1
|
Takemura H, Kruper JA, Miyata T, Rokem A. Tractometry of Human Visual White Matter Pathways in Health and Disease. Magn Reson Med Sci 2024; 23:316-340. [PMID: 38866532 PMCID: PMC11234945 DOI: 10.2463/mrms.rev.2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Diffusion-weighted MRI (dMRI) provides a unique non-invasive view of human brain tissue properties. The present review article focuses on tractometry analysis methods that use dMRI to assess the properties of brain tissue within the long-range connections comprising brain networks. We focus specifically on the major white matter tracts that convey visual information. These connections are particularly important because vision provides rich information from the environment that supports a large range of daily life activities. Many of the diseases of the visual system are associated with advanced aging, and tractometry of the visual system is particularly important in the modern aging society. We provide an overview of the tractometry analysis pipeline, which includes a primer on dMRI data acquisition, voxelwise model fitting, tractography, recognition of white matter tracts, and calculation of tract tissue property profiles. We then review dMRI-based methods for analyzing visual white matter tracts: the optic nerve, optic tract, optic radiation, forceps major, and vertical occipital fasciculus. For each tract, we review background anatomical knowledge together with recent findings in tractometry studies on these tracts and their properties in relation to visual function and disease. Overall, we find that measurements of the brain's visual white matter are sensitive to a range of disorders and correlate with perceptual abilities. We highlight new and promising analysis methods, as well as some of the current barriers to progress toward integration of these methods into clinical practice. These barriers, such as variability in measurements between protocols and instruments, are targets for future development.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - John A Kruper
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| | - Toshikazu Miyata
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Menzel M, Gräßel D, Rajkovic I, Zeineh MM, Georgiadis M. Using light and X-ray scattering to untangle complex neuronal orientations and validate diffusion MRI. eLife 2023; 12:e84024. [PMID: 37166005 PMCID: PMC10259419 DOI: 10.7554/elife.84024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Disentangling human brain connectivity requires an accurate description of nerve fiber trajectories, unveiled via detailed mapping of axonal orientations. However, this is challenging because axons can cross one another on a micrometer scale. Diffusion magnetic resonance imaging (dMRI) can be used to infer axonal connectivity because it is sensitive to axonal alignment, but it has limited spatial resolution and specificity. Scattered light imaging (SLI) and small-angle X-ray scattering (SAXS) reveal axonal orientations with microscopic resolution and high specificity, respectively. Here, we apply both scattering techniques on the same samples and cross-validate them, laying the groundwork for ground-truth axonal orientation imaging and validating dMRI. We evaluate brain regions that include unidirectional and crossing fibers in human and vervet monkey brain sections. SLI and SAXS quantitatively agree regarding in-plane fiber orientations including crossings, while dMRI agrees in the majority of voxels with small discrepancies. We further use SAXS and dMRI to confirm theoretical predictions regarding SLI determination of through-plane fiber orientations. Scattered light and X-ray imaging can provide quantitative micrometer 3D fiber orientations with high resolution and specificity, facilitating detailed investigations of complex fiber architecture in the animal and human brain.
Collapse
Affiliation(s)
- Miriam Menzel
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of TechnologyDelftNetherlands
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbHJülichGermany
| | - David Gräßel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbHJülichGermany
| | - Ivan Rajkovic
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator LaboratoryStandfordUnited States
| | - Michael M Zeineh
- Department of Radiology, Stanford School of MedicineStanfordUnited States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of MedicineStanfordUnited States
| |
Collapse
|
3
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
4
|
Arcaro MJ, Livingstone MS, Kay KN, Weiner KS. The retrocalcarine sulcus maps different retinotopic representations in macaques and humans. Brain Struct Funct 2022; 227:1227-1245. [PMID: 34921348 PMCID: PMC9046316 DOI: 10.1007/s00429-021-02427-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
Primate cerebral cortex is highly convoluted with much of the cortical surface buried in sulcal folds. The origins of cortical folding and its functional relevance have been a major focus of systems and cognitive neuroscience, especially when considering stereotyped patterns of cortical folding that are shared across individuals within a primate species and across multiple species. However, foundational questions regarding organizing principles shared across species remain unanswered. Taking a cross-species comparative approach with a careful consideration of historical observations, we investigate cortical folding relative to primary visual cortex (area V1). We identify two macroanatomical structures-the retrocalcarine and external calcarine sulci-in 24 humans and 6 macaque monkeys. We show that within species, these sulci are identifiable in all individuals, fall on a similar part of the V1 retinotopic map, and thus, serve as anatomical landmarks predictive of functional organization. Yet, across species, the underlying eccentricity representations corresponding to these macroanatomical structures differ strikingly across humans and macaques. Thus, the correspondence between retinotopic representation and cortical folding for an evolutionarily old structure like V1 is species-specific and suggests potential differences in developmental and experiential constraints across primates.
