1
|
Abubaker M, Al Qasem W, Pilátová K, Ježdík P, Kvašňák E. Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people. Mol Brain 2024; 17:74. [PMID: 39415245 DOI: 10.1186/s13041-024-01149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
2
|
Winker M, Hoffmann S, Laborde S, Javelle F. The acute effects of motor cortex transcranial direct current stimulation on athletic performance in healthy adults: A systematic review and meta-analysis. Eur J Neurosci 2024; 60:5086-5110. [PMID: 39120435 DOI: 10.1111/ejn.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024]
Abstract
This systematic review and meta-analysis assesses independently the acute effects of anodal and cathodal motor cortex transcranial direct current stimulation (tDCS) on athletic performance in healthy adults. Besides, it evaluates the unique and conjoint effects of potential moderators (i.e., stimulation parameters, exercise type, subjects' training status and risk of bias). Online database search was performed from inception until March 18th 2024 (PROSPERO: CRD42023355461). Forty-three controlled trials were included in the systematic review, 40 in the anodal tDCS meta-analysis (68 effects), and 9 (11 effects) in the cathodal tDCS meta-analysis. Performance enhancement between pre- and post-stimulation was the main outcome measure considered. The anodal tDCS effects on physical performance were small to moderate (g = .29, 95%CI [.18, .40], PI = -.64 to 1.23, I2 = 64.0%). Exercise type, training status and use of commercial tDCS were significant moderators of the results. The cathodal tDCS effects were null (g = .04, 95%CI [-.05, .12], PI = -.14 to .23, I2 = 0%), with a small to moderate heterogeneity entirely due to sampling error, thus impairing further moderator analysis. These findings hold significant implications for the field of brain stimulation and physical performance, as they not only demonstrate a small to moderate effect of acute tDCS but also identify specific categories of individuals, devices and activities that are more susceptible to improvements. By addressing the multidimensional factors influencing the mechanisms of tDCS, we also provide suggestions for future research.
Collapse
Affiliation(s)
- Matteo Winker
- University of Cologne, Cologne, Germany
- Institute for Sport and Sport Science, Performance and Health (Sports Medicine), TU Dortmund University, Dortmund, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sven Hoffmann
- Psychological Methods and Evaluation, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
3
|
Fathi Azar E, Hejazi-Shirmard M, Mirzaie H. Cognitive enhancement through technology: A review of transcranial electrical stimulation (TES) interventions in children and adolescents with specific learning disabilities. Child Care Health Dev 2024; 50:e13318. [PMID: 39118316 DOI: 10.1111/cch.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND In recent years, the exploration of innovative interventions for addressing problems of children and adolescents with specific learning disabilities (SLD) has garnered significant attention within the realm of neurocognitive research. Transcranial electrical stimulation (TES) has emerged as a promising tool for enhancing cognitive skills in children, offering a non-invasive and safe method that may particularly benefit those with learning difficulties. We aimed to appraise the extent and the quality of studies about impact of TES on cognitive skills including academic skills in children and adolescents with SLD. METHODS A literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles published between January 2000 and January 2024 were searched in PubMed, Embase, Scopus, Web of Science and Google Scholar. The study eligibility criteria were previously established according to the PICO model. The Physiotherapy Evidence Database (PEDro) scale and Cochrane Collaboration tool (ROB2) were used to assess the methodological quality and the risk of bias of the included studies, respectively. RESULTS The initial search yielded 1571 studies among which 30 studies were systematically reviewed. The total number of participants was 224 individuals (intervention: 114; control: 110). Findings showed significant improvements in reading skills such as text reading, high-frequency word reading speed and efficiency and mathematical skills. Conversely, other cognitive skills such as working memory were not improved in people with dyslexia and dyscalculia. DISCUSSION TES interventions can positively affect cognitive skills in children and adolescents with SLD; However, due to the small number of studies, medium methodological quality and high risk of bias, caution should be taken when interpreting the results.
Collapse
Affiliation(s)
- Elahe Fathi Azar
- Department of Occupational Therapy, School of Rehabilitation Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahnaz Hejazi-Shirmard
- Department of Occupational Therapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooshang Mirzaie
- Department of Occupational Therapy, School of Rehabilitation Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lapenta OM, Rêgo GG, Boggio PS. Transcranial electrical stimulation for procedural learning and rehabilitation. Neurobiol Learn Mem 2024; 213:107958. [PMID: 38971460 DOI: 10.1016/j.nlm.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Procedural learning is the acquisition of motor and non-motor skills through a gradual process that increases with practice. Impairments in procedural learning have been consistently demonstrated in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Considering that noninvasive brain stimulation modulates brain activity and boosts neuroplastic mechanisms, we reviewed the effects of coupling transcranial direct current stimulation (tDCS) with training methods for motor and non-motor procedural learning to explore tDCS potential use as a tool for enhancing implicit learning in healthy and clinical populations. The review covers tDCS effects over i. motor procedural learning, from basic to complex activities; ii. non-motor procedural learning; iii. procedural rehabilitation in several clinical populations. We conclude that targeting the primary motor cortex and prefrontal areas seems the most promising for motor and non-motor procedural learning, respectively. For procedural rehabilitation, the use of tDCS is yet at an early stage but some effectiveness has been reported for implicit motor and memory learning. Still, systematic comparisons of stimulation parameters and target areas are recommended for maximising the effectiveness of tDCS and its robustness for procedural rehabilitation.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho - Rua da Universidade, 4710-057 Braga, Portugal.
