Cordero
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sandra Baez
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad de los Andes, Bogota, Colombia
| | - Laura Alethia de la Fuente
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Pablo Reyes
- Intellectus Memory and Cognition Center, Mental Health and Psychiatry Department, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Colombia
| | - Sicong Tu
- FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom.,Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - Sebastian Moguilner
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Instituto Balseiro and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Nicolas Lori
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,INECO Neurociencias Oroño, Grupo Oroño, Rosario, Argentina.,Centro Algoritmi, University of Minho, Guimarães, Portugal.,Laboratory of Neuroimaging and Neuroscience (LANEN), INECO Foundation Rosario, Rosario, Argentina
| | - Ramon Landin-Romero
- Neuroscience Research Australia, Sydney, Australia and School of Medical Sciences, The University of New South Wales, Sydney, Australia.,School of Psychology, Central Clinical School & Brain and Mind Centre, University of Sydney; Neuroscience Research Australia; ARC Centre of Excellence in Cognition and its Disorders, New South Wales, Australia
| | - Diana Matallana
- Intellectus Memory and Cognition Center, Mental Health and Psychiatry Department, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Colombia
| | - Andrea Slachevsky
- Physiopathology Department, ICBM Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile.,Cognitive Neurology and Dementia, Neurology Department, Hospital del Salvador, Providencia, Santiago, Chile.,Gerosciences Center for Brain Health and Metabolism, Santiago, Chile.,Centre for Advanced Research in Education, Santiago, Chile
| | - Teresa Torralva
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Dante Chialvo
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Center for Complex Systems & Brain Sciences - Escuela de Ciencia y Tecnologia. UNSAM/Campus Miguelete, Argentina
| | - Fiona Kumfor
- Neuroscience Research Australia, Sydney, Australia and School of Medical Sciences, The University of New South Wales, Sydney, Australia.,School of Psychology, Central Clinical School & Brain and Mind Centre, University of Sydney; Neuroscience Research Australia; ARC Centre of Excellence in Cognition and its Disorders, New South Wales, Australia
| | - Adolfo M García
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Facundo Manes
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - John R Hodges
- Neuroscience Research Australia, Sydney, Australia and School of Medical Sciences, The University of New South Wales, Sydney, Australia.,School of Psychology, Central Clinical School & Brain and Mind Centre, University of Sydney; Neuroscience Research Australia; ARC Centre of Excellence in Cognition and its Disorders, New South Wales, Australia
| | - Agustin Ibanez
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Universidad Autonoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez, Santiago, Chile
| |
Collapse
|
11
|
Bejanin A, Desgranges B, La Joie R, Landeau B, Perrotin A, Mézenge F, Belliard S, de La Sayette V, Eustache F, Chételat G. Distinct white matter injury associated with medial temporal lobe atrophy in Alzheimer's versus semantic dementia. Hum Brain Mapp 2017; 38:1791-1800. [PMID: 27981671 PMCID: PMC6866822 DOI: 10.1002/hbm.23482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/31/2023] Open
Abstract
This study aims at further understanding the distinct vulnerability of brain networks in Alzheimer's disease (AD) versus semantic dementia (SD) investigating the white matter injury associated with medial temporal lobe (MTL) atrophy in both conditions. Twenty-six AD patients, twenty-one SD patients, and thirty-nine controls underwent a high-resolution T1-MRI scan allowing to obtain maps of grey matter volume and white matter density. A statistical conjunction approach was used to identify MTL regions showing grey matter atrophy in both patient groups. The relationship between this common grey matter atrophy and white matter density maps was then assessed within each patient group. Patterns of grey matter atrophy were distinct in AD and SD but included a common region in the MTL, encompassing the hippocampus and amygdala. This common atrophy was associated with alterations in different white matter areas in AD versus SD, mainly including the cingulum and corpus callosum in AD, while restricted to the temporal lobe - essentially the uncinate and inferior longitudinal fasciculi - in SD. Complementary analyses revealed that these relationships remained significant when controlling for global atrophy or disease severity. Overall, this study provides the first evidence that atrophy of the same MTL region is related to damage in distinct white matter fibers in AD and SD. These different patterns emphasize the vulnerability of distinct brain networks related to the MTL in these two disorders, which might underlie the discrepancy in their symptoms. These results further suggest differences between AD and SD in the neuropathological processes occurring in the MTL. Hum Brain Mapp 38:1791-1800, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandre Bejanin
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Béatrice Desgranges
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Renaud La Joie
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Brigitte Landeau
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Audrey Perrotin
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Florence Mézenge
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Serge Belliard
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- Service de NeurologieCHU PontchaillouRennesFrance
| | - Vincent de La Sayette
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
- Service de NeurologieCHU de CaenCaenFrance
| | - Francis Eustache
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Gaël Chételat
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| |
Collapse
|
12
|
Chapleau M, Aldebert J, Montembeault M, Brambati SM. Atrophy in Alzheimer’s Disease and Semantic Dementia: An ALE Meta-Analysis of Voxel-Based Morphometry Studies. J Alzheimers Dis 2016; 54:941-955. [DOI: 10.3233/jad-160382] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marianne Chapleau
- Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Joséphine Aldebert
- Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Montembeault
- Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Simona M. Brambati
- Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Grey Matter Density Predicts the Improvement of Naming Abilities After tDCS Intervention in Agrammatic Variant of Primary Progressive Aphasia. Brain Topogr 2016; 29:738-51. [DOI: 10.1007/s10548-016-0494-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/07/2016] [Indexed: 12/22/2022]
|
14
|
Mahapatra A, Sood M, Bhad R, Tripathi M. Behavioural Variant Frontotemporal Dementia with Bilateral Insular Hypometabolism: A Case Report. J Clin Diagn Res 2016; 10:VD01-VD02. [PMID: 27190928 DOI: 10.7860/jcdr/2016/16536.7638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
Abstract
Fronto-Temporal Dementia (FTD) is a cluster of syndromes, characterized by progressive deterioration of cognition, language and/or behavioural changes associated with degeneration of the frontal and temporal lobes. A 53-year-old man was admitted with a history of gradually progressive behavioural disturbances, disinhibition, unprovoked anger outbursts, apathy, disorganised behaviour and impaired self-care. A clinical diagnosis of Fronto temporal Dementia (behavioural variant) was made. Extensive investigations found no abnormality except in FDG-PET scan of the brain which revealed hypo metabolism in bilateral anterior insular region. Insula is an important brain area implicated in emotional awareness and behaviour control. Hypo metabolism in insular region in the absence of any structural neuroimaging findings, in a case of behavioural variant of Fronto-temporal dementia suggest that, it might be one of the earliest neurobiological changes occurring in this disorder.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Senior Resident, Department of Psychiatry, All India Institute of Medical Sciences , New Delhi, India
| | - Mamta Sood
- Associate Professor, Department of Psychiatry, All India Institute of Medical Sciences , New Delhi, India
| | - Roshan Bhad
- Senior Resident, Department of Psychiatry, All India Institute of Medical Sciences , New Delhi, India
| | - Manjari Tripathi
- Professor, Department of Neurology, All India Institute of Medical Sciences , New Delhi, India
| |
Collapse
|
15
|
Firbank MJ, Lloyd J, Williams D, Barber R, Colloby SJ, Barnett N, Olsen K, Davison C, Donaldson C, Herholz K, O'Brien JT. An evidence-based algorithm for the utility of FDG-PET for diagnosing Alzheimer's disease according to presence of medial temporal lobe atrophy. Br J Psychiatry 2016; 208:491-6. [PMID: 26045347 DOI: 10.1192/bjp.bp.114.160804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Imaging biomarkers for Alzheimer's disease include medial temporal lobe atrophy (MTLA) depicted on computed tomography (CT) or magnetic resonance imaging (MRI) and patterns of reduced metabolism on fluorodeoxyglucose positron emission tomography (FDG-PET). AIMS To investigate whether MTLA on head CT predicts the diagnostic usefulness of an additional FDG-PET scan. METHOD Participants had a clinical diagnosis of Alzheimer's disease (n = 37) or dementia with Lewy bodies (DLB; n = 30) or were similarly aged controls (n = 30). We visually rated MTLA on coronally reconstructed CT scans and, separately and blind to CT ratings, abnormal appearances on FDG-PET scans. RESULTS Using a pre-defined cut-off of MTLA ⩾5 on the Scheltens (0-8) scale, 0/30 controls, 6/30 DLB and 23/30 Alzheimer's disease had marked MTLA. FDG-PET performed well for diagnosing Alzheimer's disease v DLB in the low-MTLA group (sensitivity/specificity of 71%/79%), but in the high-MTLA group diagnostic performance of FDG-PET was not better than chance. CONCLUSIONS In the presence of a high degree of MTLA, the most likely diagnosis is Alzheimer's disease, and an FDG-PET scan will probably not provide significant diagnostic information. However, in cases without MTLA, if the diagnosis is unclear, an FDG-PET scan may provide additional clinically useful diagnostic information.
Collapse
Affiliation(s)
- Michael J Firbank
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Jim Lloyd
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - David Williams
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Robert Barber
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Sean J Colloby
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Nicky Barnett
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty Olsen
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher Davison
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Cam Donaldson
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Karl Herholz
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - John T O'Brien
- Michael J. Firbank, PhD, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne and Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Jim Lloyd, PhD, Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; David Williams, PhD, Robert Barber, MD, Sean J. Colloby, PhD, Nicky Barnett, BSc, Kirsty Olsen, BSc, Christopher Davison, MRCPsych, Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne; Cam Donaldson, PhD, Institute of Health and Society, Newcastle University, Newcastle upon Tyne and Yunus Centre, Glasgow Caledonian University, Glasgow; Karl Herholz, PhD, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester; John T. O'Brien, DM, Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge and Institute for Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Bejanin A, Chételat G, Laisney M, Pélerin A, Landeau B, Merck C, Belliard S, de La Sayette V, Eustache F, Desgranges B. Distinct neural substrates of affective and cognitive theory of mind impairment in semantic dementia. Soc Neurosci 2016; 12:287-302. [DOI: 10.1080/17470919.2016.1168314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Rocha AJD, Nunes RH, Maia Jr. ACM. Dementia in motor neuron disease: reviewing the role of MRI in diagnosis. Dement Neuropsychol 2015. [PMID: 29213986 PMCID: PMC5619319 DOI: 10.1590/1980-57642015dn94000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The superimposed clinical features of motor neuron disease (MND) and
frontotemporal dementia (FTD) comprise a distinct, yet not fully understood,
neurological overlap syndrome whose clinicopathological basis has recently been
reviewed. Here, we present a review of the clinical, pathological and genetic
basis of MND-FTD and the role of MRI in its diagnosis. In doing so, we discuss
current techniques that depict the involvement of the selective corticospinal
tract (CST) and temporal lobe in MND-FTD.