Collapse
Affiliation(s)
- Michael J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19146, USA
| | | | - Kendrick N Kay
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Caspers S, Axer M, Gräßel D, Amunts K. Additional fiber orientations in the sagittal stratum-noise or anatomical fine structure? Brain Struct Funct 2022; 227:1331-1345. [PMID: 35113243 PMCID: PMC9046345 DOI: 10.1007/s00429-021-02439-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
The sagittal stratum is a prominent and macroscopically clearly visible white-matter structure within occipital and parietal lobes with a highly organized structure of parallel fibers running in rostro-caudal direction. Apart from the major tract running through, i.e., the optic radiation, the source and arrangement of other fibers within the sagittal stratum is only partially understood. Recent diffusion imaging studies in-vivo suggest additional minor fiber directions, perpendicular to the major rostro-caudal ones, but the spatial resolution does not allow to resolve them, and to unambiguously distinguish it from noise. Taking this previous evidence as motivation, the present study used 3D polarized light imaging (3D-PLI) for micrometer resolution analysis of nerve fibers in postmortem specimens of a vervet monkey brain. The analysis of coronal occipital and parietal sections revealed that the sagittal stratum consisted of an external and an internal layer, which are joined and crossed by fibers from the surrounding white matter and the tapetum. Fibers from different parietal and occipital regions entered the sagittal stratum in the dorsal, ventral or middle sector, as solid large bundles or as several small fiber aggregations. These patterns were remarkably similar to published results of tracer experiments in macaques. Taking this correspondence as external validation of 3D-PLI enabled translation to the human brain, where a similarly complex fiber architecture within the sagittal stratum could be exemplified in a human hemisphere in our study. We thus argue in favor of a dedicated fiber microstructure within the sagittal stratum as a correlate of the additional fiber directions typically seen in in-vivo diffusion imaging studies.
Collapse
Affiliation(s)
- Svenja Caspers
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - David Gräßel
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
6
|
Liu CJ, Ammon W, Jones RJ, Nolan J, Wang R, Chang S, Frosch MP, Yendiki A, Boas DA, Magnain C, Fischl B, Wang H. Refractive-index matching enhanced polarization sensitive optical coherence tomography quantification in human brain tissue. BIOMEDICAL OPTICS EXPRESS 2022; 13:358-372. [PMID: 35154876 PMCID: PMC8803034 DOI: 10.1364/boe.443066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 05/11/2023]
Abstract
The importance of polarization-sensitive optical coherence tomography (PS-OCT) has been increasingly recognized in human brain imaging. Despite the recent progress of PS-OCT in revealing white matter architecture and orientation, quantification of fine-scale fiber tracts in the human brain cortex has been a challenging problem, due to a low birefringence in the gray matter. In this study, we investigated the effect of refractive index matching by 2,2'-thiodiethanol (TDE) immersion on the improvement of PS-OCT measurements in ex vivo human brain tissue. We show that we can obtain fiber orientation maps of U-fibers that underlie sulci, as well as cortical fibers in the gray matter, including radial fibers in gyri and distinct layers of fibers exhibiting laminar organization. Further analysis shows that index matching reduces the noise in axis orientation measurements by 56% and 39%, in white and gray matter, respectively. Index matching also enables precise measurements of apparent birefringence, which was underestimated in the white matter by 82% but overestimated in the gray matter by 16% prior to TDE immersion. Mathematical simulations show that the improvements are primarily attributed to the reduction in the tissue scattering coefficient, leading to an enhanced signal-to-noise ratio in deeper tissue regions, which could not be achieved by conventional noise reduction methods.