| | - Gabriel Gaudencio Rêgo
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| | - Paulo Sérgio Boggio
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| |
Collapse
|
5
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
6
|
Imperio CM, Chua EF. Lack of effects of online HD-tDCS over the left or right DLPFC in an associative memory and metamemory monitoring task. PLoS One 2024; 19:e0300779. [PMID: 38848375 PMCID: PMC11161112 DOI: 10.1371/journal.pone.0300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 06/09/2024] Open
Abstract
Neuroimaging studies have shown that activity in the prefrontal cortex correlates with two critical aspects of normal memory functioning: retrieval of episodic memories and subjective "feelings-of-knowing" about our memory. Brain stimulation can be used to test the causal role of the prefrontal cortex in these processes, and whether the role differs for the left versus right prefrontal cortex. We compared the effects of online High-Definition transcranial Direct Current Stimulation (HD-tDCS) over the left or right dorsolateral prefrontal cortex (DLPFC) compared to sham during a proverb-name associative memory and feeling-of-knowing task. There were no significant effects of HD-tDCS on either associative recognition or feeling-of-knowing performance, with Bayesian analyses showing moderate support for the null hypotheses. Despite past work showing effects of HD-tDCS on other memory and feeling-of-knowing tasks, and neuroimaging showing effects with similar tasks, these findings add to the literature of non-significant effects with tDCS. This work highlights the need to better understand factors that determine the effectiveness of tDCS, especially if tDCS is to have a successful future as a clinical intervention.
Collapse
Affiliation(s)
- Casey M Imperio
- The Graduate Center of the City University of New York, New York, New York, United States of America
| | - Elizabeth F Chua
- The Graduate Center of the City University of New York, New York, New York, United States of America
- Brooklyn College of the City University of New York, New York, New York, United States of America
| |
Collapse
|
7
|
Di Rosa E, Masina F, Pastorino A, Galletti E, Gambarota F, Altoè G, Edelstyn N, Mapelli D. Mood moderates the effects of prefrontal tDCS on executive functions: A meta-analysis testing the affective state-dependency hypothesis. J Affect Disord 2024; 351:920-930. [PMID: 38341155 DOI: 10.1016/j.jad.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND In recent decades, numerous studies have investigated the effects of transcranial direct current stimulation (tDCS) on cognitive functioning. However, results of these studies frequently display inconsistency and pose challenges regarding replicability. The present work aimed at testing the hypothesis of mood as potential moderator of prefrontal tDCS effects on executive functions (EF). This hypothesis refers to the relationship between mood and EF, as well as to the association of mood with the dorsolateral prefrontal cortex (dlPFC) activity. METHODS We conducted a meta-analysis of 11 articles where the dlPFC was stimulated with anodal tDCS, EF were measured, and mood was assessed prior to the stimulation. We then conducted a meta-regression to examine whether mood moderated the tDCS effects on EF. RESULTS While no significant effect of tDCS on EF emerged from the meta-analysis, the meta-regression indicated that mood plays a significant role as moderator, with greater tDCS effects on EF in individuals with higher depressive symptoms. LIMITATIONS The limited number of studies included, the heterogeneous samples considered, and the limited generalizability to other non-invasive brain stimulation techniques and affective states. CONCLUSIONS Findings suggest that evaluating mood prior to stimulation could increase the sensitivity and specificity of tDCS application, and provide the first meta-analytic evidence in favor of the affective state-dependency hypothesis.
Collapse
Affiliation(s)
- Elisa Di Rosa
- Department of General Psychology, University of Padova, Italy.
| | | | | | | | - Filippo Gambarota
- Department of Developmental and Social Psychology - University of Padova, Italy
| | - Gianmarco Altoè
- Department of Developmental and Social Psychology - University of Padova, Italy
| | | | - Daniela Mapelli
- Department of General Psychology, University of Padova, Italy
| |
Collapse
|
8
|
Magalhães TNC, Maldonado T, Jackson TB, Hicks TH, Herrejon IA, Rezende TJR, Symm AC, Bernard JA. Non-invasive neuromodulation of cerebello-hippocampal volume-behavior relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587400. [PMID: 38617367 PMCID: PMC11014496 DOI: 10.1101/2024.03.29.587400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The study here explores the link between transcranial direct current stimulation (tDCS) and brain-behavior relationships. We propose that tDCS may indirectly influence the complex relationships between brain volume and behavior. We focused on the dynamics between the hippocampus (HPC) and cerebellum (CB) in cognitive processes, a relationship with significant implications for understanding memory and motor skills. Seventy-four young adults (mean age: 22±0.42 years, mean education: 14.7±0.25 years) were randomly assigned to receive either anodal, cathodal, or sham stimulation. Following stimulation, participants completed computerized tasks assessing working memory and sequence learning in a magnetic resonance imaging (MRI) environment. We investigated the statistical interaction between CB and HPC volumes. Our findings showed that individuals with larger cerebellar volumes had shorter reaction times (RT) on a high-load working memory task in the sham stimulation group. In contrast, the anodal stimulation group exhibited faster RTs during the low-load working memory condition. These RT differences were associated with the cortical volumetric interaction between CB-HPC. Literature suggests that anodal stimulation down-regulates the CB and here, those with larger volumes perform more quickly, suggesting the potential need for additional cognitive resources to compensate for cerebellar downregulation. This new insight suggests that tDCS can aid in revealing structure-function relationships, due to greater performance variability, especially in young adults. It may also reveal new targets of interest in the study of aging or in diseases where there is also greater behavioral variability.