Collapse
|
18
|
Spinelli EG, Caso F, Agosta F, Gambina G, Magnani G, Canu E, Blasi V, Perani D, Comi G, Falini A, Gorno-Tempini ML, Filippi M. A multimodal neuroimaging study of a case of crossed nonfluent/agrammatic primary progressive aphasia. J Neurol 2015; 262:2336-45. [PMID: 26194195 DOI: 10.1007/s00415-015-7845-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/21/2022]
Abstract
Crossed aphasia has been reported mainly as post-stroke aphasia resulting from brain damage ipsilateral to the dominant right hand. Here, we described a case of a crossed nonfluent/agrammatic primary progressive aphasia (nfvPPA), who developed a corticobasal syndrome (CBS). We collected clinical, cognitive, and neuroimaging data for four consecutive years from a 55-year-old right-handed lady (JV) presenting with speech disturbances. 18-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) and DaT-scan with (123)I-Ioflupane were obtained. Functional MRI (fMRI) during a verb naming task was acquired to characterize patterns of language lateralization. Diffusion tensor MRI was used to evaluate white matter damage within the language network. At onset, JV presented with prominent speech output impairment and right frontal atrophy. After 3 years, language deficits worsened, with the occurrence of a mild agrammatism. The patient also developed a left-sided mild extrapyramidal bradykinetic-rigid syndrome. The clinical picture was suggestive of nfvPPA with mild left-sided extrapyramidal syndrome. At this time, voxel-wise SPM analyses of (18)F-FDG PET and structural MRI showed right greater than left frontal hypometabolism and damage, which included the Broca's area. DaT-scan showed a reduced uptake in the right striatum. FMRI during naming task demonstrated bilateral language activations, and tractography showed right superior longitudinal fasciculus (SLF) involvement. Over the following year, JV became mute and developed frank left-sided motor signs and symptoms, evolving into a CBS clinical picture. Brain atrophy worsened in frontal areas bilaterally, and extended to temporo-parietal regions, still with a right-sided asymmetry. Tractography showed an extension of damage to the left SLF and right inferior longitudinal fasciculus. We report a case of crossed nfvPPA followed longitudinally and studied with advanced neuroimaging techniques. The results highlight a complex interaction between individual premorbid developmental differences and the clinical phenotype.
Collapse
Affiliation(s)
- Edoardo G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Caso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Giuseppe Gambina
- SSO Centro Alzheimer e Disturbi Cognitivi, DAI di Neuroscienze, UOC di Neurologia d.O., Azienda Ospedaliera Integrata Verona, Verona, Italy
| | - Giuseppe Magnani
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Valeria Blasi
- Department of Neuroradiology and CERMAC, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniela Perani
- Nuclear Medicine Unit, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology and CERMAC, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy. .,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
19
|
Bertoux M, O'Callaghan C, Flanagan E, Hodges JR, Hornberger M. Fronto-Striatal Atrophy in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease. Front Neurol 2015; 6:147. [PMID: 26191038 PMCID: PMC4486833 DOI: 10.3389/fneur.2015.00147] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) has only recently been associated with significant striatal atrophy, whereas the striatum appears to be relatively preserved in Alzheimer’s disease (AD). Considering the critical role the striatum has in cognition and behavior, striatal degeneration, together with frontal atrophy, could be responsible of some characteristic symptoms in bvFTD and emerges therefore as promising novel diagnostic biomarker to distinguish bvFTD and AD. Previous studies have, however, only taken either cortical or striatal atrophy into account when comparing the two diseases. In this study, we establish for the first time a profile of fronto-striatal atrophy in 23 bvFTD and 29 AD patients at presentation, based on the structural connectivity of striatal and cortical regions. Patients are compared to 50 healthy controls by using a novel probabilistic connectivity atlas, which defines striatal regions by their cortical white-matter connectivity, allowing us to explore the degeneration of the frontal and striatal regions that are functionally linked. Comparisons with controls revealed that bvFTD showed substantial fronto-striatal atrophy affecting the ventral as well as anterior and posterior dorso-lateral prefrontal cortices and the related striatal subregions. In contrast, AD showed few fronto-striatal atrophy, despite having significant posterior dorso-lateral prefrontal degeneration. Direct comparison between bvFTD and AD revealed significantly more atrophy in the ventral striatal–ventromedial prefrontal cortex regions in bvFTD. Consequently, deficits in ventral fronto-striatal regions emerge as promising novel and efficient diagnosis biomarker for bvFTD. Future investigations into the contributions of these fronto-striatal loops on bvFTD symptomology are needed to develop simple diagnostic and disease tracking algorithms.