Collapse
Affiliation(s)
- Chao J Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - William Ammon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert J Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jackson Nolan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruopeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Shuaibin Chang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Caroline Magnain
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- MIT HST, Computer Science and AI Lab, Cambridge, MA 02139, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
7
|
Stacho M, Herold C, Rook N, Wagner H, Axer M, Amunts K, Güntürkün O. A cortex-like canonical circuit in the
avian forebrain. Science 2020; 369:369/6511/eabc5534. [DOI: 10.1126/science.abc5534] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Although the avian pallium seems to lack
an organization akin to that of the cerebral
cortex, birds exhibit extraordinary cognitive
skills that are comparable to those of mammals. We
analyzed the fiber architecture of the avian
pallium with three-dimensional polarized light
imaging and subsequently reconstructed local and
associative pallial circuits with tracing
techniques. We discovered an iteratively repeated,
column-like neuronal circuitry across the
layer-like nuclear boundaries of the hyperpallium
and the sensory dorsal ventricular ridge. These
circuits are connected to neighboring columns and,
via tangential layer-like connections, to higher
associative and motor areas. Our findings indicate
that this avian canonical circuitry is similar to
its mammalian counterpart and might constitute the
structural basis of neuronal computation.
Collapse
Affiliation(s)
- Martin Stacho
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
- Department of Neurophysiology,
Institute of Physiology, Faculty of Medicine,
Ruhr-University Bochum, 44801 Bochum,
Germany
| | - Christina Herold
- Cécile and Oskar Vogt Institute for
Brain Research, Medical Faculty, Heinrich Heine
University of Düsseldorf, 40225 Düsseldorf,
Germany
| | - Noemi Rook
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
| | - Hermann Wagner
- Institute for Biology II, RWTH Aachen
University, 52074 Aachen, Germany
| | - Markus Axer
- Institute of Neuroscience and
Medicine INM-1, Research Center Jülich, 52425
Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for
Brain Research, Medical Faculty, Heinrich Heine
University of Düsseldorf, 40225 Düsseldorf,
Germany
- Institute of Neuroscience and
Medicine INM-1, Research Center Jülich, 52425
Jülich, Germany
| | - Onur Güntürkün
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
| |
Collapse
|
8
|
Takemura H, Palomero-Gallagher N, Axer M, Gräßel D, Jorgensen MJ, Woods R, Zilles K. Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. eLife 2020; 9:e55444. [PMID: 32844747 PMCID: PMC7532002 DOI: 10.7554/elife.55444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Although the primate visual system has been extensively studied, detailed spatial organization of white matter fiber tracts carrying visual information between areas has not been fully established. This is mainly due to the large gap between tracer studies and diffusion-weighted MRI studies, which focus on specific axonal connections and macroscale organization of fiber tracts, respectively. Here we used 3D polarization light imaging (3D-PLI), which enables direct visualization of fiber tracts at micrometer resolution, to identify and visualize fiber tracts of the visual system, such as stratum sagittale, inferior longitudinal fascicle, vertical occipital fascicle, tapetum and dorsal occipital bundle in vervet monkey brains. Moreover, 3D-PLI data provide detailed information on cortical projections of these tracts, distinction between neighboring tracts, and novel short-range pathways. This work provides essential information for interpretation of functional and diffusion-weighted MRI data, as well as revision of wiring diagrams based upon observations in the vervet visual system.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka UniversityOsakaJapan
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH AachenAachenGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Markus Axer
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - David Gräßel
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Roger Woods
- Ahmanson-Lovelace Brain Mapping Center, Departments of Neurology and of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- JARA - Translational Brain MedicineAachenGermany
| |
Collapse
|
9
|
Alimi A, Deslauriers-Gauthier S, Matuschke F, Müller A, Muenzing SEA, Axer M, Deriche R. Analytical and fast Fiber Orientation Distribution reconstruction in 3D-Polarized Light Imaging. Med Image Anal 2020; 65:101760. [PMID: 32629230 DOI: 10.1016/j.media.2020.101760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/13/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
Three dimensional Polarized Light Imaging (3D-PLI) is an optical technique which allows mapping the spatial fiber architecture of fibrous postmortem tissues, at sub-millimeter resolutions. Here, we propose an analytical and fast approach to compute the fiber orientation distribution (FOD) from high-resolution vector data provided by 3D-PLI. The FOD is modeled as a sum of K orientations/Diracs on the unit sphere, described on a spherical harmonics basis and analytically computed using the spherical Fourier transform. Experiments are performed on rich synthetic data which simulate the geometry of the neuronal fibers and on human brain data. Results indicate the analytical FOD is computationally efficient and very fast, and has high angular precision and angular resolution. Furthermore, investigations on the right occipital lobe illustrate that our strategy of FOD computation enables the bridging of spatial scales from microscopic 3D-PLI information to macro- or mesoscopic dimensions of diffusion Magnetic Resonance Imaging (MRI), while being a means to evaluate prospective resolution limits for diffusion MRI to reconstruct region-specific white matter tracts. These results demonstrate the interest and great potential of our analytical approach.