Collapse
Affiliation(s)
- Thamires N. C. Magalhães
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, United States of America
| | - T. Bryan Jackson
- Vanderbilt Memory & Alzheimer’s Center, Nashville, Tennessee, United States of America
| | - Tracey H. Hicks
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ivan A. Herrejon
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Thiago J. R. Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Abigail C. Symm
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
9
|
Joshi SD, Ruffini G, Nuttall HE, Watson DG, Braithwaite JJ. Optimised Multi-Channel Transcranial Direct Current Stimulation (MtDCS) Reveals Differential Involvement of the Right-Ventrolateral Prefrontal Cortex (rVLPFC) and Insular Complex in those Predisposed to Aberrant Experiences. Conscious Cogn 2024; 117:103610. [PMID: 38056338 DOI: 10.1016/j.concog.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Research has shown a prominent role for cortical hyperexcitability underlying aberrant perceptions, hallucinations, and distortions in human conscious experience - even in neurotypical groups. The rVLPFC has been identified as an important structure in mediating cognitive affective states / feeling conscious states. The current study examined the involvement of the rVLPFC in mediating cognitive affective states in those predisposed to aberrant experiences in the neurotypical population. Participants completed two trait-based measures: (i) the Cortical Hyperexcitability Index_II (CHi_II, a proxy measure of cortical hyperexcitability) and (ii) two factors from the Cambridge Depersonalisation Scale (CDS). An optimised 7-channel MtDCS montage for stimulation conditions (Anodal, Cathodal and Sham) was created targeting the rVLPFC in a single-blind study. At the end of each stimulation session, participants completed a body-threat task (BTAB) while skin conductance responses (SCRs) and psychological responses were recorded. Participants with signs of increasing cortical hyperexcitability showed significant suppression of SCRs in the Cathodal stimulation relative to the Anodal and sSham conditions. Those high on the trait-based measures of depersonalisation-like experiences failed to show reliable effects. Collectively, the findings suggest that baseline brain states can mediate the effects of neurostimulation which would be missed via sample level averaging and without appropriate measures for stratifying individual differences.
Collapse
|
10
|
Guidali G, Bagattini C, De Matola M, Brignani D. Influence of frontal-to-parietal connectivity in pseudoneglect: A cortico-cortical paired associative stimulation study. Cortex 2023; 169:50-64. [PMID: 37862830 DOI: 10.1016/j.cortex.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 10/22/2023]
Abstract
Pseudoneglect is a set of visuospatial biases that entails a behavioral advantage for stimuli appearing in the left hemifield compared to the right one. Although right hemisphere dominance for visuospatial processing has been invoked to explain this phenomenon, its neurophysiological mechanisms are still debated, and the role of intra- and inter-hemispheric connectivity is yet to be defined. The present study explored the possibility of modulating pseudoneglect in healthy participants through a cortico-cortical paired associative stimulation protocol (ccPAS): a non-invasive brain stimulation protocol that manipulates the interplay between brain regions through the repeated, time-locked coupling of two transcranial magnetic stimulation (TMS) pulses. In the first experiment, healthy participants underwent a frontal-to-parietal (FP) and a parietal-to-frontal (PF) ccPAS. In the FP protocol, the first TMS pulse targeted the right frontal eye field (FEF), and the second pulse the right inferior parietal lobule (IPL), two critical areas for visuospatial and attentional processing. In the PF condition, the order of the pulses was reversed. In both protocols, the inter-stimulus interval (ISI) was 10 ms. Before and after stimulation, pseudoneglect was assessed with a landmark task and a manual line bisection task. A second experiment controlled for ccPAS timing dependency by testing FP-ccPAS with a longer ISI of 100 ms. Results showed that after administering the FP-ccPAS with the ISI of 10 ms, participants' leftward bias in the landmark task increased significantly, with no effects in the manual line bisection task. The other two protocols tested were ineffective. Our findings showed that ccPAS could be used to modulate pseudoneglect by exploiting frontal-to-parietal connectivity, possibly through increased top-down attentional control. FP-ccPAS could represent a promising tool to investigate connectivity properties within visuospatial and attentional networks in the healthy and as a potential rehabilitation protocol in patients suffering from severe visuospatial pathologies.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Chiara Bagattini
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo De Matola
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Debora Brignani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
11
|
Chen L, Chen G, Gong X, Fang F. Integrating electric field modeling and pre-tDCS behavioral performance to predict the individual tDCS effect on visual crowding. J Neural Eng 2023; 20:056019. [PMID: 37750681 DOI: 10.1088/1741-2552/acfa8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Objective.Transcranial direct current stimulation (tDCS) has been broadly used to modulate brain activity with both bipolar and high-definition montages. However, tDCS effects can be highly variable. In this work, we investigated whether the variability in the tDCS effects could be predicted by integrating individualized electric field modeling and individual pre-tDCS behavioral performance.Approach.Here, we first compared the effects of bipolar tDCS and 4 × 1 high-definition tDCS (HD-tDCS) with respect to the alleviation of visual crowding, which is the inability to identify targets in the presence of nearby flankers and considered to be an essential bottleneck of object recognition and visual awareness. We instructed subjects to perform an orientation discrimination task with both isolated and crowded targets in the periphery and measured their orientation discrimination thresholds before and after receiving 20 min of bipolar tDCS, 4 × 1 HD-tDCS, or sham stimulation over the visual cortex. Individual anatomically realistic head models were constructed to simulate tDCS-induced electric field distributions and quantify tDCS focality. Finally, a multiple linear regression model that used pre-tDCS behavioral performance and tDCS focality as factors was used to predict post-tDCS behavioral performance.Main results.We found that HD-tDCS, but not bipolar tDCS, could significantly alleviate visual crowding. Moreover, the variability in the tDCS effect could be reliably predicted by subjects' pre-tDCS behavioral performance and tDCS focality. This prediction model also performed well when generalized to other two tDCS protocols with a different electrode size or a different stimulation intensity.Significance.Our study links the variability in the tDCS-induced electric field and the pre-tDCS behavioral performance in a visual crowding task to the variability in post-tDCS performance. It provides a new approach to predicting individual tDCS effects and highlights the importance of understanding the factors that determine tDCS effectiveness while developing more robust protocols.