Collapse
Affiliation(s)
- Maxime Bertoux
- Neurosciences Research Australia (NeuRA) , Randwick, NSW , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , UK
| | - Claire O'Callaghan
- Neurosciences Research Australia (NeuRA) , Randwick, NSW , Australia ; School of Medical Sciences, University of New South Wales , Sydney, NSW , Australia
| | - Emma Flanagan
- Neurosciences Research Australia (NeuRA) , Randwick, NSW , Australia ; School of Medical Sciences, University of New South Wales , Sydney, NSW , Australia
| | - John R Hodges
- Neurosciences Research Australia (NeuRA) , Randwick, NSW , Australia
| | - Michael Hornberger
- Neurosciences Research Australia (NeuRA) , Randwick, NSW , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , UK ; School of Medical Sciences, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
20
|
Huston J, Murphy MC, Boeve BF, Fattahi N, Arani A, Glaser KJ, Manduca A, Jones DT, Ehman RL. Magnetic resonance elastography of frontotemporal dementia. J Magn Reson Imaging 2015; 43:474-8. [PMID: 26130216 PMCID: PMC4696917 DOI: 10.1002/jmri.24977] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/01/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the feasibility of utilizing brain stiffness as a potential biomarker for behavioral variant frontotemporal dementia (bvFTD) patients. Magnetic resonance elastography (MRE) is a noninvasive technique for evaluating the mechanical properties of brain tissue in vivo. MRE has demonstrated decreased brain stiffness in patients with Alzheimer's disease. Materials and Methods We examined five male subjects with bvFTD and nine cognitively normal age‐matched male controls (NC) with brain 3T MRE. Stiffness was calculated in nine regions of interest (ROIs): whole brain (entire cerebrum excluding cerebellum), frontal lobes, occipital lobes, parietal lobes, temporal lobes, deep gray matter / white matter (GM/WM; insula, deep gray nuclei and white matter tracts), cerebellum, sensorimotor cortex (pre‐ and postcentral gyri), and a composite region labeled FT (frontal and temporal lobes excluding the pre‐ and postcentral gyri). Results Significantly lower stiffness values were observed in the whole brain (P = 0.007), frontal lobe (P = 0.001), and temporal lobes (P = 0.005) of bvFTD patients compared to NC. No significant stiffness differences were observed in any other ROIs of bvFTD patients compared to NC (P > 0.05). These results demonstrate that statistically significant brain softening occurs in the frontal and temporal lobes of bvFTD patients, which corresponds to the expected pathophysiology of bvFTD. Conclusion Future studies evaluating the feasibility of brain MRE for early disease detection and monitoring disease progression could shed new insights into understanding the mechanisms involved in bvFTD. J. Magn. Reson. Imaging 2016;43:474–478.
Collapse
Affiliation(s)
- John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew C Murphy
- Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nikoo Fattahi
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin J Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Abstract
Dementia-inducing conditions represent a leading cause of disability and are a major health concern in industrialized countries. The burden these conditions put on society is certain to rise in the context of an ever-increasing elderly population. As these conditions feature an insidious onset and overlapping clinical features, imaging is a powerful tool in refining the diagnosis and assessing the progression of dementing conditions. The radiologist needs to be aware of and be able to detect underlying pathologies which could be reversible. Furthermore, imaging is important not only in excluding other pathologies but also in improving diagnostic accuracy. This article presents the typical clinical presentations as well as magnetic resonance imaging (MRI) features of the degenerative and the non-degenerative causes of dementia. The focus is on the core knowledge for MRI diagnostics in dementing conditions and a brief presentation of the latest MRI techniques which may become a part of standard imaging protocols in the future.
Collapse
Affiliation(s)
- S V Bodea
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße, 66421, Homburg, Deutschland
| | | |
Collapse
|
22
|
Agosta F, Galantucci S, Magnani G, Marcone A, Martinelli D, Antonietta Volontè M, Riva N, Iannaccone S, Ferraro PM, Caso F, Chiò A, Comi G, Falini A, Filippi M. MRI signatures of the frontotemporal lobar degeneration continuum. Hum Brain Mapp 2015; 36:2602-14. [PMID: 25821176 DOI: 10.1002/hbm.22794] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 02/16/2015] [Accepted: 03/11/2015] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To identify overlapping and unique grey (GM) and white matter (WM) signatures within the frontotemporal lobar degeneration (FTLD) continuum, and discriminate likely FTLD-TAU and FTLD-TDP patients using structural and diffusion tensor (DT) magnetic resonance imaging (MRI). METHODS T1-weighted and DT MRI were collected from 121 subjects: 35 motor neuron disease (MND), 14 behavioral variant of frontotemporal dementia, 12 semantic and 11 nonfluent primary progressive aphasia, 21 progressive supranuclear palsy syndrome patients, and 28 healthy controls. Patterns of GM atrophy were established using voxel-based morphometry. Tract-based spatial statistics was used to perform a WM voxelwise analysis of mean diffusivity and fractional anisotropy. RESULTS In all clinical FTLD phenotypes, the pattern of WM damage was more distributed than that of GM atrophy. All patient groups, with the exception of MND cases with a pure motor syndrome, shared a focal GM atrophy centered around the dorsolateral and medial frontal cortex and a largely overlapping pattern of WM damage involving the genu and body of the corpus callosum and ventral frontotemporal and dorsal frontoparietal WM pathways. Surrounding this common area, phenotype (symptom)-specific GM and WM regions of damage were found in each group. CONCLUSIONS In the FTLD spectrum, WM disruption is more severe than GM damage. Frontal cortex and WM pathways represent the common target of neurodegeneration in these conditions. The topographic pattern of damage supports a "prion-like" protein propagation through WM connections as underlying mechanism of the stereotyped progression of FTLD.
Collapse
Affiliation(s)
| | | | - Giuseppe Magnani
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience
| | - Alessandra Marcone
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience
| | - Sandro Iannaccone
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Adriano Chiò
- Department of Neuroscience, ALS Center, "Rita Levi Montalcini" University of Torino, Torino, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience
| | - Andrea Falini
- Department of Neuroradiology and CERMAC, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience
| |
Collapse
|
23
|
Bertoux M, Cova F, Pessiglione M, Hsu M, Dubois B, Bourgeois-Gironde S. Behavioral variant frontotemporal dementia patients do not succumb to the Allais paradox. Front Neurosci 2014; 8:287. [PMID: 25309311 PMCID: PMC4159974 DOI: 10.3389/fnins.2014.00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 11/13/2022] Open
Abstract
The Allais Paradox represents one of the earliest empirical challenges to normative models of decision-making, and suggests that choices in one part of a gamble may depend on the possible outcome in another, independent, part of the gamble-a violation of the so-called "independence axiom." To account for Allaisian behavior, one well-known class of models propose that individuals' choices are influenced not only by possible outcomes resulting from one's choices, but also the anticipation of regret for foregone options. Here we test the regret hypothesis using a population of patients with behavioral variant frontotemporal dementia (bvFTD), a clinical population known to present ventromedial prefrontal cortex dysfunctions and associated with impaired regret processing in previous studies of decision-making. Compared to matched controls and Alzheimer's disease (AD) patients, we found a striking diminution of Allaisian behavior among bvFTD patients. These results are consistent with the regret hypothesis and furthermore suggest a crucial role for prefrontal regions in choices that typically stands in contradiction with a basic axiom of rational decision-making.