Collapse
Affiliation(s)
- Abib Alimi
- Athena Project-Team, Inria Sophia Antipolis-Méditerranée, Université Côte d'Azur, France.
| | | | - Felix Matuschke
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Germany
| | - Andreas Müller
- Simulation Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Research Center Jülich, Germany
| | - Sascha E A Muenzing
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Germany
| | - Rachid Deriche
- Athena Project-Team, Inria Sophia Antipolis-Méditerranée, Université Côte d'Azur, France
| |
Collapse
|
10
|
Kurzawski JW, Mikellidou K, Morrone MC, Pestilli F. The visual white matter connecting human area prostriata and the thalamus is retinotopically organized. Brain Struct Funct 2020; 225:1839-1853. [PMID: 32535840 PMCID: PMC7321903 DOI: 10.1007/s00429-020-02096-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
The human visual system is capable of processing visual information from fovea to the far peripheral visual field. Recent fMRI studies have shown a full and detailed retinotopic map in area prostriata, located ventro-dorsally and anterior to the calcarine sulcus along the parieto-occipital sulcus with strong preference for peripheral and wide-field stimulation. Here, we report the anatomical pattern of white matter connections between area prostriata and the thalamus encompassing the lateral geniculate nucleus (LGN). To this end, we developed and utilized an automated pipeline comprising a series of Apps that run openly on the cloud computing platform brainlife.io to analyse 139 subjects of the Human Connectome Project (HCP). We observe a continuous and extended bundle of white matter fibers from which two subcomponents can be extracted: one passing ventrally parallel to the optic radiations (OR) and another passing dorsally circumventing the lateral ventricle. Interestingly, the loop travelling dorsally connects the thalamus with the central visual field representation of prostriata located anteriorly, while the other loop travelling more ventrally connects the LGN with the more peripheral visual field representation located posteriorly. We then analyse an additional cohort of 10 HCP subjects using a manual plane extraction method outside brainlife.io to study the relationship between the two extracted white matter subcomponents and eccentricity, myelin and cortical thickness gradients within prostriata. Our results are consistent with a retinotopic segregation recently demonstrated in the OR, connecting the LGN and V1 in humans and reveal for the first time a retinotopic segregation regarding the trajectory of a fiber bundle between the thalamus and an associative visual area.
Collapse
Affiliation(s)
| | - Kyriaki Mikellidou
- Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Maria Concetta Morrone
- IRCCS Stella Maris, Viale del Tirreno, 331, Pisa, Italy.,Department of Translational Research On New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Program in Neuroscience and Program in Cognitive Science, Indiana University, 1101 E 10th Street, Bloomington, IN, 47401, USA.