Collapse
Affiliation(s)
- Luyao Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
- Beijing Academy of Artificial Intelligence, Beijing 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
| | - Guanpeng Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xizi Gong
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
- Beijing Academy of Artificial Intelligence, Beijing 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
12
|
Qi F, Nitsche MA, Ren X, Wang D, Wang L. Top-down and bottom-up stimulation techniques combined with action observation treatment in stroke rehabilitation: a perspective. Front Neurol 2023; 14:1156987. [PMID: 37497013 PMCID: PMC10367110 DOI: 10.3389/fneur.2023.1156987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Stroke is a central nervous system disease that causes structural lesions and functional impairments of the brain, resulting in varying types, and degrees of dysfunction. The bimodal balance-recovery model (interhemispheric competition model and vicariation model) has been proposed as the mechanism of functional recovery after a stroke. We analyzed how combinations of motor observation treatment approaches, transcranial electrical (TES) or magnetic (TMS) stimulation and peripheral electrical (PES) or magnetic (PMS) stimulation techniques can be taken as accessorial physical therapy methods on symptom reduction of stroke patients. We suggest that top-down and bottom-up stimulation techniques combined with action observation treatment synergistically might develop into valuable physical therapy strategies in neurorehabilitation after stroke. We explored how TES or TMS intervention over the contralesional hemisphere or the lesioned hemisphere combined with PES or PMS of the paretic limbs during motor observation followed by action execution have super-additive effects to potentiate the effect of conventional treatment in stroke patients. The proposed paradigm could be an innovative and adjunctive approach to potentiate the effect of conventional rehabilitation treatment, especially for those patients with severe motor deficits.
Collapse
Affiliation(s)
- Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Duanwei Wang
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
13
|
Menze I, Mueller NG, Zaehle T, Schmicker M. Individual response to transcranial direct current stimulation as a function of working memory capacity and electrode montage. Front Hum Neurosci 2023; 17:1134632. [PMID: 36968784 PMCID: PMC10034341 DOI: 10.3389/fnhum.2023.1134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionAttempts to improve cognitive abilities via transcranial direct current stimulation (tDCS) have led to ambiguous results, likely due to the method’s susceptibility to methodological and inter-individual factors. Conventional tDCS, i.e., using an active electrode over brain areas associated with the targeted cognitive function and a supposedly passive reference, neglects stimulation effects on entire neural networks.MethodsWe investigated the advantage of frontoparietal network stimulation (right prefrontal anode, left posterior parietal cathode) against conventional and sham tDCS in modulating working memory (WM) capacity dependent transfer effects of a single-session distractor inhibition (DIIN) training. Since previous results did not clarify whether electrode montage drives this individual transfer, we here compared conventional to frontoparietal and sham tDCS and reanalyzed data of 124 young, healthy participants in a more robust way using linear mixed effect modeling.ResultsThe interaction of electrode montage and WM capacity resulted in systematic differences in transfer effects. While higher performance gains were observed with increasing WM capacity in the frontoparietal stimulation group, low WM capacity individuals benefited more in the sham condition. The conventional stimulation group showed subtle performance gains independent of WM capacity.DiscussionOur results confirm our previous findings of WM capacity dependent transfer effects on WM by a single-session DIIN training combined with tDCS and additionally highlight the pivotal role of the specific electrode montage. WM capacity dependent differences in frontoparietal network recruitment, especially regarding the parietal involvement, are assumed to underlie this observation.
Collapse
Affiliation(s)
- Inga Menze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Inga Menze,
| | - Notger G. Mueller
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marlen Schmicker
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
14
|
Tsujimoto K, Nishida D, Tahara M, Liu M, Tsuji T, Mizuno K. Neural correlates of spatial attention bias: Changes in functional connectivity in attention networks associated with tDCS. Neuropsychologia 2022; 177:108417. [PMID: 36356702 DOI: 10.1016/j.neuropsychologia.2022.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
The prevailing theory concerning the pathophysiology of unilateral spatial neglect is that it is caused by an interhemispheric imbalance in attention networks. Previous studies have demonstrated that repetitive transcranial magnetic stimulation or transcranial direct current stimulation (tDCS) delivered over the right posterior parietal cortex can induce transitory neglect-like deficits in healthy individuals. We examined whether right cathodal and left anodal tDCS delivered over the posterior parietal cortex could produce neglect-like deficits and change the resting-state functional connectivity (rsFC) of attention networks. We found that the reaction time for targets in the left hemifield was significantly prolonged during two different types of visual search tasks, and rsFC of the attention networks was altered by tDCS. Furthermore, the change in the reaction times for the left visual target in the two different tasks significantly correlated with the change in the rsFC of either the right dorsal attention network (DAN) or right ventral attention network (VAN) based on the tasks. These results suggest that tDCS delivered to the posterior parietal cortex bilaterally induced neglect-like deficits by altering the connectivity of the attentional networks through excitability changes in the cortical area under the electrode. The results of this study are consistent with the hypothesis that the cause of neglect is the interhemispheric imbalance of attention networks. This is the first study to demonstrate that local cortical stimulation can induce changes not only in the local brain function but also in the cortical networks in healthy individuals.