Collapse
Affiliation(s)
- Maxime Bertoux
- Institut Jean Nicod, Ecole Normale Supérieure Paris, France
| | - Florian Cova
- Institut Jean Nicod, Ecole Normale Supérieure Paris, France ; Swiss Centre in Affective Sciences, University of Geneva Geneva, Switzerland
| | - Mathias Pessiglione
- Institut du Cerveau et de la Moelle Epinière, INSERM UMRS 975, Hôpital Pitié-Salpêtrière Paris, France
| | - Ming Hsu
- Institut Jean Nicod, Ecole Normale Supérieure Paris, France ; Neuroeconomics Laboratory, Haas School of Business, University of California, Berkeley Berkeley, CA, USA
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle Epinière, INSERM UMRS 975, Hôpital Pitié-Salpêtrière Paris, France
| | - Sacha Bourgeois-Gironde
- Institut Jean Nicod, Ecole Normale Supérieure Paris, France ; LEMMA, Université Panthéon-Assas Paris, France
| |
Collapse
|
24
|
Abstract
In primary progressive aphasia (PPA), speech and language difficulties are caused by neurodegeneration of specific brain networks. In the nonfluent/agrammatic variant (nfvPPA), motor speech and grammatical deficits are associated with atrophy in a left fronto-insular-striatal network previously implicated in speech production. In vivo dissection of the crossing white matter (WM) tracts within this "speech production network" is complex and has rarely been performed in health or in PPA. We hypothesized that damage to these tracts would be specific to nfvPPA and would correlate with differential aspects of the patients' fluency abilities. We prospectively studied 25 PPA and 21 healthy individuals who underwent extensive cognitive testing and 3 T MRI. Using residual bootstrap Q-ball probabilistic tractography on high angular resolution diffusion-weighted imaging (HARDI), we reconstructed pathways connecting posterior inferior frontal, inferior premotor, insula, supplementary motor area (SMA) complex, striatum, and standard ventral and dorsal language pathways. We extracted tract-specific diffusion tensor imaging (DTI) metrics to assess changes across PPA variants and perform brain-behavioral correlations. Significant WM changes in the left intrafrontal and frontostriatal pathways were found in nfvPPA, but not in the semantic or logopenic variants. Correlations between tract-specific DTI metrics with cognitive scores confirmed the specific involvement of this anterior-dorsal network in fluency and suggested a preferential role of a posterior premotor-SMA pathway in motor speech. This study shows that left WM pathways connecting the speech production network are selectively damaged in nfvPPA and suggests that different tracts within this system are involved in subcomponents of fluency. These findings emphasize the emerging role of diffusion imaging in the differential diagnosis of neurodegenerative diseases.
Collapse
|
25
|
Diehl-Schmid J, Onur OA, Kuhn J, Gruppe T, Drzezga A. Imaging Frontotemporal Lobar Degeneration. Curr Neurol Neurosci Rep 2014; 14:489. [DOI: 10.1007/s11910-014-0489-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
O'Callaghan C, Bertoux M, Hornberger M. Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry 2014; 85:371-8. [PMID: 23833269 DOI: 10.1136/jnnp-2012-304558] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigations of cognitive and behavioural changes in neurodegeneration have been mostly focussed on how cortical changes can explain these symptoms. In the proposed review, we will argue that the striatum has been overlooked as a critical nexus in understanding the generation of such symptoms. Although the striatum is historically more associated with motor dysfunction, there is increasing evidence from functional neuroimaging studies in the healthy that striatal regions modulate behaviour and cognition. This should not be surprising, as the striatum has strong anatomical connections to many cortical regions including the frontal, temporal and insula lobes, as well as some subcortical regions (amygdala, hippocampus). To date, however, it is largely unclear to what extent striatal regions are affected in many neurodegenerative conditions-and if so, how striatal dysfunction can potentially influence cognition and behaviour. The proposed review will examine the existing evidence of striatal changes across selected neurodegenerative conditions (Parkinson's disease, progressive supranuclear palsy, Huntington's disease, motor neuron disease, frontotemporal dementia and Alzheimer's disease), and will document their link with the cognitive and behavioural impairments observed. Thus, by reviewing the varying degrees of cortical and striatal changes in these conditions, we can start outlining the contributions of the striatal nexus to cognitive and behavioural symptoms. In turn, this knowledge will inform future studies investigating corticostriatal networks and also diagnostic strategies, disease management and future therapeutics of neurodegenerative conditions.