| |
Collapse
|
11
|
Takemura H, Pestilli F, Weiner KS. Comparative neuroanatomy: Integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci Res 2019; 146:1-12. [PMID: 30389574 PMCID: PMC6491271 DOI: 10.1016/j.neures.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Comparative neuroanatomy studies improve understanding of brain structure and function and provide insight regarding brain development, evolution, and also what features of the brain are uniquely human. With modern methods such as diffusion MRI (dMRI) and quantitative MRI (qMRI), we are able to measure structural features of the brain with the same methods across human and non-human primates. In this review article, we discuss how recent dMRI measurements of vertical occipital connections in humans and macaques can be compared with previous findings from invasive anatomical studies that examined connectivity, including relatively forgotten classic strychnine neuronography studies. We then review recent progress in understanding the neuroanatomy of vertical connections within the occipitotemporal cortex by combining modern quantitative MRI and classical histological measurements in human and macaque. Finally, we a) discuss current limitations of dMRI and tractography and b) consider potential paths for future investigations using dMRI and tractography for comparative neuroanatomical studies of white matter tracts between species. While we focus on vertical association connections in visual cortex in the present paper, this same approach can be applied to other white matter tracts. Similar efforts are likely to continue to advance our understanding of the neuroanatomical features of the brain that are shared across species, as well as to distinguish the features that are uniquely human.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Franco Pestilli
- Departments of Psychological and Brain Sciences, Computer Science and Intelligent Systems Engineering, Programs in Neuroscience and Cognitive Science, School of Optometry, Indiana University, Bloomington, IN, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
12
|
Local Dominant Directional Symmetrical Coding Patterns for Facial Expression Recognition. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:3587036. [PMID: 31217801 PMCID: PMC6537010 DOI: 10.1155/2019/3587036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/04/2019] [Accepted: 04/21/2019] [Indexed: 11/18/2022]
Abstract
To overcome the shortcomings of inaccurate textural direction representation and high-computational complexity of Local Binary Patterns (LBPs), we propose a novel feature descriptor named as Local Dominant Directional Symmetrical Coding Patterns (LDDSCPs). Inspired by the directional sensitivity of human visual system, we partition eight convolution masks into two symmetrical groups according to their directions and adopt these two groups to compute the convolution values of each pixel. Then, we encode the dominant direction information of facial expression texture by comparing each pixel's convolution values with the average strength of its belonging group and obtain LDDSCP-1 and LDDSCP-2 codes, respectively. At last, in view of the symmetry of two groups of direction masks, we stack these corresponding histograms of LDDSCP-1 and LDDSCP-2 codes into the ultimate LDDSCP feature vector which has effects on the more precise facial feature description and the lower computational complexity. Experimental results on the JAFFE and Cohn-Kanade databases demonstrate that the proposed LDDSCP feature descriptor compared with LBP, Gabor, and other traditional operators achieves superior performance in recognition rate and computational complexity. Furthermore, it is also no less inferior to some state-of-the-art local descriptors like as LDP, LDNP, es-LBP, and GDP.
Collapse
|
13
|
Caspers S, Axer M. Decoding the microstructural correlate of diffusion MRI. NMR IN BIOMEDICINE 2019; 32:e3779. [PMID: 28858413 DOI: 10.1002/nbm.3779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging has evolved considerably over the past decade. While it provides valuable information about the structural connectivity at the macro- and mesoscopic scale, bridging the gap to the microstructure at the level of single nerve fibers poses an enormous challenge. This is particularly true for the human brain with its large size, its large white-matter volume and availability of histological techniques for studying human whole-brain sections and subsequent 3D reconstruction. Classic post-mortem techniques for studying the fiber architecture of the brain, such as myeloarchitectonic staining or dye tracing, are complemented by novel histological approaches, such as 3D polarized light imaging or optical coherence tomography, enabling unique insight into the fiber architecture from large fiber bundles within deep white matter to single nerve fibers in the cortex. The present review discusses the benefits and challenges of these latest developments in comparison with the classic techniques, with particular focus on the mutual exchange between in vivo and post-mortem diffusion imaging and post-mortem microstructural approaches for understanding the wiring of the brain across different scales.