Collapse
Affiliation(s)
- Kengo Tsujimoto
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Daisuke Nishida
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Rehabilitation, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Masatoshi Tahara
- Department of Rehabilitation Therapist, Saiseikai Higashikanagawa Rehabilitation Hospital, 1-13-10 Nishikanagawa, Kanagawa-ku, Yokohama, Kanagawa Prefecture, 221-0822, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Katsuhiro Mizuno
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
15
|
Attention neuroenhancement through tDCS or neurofeedback: a randomized, single-blind, controlled trial. Sci Rep 2022; 12:17613. [PMID: 36266396 PMCID: PMC9584934 DOI: 10.1038/s41598-022-22245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Neurofeedback and transcranial Direct Current Stimulation (tDCS) are promising techniques for neuroenhancement of attentional performance. As far as we know no study compared both techniques on attentional performance in healthy participants. We compared tDCS and neurofeedback in a randomized, single-blind, controlled experiment assessing both behavioral (accuracy and time reaction) and electrophysiological (N1, P1, and P3 components) data of participants responding to the Attention Network Task (ANT). Eighty volunteers volunteered for this study. We adopted standard protocols for both techniques, i.e., a Sensorimotor Rhythm (SMR) protocol for neurofeedback and the right DLPFC anodal stimulation for tDCS, applied over nine sessions (two weeks). We did not find significant differences between treatment groups on ANT, neither at the behavioral nor at the electrophysiological levels. However, we found that participants from both neuromodulation groups, irrespective of if active or sham, reported attentional improvements in response to the treatment on a subjective scale. Our study adds another null result to the neuromodulation literature, showing that neurofeedback and tDCS effects are more complex than previously suggested and associated with placebo effect. More studies in neuroenhancement literature are necessary to fully comprehend neuromodulation mechanisms.
Collapse
|
16
|
Assecondi S, Hu R, Kroeker J, Eskes G, Shapiro K. Older adults with lower working memory capacity benefit from transcranial direct current stimulation when combined with working memory training: A preliminary study. Front Aging Neurosci 2022; 14:1009262. [PMID: 36299611 PMCID: PMC9589058 DOI: 10.3389/fnagi.2022.1009262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Aging is a very diverse process: successful agers retain most cognitive functioning, while others experience mild to severe cognitive decline. This decline may eventually negatively impact one’s everyday activities. Therefore, scientists must develop approaches to counteract or, at least, slow down the negative change in cognitive performance of aging individuals. Combining cognitive training and transcranial direct current stimulation (tDCS) is a promising approach that capitalizes on the plasticity of brain networks. However, the efficacy of combined methods depends on individual characteristics, such as the cognitive and emotional state of the individual entering the training program. In this report, we explored the effectiveness of working memory training, combined with tDCS to the right dorsolateral prefrontal cortex (DLPFC), to manipulate working memory performance in older individuals. We hypothesized that individuals with lower working memory capacity would benefit the most from the combined regimen. Thirty older adults took part in a 5-day combined regimen. Before and after the training, we evaluated participants’ working memory performance with five working memory tasks. We found that individual characteristics influenced the outcome of combined cognitive training and tDCS regimens, with the intervention selectively benefiting old-old adults with lower working memory capacity. Future work should consider developing individualized treatments by considering individual differences in cognitive profiles.
Collapse
Affiliation(s)
- Sara Assecondi
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto, Italy
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health (CHBH), University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Sara Assecondi, ,
| | - Rong Hu
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Department of Neurology, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jacob Kroeker
- Departments of Psychiatry and Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Gail Eskes
- Departments of Psychiatry and Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kim Shapiro
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health (CHBH), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
da Costa Leal L, da Penha Sobral AIG, Sobral MFF, Nogueira RMTL. Effects of transcranial direct current stimulation on visuospatial attention in air traffic controllers. Exp Brain Res 2022; 240:2481-2490. [PMID: 35972521 DOI: 10.1007/s00221-022-06431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
Abstract
Visuospatial attention is a cognitive skill essential to the performance of air traffic control activities. We evaluated the effect of an anodic session of transcranial low-intensity direct current stimulation (tDCS) right parietal associated with cognitive training of visuospatial attention of 21 air traffic controllers. Within-subject designs were used, with all volunteers undergoing two tDCS sessions; an experimental (2 mA anodic) and control (sham) performed concomitantly with the cognitive training (2-Back). Visuospatial performance was measured using the Attention Network Test for Interactions and Vigilance pre- and post-intervention. The results indicate that after an active parietal tDCS session, the ATCOs showed faster responses, but not more accurate, for visuospatial attention in its aspects of orientation and reorientation. This result was significant when comparing baseline and post-tests in the active tDCS group. Comparing the post-tests between the tDCS active and sham groups, it is possible to infer a trend of improvement in the results based on faster and more accurate responses, which suggests a possible refinement of the ATCO's attentional orientation. However, this population may eventually have reached a plateau in the performance of this skill. From the analysis of the results we arrive at the following hypotheses: (I) the increase in cortical excitability mediated by anodic tDCS frequently recorded may not be accompanied by improvements in behavioural measures; (II) the interaction between anodic tDCS with another event of increased excitability-execution of a cognitive task, may have hindered the occurrence of neuroplasticity; (III) the air traffic control activity may be associated with a high level of attention, which may have contributed to a ceiling effect for the development of this skill; (IV) online assessments may be more relevant to identify acute effects; (V) repeated sessions may be more efficient to find cumulative effects; (VI) the analysis of interactions between attentional networks can contribute to the study of visuospatial attention; (VII) tDCS protocols aimed at ATCO need to consider the specifics of this audience, such as circadian rhythm and sleep and fatigue conditions.