Collapse
|
27
|
d'Ambrosio A, Gallo A, Trojsi F, Corbo D, Esposito F, Cirillo M, Monsurrò MR, Tedeschi G. Frontotemporal cortical thinning in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2014; 35:304-10. [PMID: 24113470 PMCID: PMC7965753 DOI: 10.3174/ajnr.a3753] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE The extensive application of advanced MR imaging techniques has undoubtedly improved our knowledge of the pathophysiology of amyotrophic lateral sclerosis. Nevertheless, the precise extent of neurodegeneration throughout the central nervous system is not fully understood. In the present study, we assessed the spatial distribution of cortical damage in amyotrophic lateral sclerosis by using a cortical thickness measurement approach. MATERIALS AND METHODS Surface-based morphometry was performed on 20 patients with amyotrophic lateral sclerosis and 18 age- and sex-matched healthy control participants. Clinical scores of disability and disease progression were correlated with measures of cortical thickness. RESULTS The patients with amyotrophic lateral sclerosis showed a significant cortical thinning in multiple motor and extramotor cortical areas when compared with healthy control participants. Gray matter loss was significantly related to disease disability in the left lateral orbitofrontal cortex (P = .04), to disease duration in the right premotor cortex (P = .007), and to disease progression rate in the left parahippocampal cortex (P = .03). CONCLUSIONS Cortical thinning of the motor cortex might reflect upper motor neuron impairment, whereas the extramotor involvement seems to be related to disease disability, progression, and duration. The cortical pattern of neurodegeneration depicted resembles what has already been described in frontotemporal dementia, thereby providing further structural evidence of a continuum between amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- A d'Ambrosio
- From the Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences (A.d'A., A.G., F.T., M.R.M., M.C., G.T.), Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Caso F, Mandelli ML, Henry M, Gesierich B, Bettcher BM, Ogar J, Filippi M, Comi G, Magnani G, Sidhu M, Trojanowski JQ, Huang EJ, Grinberg LT, Miller BL, Dronkers N, Seeley WW, Gorno-Tempini ML. In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology. Neurology 2013; 82:239-47. [PMID: 24353332 DOI: 10.1212/wnl.0000000000000031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify early cognitive and neuroimaging features of sporadic nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA) caused by frontotemporal lobar degeneration (FTLD) subtypes. METHODS We prospectively collected clinical, neuroimaging, and neuropathologic data in 11 patients with sporadic nfvPPA with FTLD-tau (nfvPPA-tau, n = 9) or FTLD-transactive response DNA binding protein pathology of 43 kD type A (nfvPPA-TDP, n = 2). We analyzed patterns of cognitive and gray matter (GM) and white matter (WM) atrophy at presentation in the whole group and in each pathologic subtype separately. We also considered longitudinal clinical data. RESULTS At first evaluation, regardless of pathologic FTLD subtype, apraxia of speech (AOS) was the most common cognitive feature and atrophy involved the left posterior frontal lobe. Each pathologic subtype showed few distinctive features. At presentation, patients with nfvPPA-tau presented with mild to moderate AOS, mixed dysarthria with prominent hypokinetic features, clear agrammatism, and atrophy in the GM of the left posterior frontal regions and in left frontal WM. While speech and language deficits were prominent early, within 3 years of symptom onset, all patients with nfvPPA-tau developed significant extrapyramidal motor signs. At presentation, patients with nfvPPA-TDP had severe AOS, dysarthria with spastic features, mild agrammatism, and atrophy in left posterior frontal GM only. Selective mutism occurred early, when general neurologic examination only showed mild decrease in finger dexterity in the right hand. CONCLUSIONS Clinical features in sporadic nfvPPA caused by FTLD subtypes relate to neurodegeneration of GM and WM in frontal motor speech and language networks. We propose that early WM atrophy in nfvPPA is suggestive of FTLD-tau pathology while early selective GM loss might be indicative of FTLD-TDP.
Collapse
Affiliation(s)
- Francesca Caso
- From the Memory and Aging Center (F.C., M.L.M., M.H., B.G., B.M.B., J.O., M.S., L.T.G., B.L.M., W.W.S., M.L.G.-T.) and Department of Pathology (E.J.H.), University of California, San Francisco; Department of Neurology (F.C., M.F., G.C., G.M.) and Neuroimaging Research Unit (F.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute University and San Raffaele Scientific Institute, Milan, Italy; Department of Pathology and Laboratory Medicine (J.Q.T.), University of Pennsylvania, Philadelphia; Center for Aphasia and Related Disorders (N.D.), VA Northern California Health Care System, Martinez, CA; and Department of Neurology (N.D.), University of California, Davis
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang B, Xu Y, Zhu B, Kantarci K. The role of diffusion tensor imaging in detecting microstructural changes in prodromal Alzheimer's disease. CNS Neurosci Ther 2013; 20:3-9. [PMID: 24330534 DOI: 10.1111/cns.12166] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 12/13/2022] Open
Abstract
The MRI technique diffusion tensor imaging (DTI) is reviewed along with microstructural changes associated with prodromal Alzheimer's disease (AD) as a potential biomarker for clinical applications. The prodromal stage of AD is characterized by mild cognitive impairment (MCI), representing a transitional state between normal aging and AD. Microstructural abnormalities on DTI are promising in vivo biomarkers of gray and white matter changes associated with the progression of AD pathology. Elevated mean diffusivity and decreased fractional anisotropy are consistently found in prodromal AD, and even in cognitively normal elderly who progress to MCI. However, quality of parameter maps may be affected by artifacts of motion, susceptibility, and eddy current-induced distortions. The DTI maps are typically analyzed by region-of-interest or voxel-based analytic techniques such as tract-based spatial statistics. DTI-based index of diffusivity is complementary to macrostructural gray matter changes in the hippocampus in detecting prodromal AD. Breakdown of structural connectivity measured with DTI may impact cognitive performance during early AD. Furthermore, assessment of hippocampal connections may help in understanding the cerebral organization and remodeling associated with treatment response.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
30
|
Filippi M, Agosta F, Scola E, Canu E, Magnani G, Marcone A, Valsasina P, Caso F, Copetti M, Comi G, Cappa SF, Falini A. Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 2013; 49:2389-401. [DOI: 10.1016/j.cortex.2012.09.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/27/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
|
31
|
Warren JD, Rohrer JD, Schott JM, Fox NC, Hardy J, Rossor MN. Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends Neurosci 2013; 36:561-9. [PMID: 23876425 PMCID: PMC3794159 DOI: 10.1016/j.tins.2013.06.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/17/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022]
Abstract
Neural networks provide candidate substrates for the spread of proteinopathies causing neurodegeneration, and emerging data suggest that macroscopic signatures of network disintegration differentiate diseases. However, how do protein abnormalities produce network signatures? The answer may lie with 'molecular nexopathies': specific, coherent conjunctions of pathogenic protein and intrinsic network characteristics that define network signatures of neurodegenerative pathologies. Key features of the paradigm that we propose here include differential intrinsic network vulnerability to propagating protein abnormalities, in part reflecting developmental structural and functional factors; differential vulnerability of neural connection types (e.g., clustered versus distributed connections) to particular pathogenic proteins; and differential impact of molecular effects (e.g., toxic-gain-of-function versus loss-of-function) on gradients of network damage. The paradigm has implications for understanding and predicting neurodegenerative disease biology.