Collapse
Affiliation(s)
- Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
14
|
Weiner KS. The Mid‐Fusiform Sulcus (
sulcus sagittalis gyri fusiformis
). Anat Rec (Hoboken) 2019; 302:1491-1503. [DOI: 10.1002/ar.24041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Kevin S. Weiner
- Department of PsychologyUC Berkeley Berkeley California
- Helen Wills Neuroscience Institute Berkeley California
| |
Collapse
|
15
|
Voxel-wise detection of functional networks in white matter. Neuroimage 2018; 183:544-552. [PMID: 30144573 DOI: 10.1016/j.neuroimage.2018.08.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/24/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) depicts neural activity in the brain indirectly by measuring blood oxygenation level dependent (BOLD) signals. The majority of fMRI studies have focused on detecting cortical activity in gray matter (GM), but whether functional BOLD signal changes also arise in white matter (WM), and whether neural activities trigger hemodynamic changes in WM similarly to GM, remain controversial, particularly in light of the much lower vascular density in WM. However, BOLD effects in WM are readily detected under hypercapnic challenges, and the number of reports supporting reliable detections of stimulus-induced activations in WM continues to grow. Rather than assume a particular hemodynamic response function, we used a voxel-by-voxel analysis of frequency spectra in WM to detect WM activations under visual stimulation, whose locations were validated with fiber tractography using diffusion tensor imaging (DTI). We demonstrate that specific WM regions are robustly activated in response to visual stimulation, and that regional distributions of WM activation are consistent with fiber pathways reconstructed using DTI. We further examined the variation in the concordance between WM activation and fiber density in groups of different sample sizes, and compared the signal profiles of BOLD time series between resting state and visual stimulation conditions in activated GM as well as activated and non-activated WM regions. Our findings confirm that BOLD signal variations in WM are modulated by neural activity and are detectable with conventional fMRI using appropriate methods, thus offering the potential of expanding functional connectivity measurements throughout the brain.
Collapse
|
16
|
Wang R, Wilkinson M, Kane T, Takahashi E. Convergence of Cortical, Thalamocortical, and Callosal Pathways during Human Fetal Development Revealed by Diffusion MRI Tractography. Front Neurosci 2017; 11:576. [PMID: 29163000 PMCID: PMC5671991 DOI: 10.3389/fnins.2017.00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022] Open
Abstract
There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34-40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development.
Collapse
Affiliation(s)
- Rongpin Wang
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Molly Wilkinson
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Tara Kane
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Mollink J, Kleinnijenhuis M, Cappellen van Walsum AMV, Sotiropoulos SN, Cottaar M, Mirfin C, Heinrich MP, Jenkinson M, Pallebage-Gamarallage M, Ansorge O, Jbabdi S, Miller KL. Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging. Neuroimage 2017; 157:561-574. [PMID: 28602815 PMCID: PMC5607356 DOI: 10.1016/j.neuroimage.2017.06.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 11/27/2022] Open
Abstract
Diffusion MRI is an exquisitely sensitive probe of tissue microstructure, and is currently the only non-invasive measure of the brain's fibre architecture. As this technique becomes more sophisticated and microstructurally informative, there is increasing value in comparing diffusion MRI with microscopic imaging in the same tissue samples. This study compared estimates of fibre orientation dispersion in white matter derived from diffusion MRI to reference measures of dispersion obtained from polarized light imaging and histology. Three post-mortem brain specimens were scanned with diffusion MRI and analyzed with a two-compartment dispersion model. The specimens were then sectioned for microscopy, including polarized light imaging estimates of fibre orientation and histological quantitative estimates of myelin and astrocytes. Dispersion estimates were correlated on region – and voxel-wise levels in the corpus callosum, the centrum semiovale and the corticospinal tract. The region-wise analysis yielded correlation coefficients of r = 0.79 for the diffusion MRI and histology comparison, while r = 0.60 was reported for the comparison with polarized light imaging. In the corpus callosum, we observed a pattern of higher dispersion at the midline compared to its lateral aspects. This pattern was present in all modalities and the dispersion profiles from microscopy and diffusion MRI were highly correlated. The astrocytes appeared to have minor contribution to dispersion observed with diffusion MRI. These results demonstrate that fibre orientation dispersion estimates from diffusion MRI represents the tissue architecture well. Dispersion models might be improved by more faithfully incorporating an informed mapping based on microscopy data.