Collapse
Affiliation(s)
- Luciana da Costa Leal
- Programa de Pós-Graduação Em Psicologia Cognitiva, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, Recife, PE, Brazil
| | - Ana Iza Gomes da Penha Sobral
- Programa de Pós-Graduação Em Psicologia Cognitiva, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, Recife, PE, Brazil.
| | - Marcos Felipe Falcão Sobral
- Programa de Pós-Graduação Em Administração E Desenvolvimento Rural, Universidade Federal Rural de Pernambuco, Avenida Dom Manoel de Medeiros, s/n -Dois Irmãos, Recife, PE, Brazil
| | - Renata Maria Toscano Lyra Nogueira
- Programa de Pós-Graduação Em Psicologia Cognitiva, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
18
|
Steinmann I, Williams KA, Wilke M, Antal A. Detection of Transcranial Alternating Current Stimulation Aftereffects Is Improved by Considering the Individual Electric Field Strength and Self-Rated Sleepiness. Front Neurosci 2022; 16:870758. [PMID: 35833087 PMCID: PMC9272587 DOI: 10.3389/fnins.2022.870758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive electrical stimulation methods, such as transcranial alternating current stimulation (tACS), are increasingly used in human neuroscience research and offer potential new avenues to treat neurological and psychiatric disorders. However, their often variable effects have also raised concerns in the scientific and clinical communities. This study aims to investigate the influence of subject-specific factors on the alpha tACS-induced aftereffect on the alpha amplitude (measured with electroencephalography, EEG) as well as on the connectivity strength between nodes of the default mode network (DMN) [measured with functional magnetic resonance imaging (fMRI)]. As subject-specific factors we considered the individual electrical field (EFIELD) strength at target regions in the brain, the frequency mismatch between applied stimulation and individual alpha frequency (IAF) and as a covariate, subject’s changes in mental state, i.e., sleepiness. Eighteen subjects participated in a tACS and a sham session conducted on different days. Each session consisted of three runs (pre/stimulation/). tACS was applied during the second run at each subject’s individual alpha frequency (IAF), applying 1 mA peak-to-peak intensity for 7 min, using an occipital bihemispheric montage. In every run, subjects watched a video designed to increase in-scanner compliance. To investigate the aftereffect of tACS on EEG alpha amplitude and on DMN connectivity strength, EEG data were recorded simultaneously with fMRI data. Self-rated sleepiness was documented using a questionnaire. Conventional statistics (ANOVA) did not show a significant aftereffect of tACS on the alpha amplitude compared to sham stimulation. Including individual EFIELD strengths and self-rated sleepiness scores in a multiple linear regression model, significant tACS-induced aftereffects were observed. However, the subject-wise mismatch between tACS frequency and IAF had no contribution to our model. Neither standard nor extended statistical methods confirmed a tACS-induced aftereffect on DMN functional connectivity. Our results show that it is possible and necessary to disentangle alpha amplitude changes due to intrinsic mechanisms and to external manipulation using tACS on the alpha amplitude that might otherwise be overlooked. Our results suggest that EFIELD is really the most significant factor that explains the alpha amplitude modulation during a tACS session. This knowledge helps to understand the variability of the tACS-induced aftereffects.
Collapse
Affiliation(s)
- Iris Steinmann
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Iris Steinmann,
| | - Kathleen A. Williams
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Andrea Antal,
| |
Collapse
|
19
|
Lega C, Cattaneo L, Costantini G. How to Test the Association Between Baseline Performance Level and the Modulatory Effects of Non-Invasive Brain Stimulation Techniques. Front Hum Neurosci 2022; 16:920558. [PMID: 35814951 PMCID: PMC9265211 DOI: 10.3389/fnhum.2022.920558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Behavioral effects of non-invasive brain stimulation techniques (NIBS) can dramatically change as a function of different factors (e.g., stimulation intensity, timing of stimulation). In this framework, lately there has been a growing interest toward the importance of considering the inter-individual differences in baseline performance and how they are related with behavioral NIBS effects. However, assessing how baseline performance level is associated with behavioral effects of brain stimulation techniques raises up crucial methodological issues. How can we test whether the performance at baseline is predictive of the effects of NIBS, when NIBS effects themselves are estimated with reference to baseline performance? In this perspective article, we discuss the limitations connected to widely used strategies for the analysis of the association between baseline value and NIBS effects, and review solutions to properly address this type of question.