Collapse
Affiliation(s)
- Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The term frontotemporal dementia (FTD) refers to a group of neurodegenerative disorders that are associated with atrophy of the frontal and temporal lobes, and present clinically with impairments of behaviour or language. Three main subtypes are described, behavioural variant FTD (bvFTD) and two subtypes of the language presentation (known as primary progressive aphasia or PPA) called semantic variant of PPA and non-fluent variant of PPA. Most imaging studies of FTD have used volumetric T1 magnetic resonance imaging (MRI) or positron emissions tomography imaging to identify patterns of grey matter atrophy or hypometabolism in these different subtypes, but more recently newer imaging techniques have been used to help define abnormalities in structural connectivity (white matter tract integrity using diffusion tensor imaging), functional connectivity (resting state networks using resting state functional MRI) and perfusion (using arterial spin labelling perfusion MRI) in FTD. These techniques have the potential to improve the differential diagnosis of FTD from other disorders and to provide more informative imaging signatures of FTD syndromes.
Collapse
Affiliation(s)
- Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Diseases, Institute of Neurology, University College London, UK
| | | |
Collapse
|
33
|
Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry. PLoS One 2012; 7:e52531. [PMID: 23285078 PMCID: PMC3527560 DOI: 10.1371/journal.pone.0052531] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD). However there is a need to develop more accurate and standardized MRI analysis methods. OBJECTIVE To compare FTD with Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) with three automatic MRI analysis methods - Hippocampal Volumetry (HV), Tensor-based Morphometry (TBM) and Voxel-based Morphometry (VBM), in specific regions of interest in order to determine the highest classification accuracy. METHODS Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI) and 48 patients with stable MCI (SMCI) were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR), sensitivity (SS) and specificity (SP) between the study groups. RESULTS We found unequivocal results differentiating controls from FTD with HV (hippocampus left side) (CCR = 0.83; SS = 0.84; SP = 0.80), with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94), and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn) (CCR = 0.87/SS = 0.81/SP = 0.96). VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76), particularly in lateral ventricle (frontal horn, central part and occipital horn) (CCR = 0.73), whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73). TBM resulted in low accuracy (CCR = 0.62) in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55). CONCLUSION Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD.
Collapse
|
34
|
Agosta F, Caso F, Filippi M. Dementia and neuroimaging. J Neurol 2012; 260:685-91. [PMID: 23241895 DOI: 10.1007/s00415-012-6778-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 12/12/2022]
Abstract
Early diagnosis of dementing conditions and an accurate monitoring of their progression are important clinical and research goals, especially given the improving prospects of disease-modifying therapies. Neuroimaging has played and is playing an important role in detecting reversible, treatable causes of dementia, and in characterizing the dementia syndromes by demonstrating structural and functional signatures that can aid in their differentiation. Many new imaging techniques and modalities are also available that allow the assessment of specific aspects of brain structure and function, such as positron emission tomography with new ligands, diffusion tensor magnetic resonance imaging (MRI) and functional MRI. In this review, we report the most recent findings from the papers published in the Journal of Neurology that used conventional and advanced neuroimaging techniques for the study of various dementing conditions.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, via Olgettina 60, 20132 Milan, Italy
| | | | | |
Collapse
|
35
|
Bertoux M, Funkiewiez A, O'Callaghan C, Dubois B, Hornberger M. Sensitivity and specificity of ventromedial prefrontal cortex tests in behavioral variant frontotemporal dementia. Alzheimers Dement 2012; 9:S84-94. [PMID: 23218606 DOI: 10.1016/j.jalz.2012.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) is characterized by early and substantial ventromedial prefrontal cortex (VMPFC) dysfunction. To date, however, there is no consensus regarding which tests are most sensitive and specific to assess VMPFC dysfunction in this condition. METHODS In this study we compared the sensitivity and specificity of four common VMPFC specific tests (Mini-SEA, Go/No-Go Subtest of the Frontal Assessment Battery, Reversal-Learning Test, and Iowa Gambling Task) at first clinic presentation in two neurodegenerative cohorts (bvFTD, Alzheimer's disease) and age-matched, healthy controls. RESULTS We found that the Mini-SEA, evaluating theory of mind and emotion processes, emerged as the most sensitive and specific of the VMPFC tests employed. The Mini-SEA alone successfully distinguished bvFTD and Alzheimer's disease (AD) in >82% of subjects at first presentation. Similarly, the FAB Go/No-Go and Reversal-Learning Tests also showed very good discrimination power, but to a lesser degree. The Iowa Gambling Task, one of the most common measures of VMPFC function, was the least specific of these tests. CONCLUSION Sensitivity to detect VMPFC dysfunction was high across all test employed, but specificity varied considerably. The Mini-SEA emerged as the most promising of the VMPFC-specific diagnostic tests. Clinicians should take into account the variable specificity of currently available VMPFC tests, which can complement current carer-based questionnaires and clinical evaluation to improve the diagnosis of behavioral dysfunctions due to VMPFC dysfunction.