Collapse
Affiliation(s)
- Jeroen Mollink
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Michiel Kleinnijenhuis
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Stamatios N Sotiropoulos
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michiel Cottaar
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christopher Mirfin
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Mattias P Heinrich
- Institute of Medical Informatics, Universität zu Lübeck, Lübeck, Germany
| | - Mark Jenkinson
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Olaf Ansorge
- Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Karla L Miller
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
|
19
|
Kievit RA, Davis SW, Griffiths J, Correia MM, Cam-Can, Henson RN. A watershed model of individual differences in fluid intelligence. Neuropsychologia 2016; 91:186-198. [PMID: 27520470 PMCID: PMC5081064 DOI: 10.1016/j.neuropsychologia.2016.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022]
Abstract
Fluid intelligence is a crucial cognitive ability that predicts key life outcomes across the lifespan. Strong empirical links exist between fluid intelligence and processing speed on the one hand, and white matter integrity and processing speed on the other. We propose a watershed model that integrates these three explanatory levels in a principled manner in a single statistical model, with processing speed and white matter figuring as intermediate endophenotypes. We fit this model in a large (N=555) adult lifespan cohort from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) using multiple measures of processing speed, white matter health and fluid intelligence. The model fit the data well, outperforming competing models and providing evidence for a many-to-one mapping between white matter integrity, processing speed and fluid intelligence. The model can be naturally extended to integrate other cognitive domains, endophenotypes and genotypes.
Collapse
Affiliation(s)
- Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge CB2 7EF, United Kingdom.
| | - Simon W Davis
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - John Griffiths
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom; Rotman Research Institute, Baycrest, Toronto, Ontario, Canada M6A 2E1
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge CB2 7EF, United Kingdom
| | - Cam-Can
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge and MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge CB2 7EF, United Kingdom
| |
Collapse
|
20
|
Axer M, Strohmer S, Gräßel D, Bücker O, Dohmen M, Reckfort J, Zilles K, Amunts K. Estimating Fiber Orientation Distribution Functions in 3D-Polarized Light Imaging. Front Neuroanat 2016; 10:40. [PMID: 27147981 PMCID: PMC4835454 DOI: 10.3389/fnana.2016.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/29/2016] [Indexed: 11/13/2022] Open
Abstract
Research of the human brain connectome requires multiscale approaches derived from independent imaging methods ideally applied to the same object. Hence, comprehensible strategies for data integration across modalities and across scales are essential. We have successfully established a concept to bridge the spatial scales from microscopic fiber orientation measurements based on 3D-Polarized Light Imaging (3D-PLI) to meso- or macroscopic dimensions. By creating orientation distribution functions (pliODFs) from high-resolution vector data via series expansion with spherical harmonics utilizing high performance computing and supercomputing technologies, data fusion with Diffusion Magnetic Resonance Imaging has become feasible, even for a large-scale dataset such as the human brain. Validation of our approach was done effectively by means of two types of datasets that were transferred from fiber orientation maps into pliODFs: simulated 3D-PLI data showing artificial, but clearly defined fiber patterns and real 3D-PLI data derived from sections through the human brain and the brain of a hooded seal.
Collapse
Affiliation(s)
- Markus Axer
- Research Centre Jülich, Institute of Neuroscience and Medicine Jülich, Germany
| | - Sven Strohmer
- Jülich Supercomputing Centre, Institute for Advanced Simulation, Research Centre JülichJülich, Germany; Research Centre Jülich, Simulation Lab Neuroscience, Bernstein Facility for Simulation and Database Technology, Institute for Advanced SimulationJülich, Germany
| | - David Gräßel
- Research Centre Jülich, Institute of Neuroscience and Medicine Jülich, Germany
| | - Oliver Bücker
- Jülich Supercomputing Centre, Institute for Advanced Simulation, Research Centre Jülich Jülich, Germany
| | - Melanie Dohmen
- Research Centre Jülich, Institute of Neuroscience and Medicine Jülich, Germany
| | - Julia Reckfort
- Research Centre Jülich, Institute of Neuroscience and Medicine Jülich, Germany
| | - Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and MedicineJülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen UniversityAachen, Germany; JARA Jülich-Aachen Research Alliance, Translational Brain MedicineAachen, Germany
| | - Katrin Amunts
- Research Centre Jülich, Institute of Neuroscience and MedicineJülich, Germany; C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| |
Collapse
|
21
|
Abstract
Progress in magnetic resonance imaging (MRI) now makes it possible to identify the major white matter tracts in the living human brain. These tracts are important because they carry many of the signals communicated between different brain regions. MRI methods coupled with biophysical modeling can measure the tissue properties and structural features of the tracts that impact our ability to think, feel, and perceive. This review describes the fundamental ideas of the MRI methods used to identify the major white matter tracts in the living human brain.