Collapse
Affiliation(s)
- Carlotta Lega
- Department of Psychology and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- *Correspondence: Carlotta Lega
| | - Luigi Cattaneo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Giulio Costantini
- Department of Psychology and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
20
|
Moretti J, Marinovic W, Harvey AR, Rodger J, Visser TAW. Offline Parietal Intermittent Theta Burst Stimulation or Alpha Frequency Transcranial Alternating Current Stimulation Has No Effect on Visuospatial or Temporal Attention. Front Neurosci 2022; 16:903977. [PMID: 35774555 PMCID: PMC9237453 DOI: 10.3389/fnins.2022.903977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive brain stimulation is a growing field with potentially wide-ranging clinical and basic science applications due to its ability to transiently and safely change brain excitability. In this study we include two types of stimulation: repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Single session stimulations with either technique have previously been reported to induce changes in attention. To better understand and compare the effectiveness of each technique and the basis of their effects on cognition we assessed changes to both temporal and visuospatial attention using an attentional blink task and a line bisection task following offline stimulation with an intermittent theta burst (iTBS) rTMS protocol or 10 Hz tACS. Additionally, we included a novel rTMS stimulation technique, low-intensity (LI-)rTMS, also using an iTBS protocol, which uses stimulation intensities an order of magnitude below conventional rTMS. Animal models show that low-intensity rTMS modulates cortical excitability despite sub-action potential threshold stimulation. Stimulation was delivered in healthy participants over the right posterior parietal cortex (rPPC) using a within-subjects design (n = 24). Analyses showed no evidence for an effect of any stimulation technique on spatial biases in the line bisection task or on magnitude of the attentional blink. Our results suggests that rTMS and LI-rTMS using iTBS protocol and 10 Hz tACS over rPPC do not modulate performance in tasks assessing visuospatial or temporal attention.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Alan R. Harvey
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Troy A. W. Visser
- School of Psychological Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
21
|
Olgiati E, Malhotra PA. Using non-invasive transcranial direct current stimulation for neglect and associated attentional deficits following stroke. Neuropsychol Rehabil 2022; 32:732-763. [PMID: 32892712 DOI: 10.1080/09602011.2020.1805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neglect is a disabling neuropsychological syndrome that is frequently observed following right-hemispheric stroke. Affected individuals often present with multiple attentional deficits, ranging from reduced orienting towards contralesional space to a generalized impairment in maintaining attention over time. Although a degree of spontaneous recovery occurs in most patients, in some individuals this condition can be treatment-resistant with prominent ongoing non-spatial deficits. Further, there is a large inter-individual variability in response to different therapeutic approaches. Given its potential to alter neuronal excitability and affect neuroplasticity, non-invasive brain stimulation is a promising tool that could potentially be utilized to facilitate recovery. However, there are many outstanding questions regarding its implementation in this heterogeneous patient group. Here we provide a critical overview of the available evidence on the use of non-invasive electrical brain stimulation, focussing on transcranial direct current stimulation (tDCS), to improve neglect and associated attentional deficits after right-hemispheric stroke. At present, there is insufficient robust evidence supporting the clinical use of tDCS to alleviate symptoms of neglect. Future research would benefit from careful study design, enhanced precision of electrical montages, multi-modal approaches exploring predictors of response, tailored dose-control applications and increased efforts to evaluate standalone tDCS versus its incorporation into combination therapy.
Collapse
Affiliation(s)
- Elena Olgiati
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, London, UK
| |
Collapse
|
22
|
Yang QH, Zhang YH, Du SH, Wang YC, Fang Y, Wang XQ. Non-invasive Brain Stimulation for Central Neuropathic Pain. Front Mol Neurosci 2022; 15:879909. [PMID: 35663263 PMCID: PMC9162797 DOI: 10.3389/fnmol.2022.879909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The research and clinical application of the noninvasive brain stimulation (NIBS) technique in the treatment of neuropathic pain (NP) are increasing. In this review article, we outline the effectiveness and limitations of the NIBS approach in treating common central neuropathic pain (CNP). This article summarizes the research progress of NIBS in the treatment of different CNPs and describes the effects and mechanisms of these methods on different CNPs. Repetitive transcranial magnetic stimulation (rTMS) analgesic research has been relatively mature and applied to a variety of CNP treatments. But the optimal stimulation targets, stimulation intensity, and stimulation time of transcranial direct current stimulation (tDCS) for each type of CNP are still difficult to identify. The analgesic mechanism of rTMS is similar to that of tDCS, both of which change cortical excitability and synaptic plasticity, regulate the release of related neurotransmitters and affect the structural and functional connections of brain regions associated with pain processing and regulation. Some deficiencies are found in current NIBS relevant studies, such as small sample size, difficulty to avoid placebo effect, and insufficient research on analgesia mechanism. Future research should gradually carry out large-scale, multicenter studies to test the stability and reliability of the analgesic effects of NIBS.