Collapse
Affiliation(s)
- Maxime Bertoux
- Sorbonne Université - Paris 6, Paris, France; Institut du Cerveau et de la Moelle Epinière, UMRS 975, Paris, France; Institut de la Mémoire et de la Maladie d'Alzheimer (IMMA), Hôpital de la Pitié-Salpêtrière, Paris, France; Reference Centre on Rare Dementias, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | | | | | | | | |
Collapse
|
36
|
Social Cognition and Emotional Assessment (SEA) is a marker of medial and orbital frontal functions: a voxel-based morphometry study in behavioral variant of frontotemporal degeneration. J Int Neuropsychol Soc 2012; 18:972-85. [PMID: 23158228 DOI: 10.1017/s1355617712001300] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to explore the cerebral correlates of functional deficits that occur in behavioral variant frontotemporal dementia (bvFTD). A specific neuropsychological battery, the Social cognition & Emotional Assessment (SEA; Funkiewiez et al., 2012), was used to assess impaired social and emotional functions in 20 bvFTD patients who also underwent structural MRI scanning. The SEA subscores of theory of mind, reversal-learning tests, facial emotion identification, and apathy evaluation were entered as covariates in a voxel-based morphometry analysis. The results revealed that the gray matter volume in the rostral part of the medial prefrontal cortex [mPFC, Brodmann area (BA) 10] was associated with scores on the theory of mind subtest, while gray matter volume within the orbitofrontal (OFC) and ventral mPFC (BA 11 and 47) was related to the scores observed in the reversal-learning subtest. Gray matter volume within BA 9 in the mPFC was correlated with scores on the emotion recognition subtest, and the severity of apathetic symptoms in the Apathy scale covaried with gray matter volume in the lateral PFC (BA 44/45). Among these regions, the mPFC and OFC cortices have been shown to be atrophied in the early stages of bvFTD. In addition, SEA and its abbreviated version (mini-SEA) have been demonstrated to be sensitive to early impairments in bvFTD (Bertoux et al., 2012). Taken together, these results suggest a differential involvement of orbital and medial prefrontal subregions in SEA subscores and support the use of the SEA to evaluate the integrity of these regions in the early stages of bvFTD.
Collapse
|
37
|
Farb NAS, Grady CL, Strother S, Tang-Wai DF, Masellis M, Black S, Freedman M, Pollock BG, Campbell KL, Hasher L, Chow TW. Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation. Cortex 2012; 49:1856-73. [PMID: 23092697 DOI: 10.1016/j.cortex.2012.09.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 06/01/2012] [Accepted: 09/14/2012] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Degraded social function, disinhibition, and stereotypy are defining characteristics of frontotemporal dementia (FTD), manifesting in both the behavioral variant of frontotemporal dementia (bvFTD) and semantic dementia (SD) subtypes. Recent neuroimaging research also associates FTD with alterations in the brain's intrinsic connectivity networks. The present study explored the relationship between neural network connectivity and specific behavioral symptoms in FTD. METHODS Resting-state functional magnetic resonance imaging was employed to investigate neural network changes in bvFTD and SD. We used independent components analysis (ICA) to examine changes in frontolimbic network connectivity, as well as several metrics of local network strength, such as the fractional amplitude of low-frequency fluctuations, regional homogeneity, and seed-based functional connectivity. For each analysis, we compared each FTD subgroup to healthy controls, characterizing general and subtype-unique network changes. The relationship between abnormal connectivity in FTD and behavior disturbances was explored. RESULTS Across multiple analytic approaches, both bvFTD and SD were associated with disrupted frontolimbic connectivity and elevated local connectivity within the prefrontal cortex. Even after controlling for structural atrophy, prefrontal hyperconnectivity was robustly associated with apathy scores. Frontolimbic disconnection was associated with lower disinhibition scores, suggesting that abnormal frontolimbic connectivity contributes to positive symptoms in dementia. Unique to bvFTD, stereotypy was associated with elevated default network connectivity in the right angular gyrus. The behavioral variant was also associated with marginally higher apathy scores and a more diffuse pattern of prefrontal hyperconnectivity than SD. CONCLUSIONS The present findings support a theory of FTD as a disorder of frontolimbic disconnection leading to unconstrained prefrontal connectivity. Prefrontal hyperconnectivity may represent a compensatory response to the absence of affective feedback during the planning and execution of behavior. Increased reliance upon prefrontal processes in isolation from subcortical structures appears to be maladaptive and may drive behavioral withdrawal that is commonly observed in later phases of neurodegeneration.
Collapse
Affiliation(s)
- Norman A S Farb
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|