Collapse
Affiliation(s)
- Brian A Wandell
- Department of Psychology and Stanford Neurosciences Institute, Stanford University, Stanford, California 94305;
| |
Collapse
|
22
|
Moberget T, Ivry RB. Cerebellar contributions to motor control and language comprehension: searching for common computational principles. Ann N Y Acad Sci 2016; 1369:154-71. [PMID: 27206249 PMCID: PMC5260470 DOI: 10.1111/nyas.13094] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Richard B. Ivry
- Department of Psychology, and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| |
Collapse
|
23
|
Augustinack JC, van der Kouwe AJW. Postmortem imaging and neuropathologic correlations. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:1321-39. [PMID: 27430472 DOI: 10.1016/b978-0-444-53486-6.00069-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Postmortem imaging refers to scanning autopsy specimens using magnetic resonance imaging (MRI) or optical imaging. This chapter summarizes postmortem imaging and its usefulness in brain mapping. Standard in vivo MRI has limited resolution due to time constraints and does not deliver cortical boundaries (e.g., Brodmann areas). Postmortem imaging offers a means to obtain ultra-high-resolution images with appropriate contrast for delineating cortical regions. Postmortem imaging provides the ability to validate MRI properties against histologic stained sections. This approach has enabled probabilistic mapping that is based on ex vivo MRI contrast, validated to histology, and subsequently mapped on to an in vivo model. This chapter emphasizes structural imaging, which can be validated with histologic assessment. Postmortem imaging has been applied to neuropathologic studies as well. This chapter includes many ex vivo studies, but focuses on studies of the medial temporal lobe, often involved in neurologic disease. New research using optical imaging is also highlighted.
Collapse
Affiliation(s)
- Jean C Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - André J W van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
24
|
Architectonic Mapping of the Human Brain beyond Brodmann. Neuron 2015; 88:1086-1107. [DOI: 10.1016/j.neuron.2015.12.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 10/13/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
|
25
|
Bartolomeo P, Vuilleumier P, Behrmann M. The whole is greater than the sum of the parts: Distributed circuits in visual cognition. Cortex 2015; 72:1-4. [DOI: 10.1016/j.cortex.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Knösche TR, Anwander A, Liptrot M, Dyrby TB. Validation of tractography: Comparison with manganese tracing. Hum Brain Mapp 2015; 36:4116-34. [PMID: 26178765 PMCID: PMC5034837 DOI: 10.1002/hbm.22902] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/22/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023] Open
Abstract
In this study, we used invasive tracing to evaluate white matter tractography methods based on ex vivo diffusion-weighted magnetic resonance imaging (dwMRI) data. A representative selection of tractography methods were compared to manganese tracing on a voxel-wise basis, and a more qualitative assessment examined whether, and to what extent, certain fiber tracts and gray matter targets were reached. While the voxel-wise agreement was very limited, qualitative assessment revealed that tractography is capable of finding the major fiber tracts, although there were some differences between the methods. However, false positive connections were very common and, in particular, we discovered that it is not possible to achieve high sensitivity (i.e., few false negatives) and high specificity (i.e., few false positives) at the same time. Closer inspection of the results led to the conclusion that these problems mainly originate from regions with complex fiber arrangements or high curvature and are not easily resolved by sophisticated local models alone. Instead, the crucial challenge in making tractography a truly useful and reliable tool in brain research and neurology lies in the acquisition of better data. In particular, the increase of spatial resolution, under preservation of the signal-to-noise-ratio, is key.
Collapse
Affiliation(s)
- Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Matthew Liptrot
- Danish Research Centre for Magnetic ResonanceCentre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
- Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic ResonanceCentre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
| |
Collapse
|
27
|
Bastiani M, Roebroeck A. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI. Front Neuroanat 2015; 9:77. [PMID: 26106304 PMCID: PMC4460430 DOI: 10.3389/fnana.2015.00077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/21/2015] [Indexed: 01/31/2023] Open
Abstract
The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI) contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post-mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso-, and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these.
Collapse
Affiliation(s)
- Matteo Bastiani
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| |
Collapse
|