Collapse
Affiliation(s)
- Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yong-Hui Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Chen Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu Fang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yu Fang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
23
|
Saito K, Otsuru N, Inukai Y, Kojima S, Miyaguchi S, Nagasaka K, Onishi H. Effect of Transcranial Electrical Stimulation over the Posterior Parietal Cortex on Tactile Spatial Discrimination Performance. Neuroscience 2022; 494:94-103. [PMID: 35569646 DOI: 10.1016/j.neuroscience.2022.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
The intraparietal sulcus region, which is part of the posterior parietal cortex (PPC), has been shown to play an important role in discriminating object shapes using the fingers. Transcranial random noise stimulation (tRNS) and anodal transcranial pulsed current stimulation (tPCS) are noninvasive strategies widely used to modulate neural activity in cortical regions. Therefore, we investigated the effects of tRNS and anodal tPCS applied to left or right PPC on the tactile discrimination performance of the right index finger in 20 neurologically healthy subjects. A grating orientation task (GOT) was performed before and immediately after delivering tRNS (stimulus frequency 0.1-640 Hz) in Experiment 1 or anodal tPCS (pulse width 50 ms and inter-pulse interval 5 ms) in Experiment 2. Performing tRNS over the right PPC significantly improved discrimination performance on the GOT. Subjects were classified into low and high baseline performance groups. Conducting tRNS over the left PPC significantly reduced the GOT discrimination performance in the high-performance group. By contrast, anodal tPCS delivered to the PPC of the left and right hemispheres had no significant effect on the tactile GOT discrimination performance of the right hand. We show that transcranial electric stimulation over the PPC may improve tactile perception but the effect depends on stimulus modality, parameters, and on the stimulated hemisphere.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Kazuaki Nagasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
24
|
Assecondi S, Villa-Sánchez B, Shapiro K. Event-Related Potentials as Markers of Efficacy for Combined Working Memory Training and Transcranial Direct Current Stimulation Regimens: A Proof-of-Concept Study. Front Syst Neurosci 2022; 16:837979. [PMID: 35547238 PMCID: PMC9083230 DOI: 10.3389/fnsys.2022.837979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
Our brains are often under pressure to process a continuous flow of information in a short time, therefore facing a constantly increasing demand for cognitive resources. Recent studies have highlighted that a lasting improvement of cognitive functions may be achieved by exploiting plasticity, i.e., the brain’s ability to adapt to the ever-changing cognitive demands imposed by the environment. Transcranial direct current stimulation (tDCS), when combined with cognitive training, can promote plasticity, amplify training gains and their maintenance over time. The availability of low-cost wearable devices has made these approaches more feasible, albeit the effectiveness of combined training regimens is still unclear. To quantify the effectiveness of such protocols, many researchers have focused on behavioral measures such as accuracy or reaction time. These variables only return a global, non-specific picture of the underlying cognitive process. Electrophysiology instead has the finer grained resolution required to shed new light on the time course of the events underpinning processes critical to cognitive control, and if and how these processes are modulated by concurrent tDCS. To the best of our knowledge, research in this direction is still very limited. We investigate the electrophysiological correlates of combined 3-day working memory training and non-invasive brain stimulation in young adults. We focus on event-related potentials (ERPs), instead of other features such as oscillations or connectivity, because components can be measured on as little as one electrode. ERP components are, therefore, well suited for use with home devices, usually equipped with a limited number of recording channels. We consider short-, mid-, and long-latency components typically elicited by working memory tasks and assess if and how the amplitude of these components are modulated by the combined training regimen. We found no significant effects of tDCS either behaviorally or in brain activity, as measured by ERPs. We concluded that either tDCS was ineffective (because of the specific protocol or the sample under consideration, i.e., young adults) or brain-related changes, if present, were too subtle. Therefore, we suggest that other measures of brain activity may be more appropriate/sensitive to training- and/or tDCS-induced modulations, such as network connectivity, especially in young adults.
Collapse
Affiliation(s)
- Sara Assecondi
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Sara Assecondi, ,
| | | | - Kim Shapiro
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci 2022; 12:522. [PMID: 35624908 PMCID: PMC9139102 DOI: 10.3390/brainsci12050522] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Due to its safety, portability, and cheapness, transcranial direct current stimulation (tDCS) use largely increased in research and clinical settings. Despite tDCS's wide application, previous works pointed out inconsistent and low replicable results, sometimes leading to extreme conclusions about tDCS's ineffectiveness in modulating behavioral performance across cognitive domains. Traditionally, this variability has been linked to significant differences in the stimulation protocols across studies, including stimulation parameters, target regions, and electrodes montage. Here, we reviewed and discussed evidence of heterogeneity emerging at the intra-study level, namely inter-individual differences that may influence the response to tDCS within each study. This source of variability has been largely neglected by literature, being results mainly analyzed at the group level. Previous research, however, highlighted that only a half-or less-of studies' participants could be classified as responders, being affected by tDCS in the expected direction. Stable and variable inter-individual differences, such as morphological and genetic features vs. hormonal/exogenous substance consumption, partially account for this heterogeneity. Moreover, variability comes from experiments' contextual elements, such as participants' engagement/baseline capacity and individual task difficulty. We concluded that increasing knowledge on inter-dividual differences rather than undermining tDCS effectiveness could enhance protocols' efficiency and reproducibility.
Collapse
Affiliation(s)
- Alessandra Vergallito
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Sarah Feroldi
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy;
| | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Leonor J. Romero Lauro
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| |
Collapse
|
26
|
Fonte C, Varalta V, Rocco A, Munari D, Filippetti M, Evangelista E, Modenese A, Smania N, Picelli A. Combined transcranial Direct Current Stimulation and robot-assisted arm training in patients with stroke: a systematic review. Restor Neurol Neurosci 2022; 39:435-446. [PMID: 34974446 DOI: 10.3233/rnn-211218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Upper limb motor deficits in patients with severe stroke often remain unresolved over time. Combining transcranial Direct Current Stimulation with robotic therapy is an innovative neurorehabilitation approach that holds promise to improve upper limb impairment after stroke. OBJECTIVE To investigate the effects of robotic training in combination with transcranial Direct Current Stimulation for treating poststroke upper limb impairment. METHODS PubMed, MEDLINE, Cochrane Library, and EMBASE electronic databases were searched using keywords, MeSH terms, and strings: "Stroke"[MeSH] AND ("Upper Extremity"[MeSH] OR "upper limb") AND ("Transcranial Direct Current Stimulation" [MeSH] OR "tDCS") AND ("robotics" OR "robotic therapy"). Full-text articles published in English up to October 2020 were included. Each was rated for quality according to the Physiotherapy Database (PEDro) score: eight out of eleven scored more than 8 points; their results were considered reliable for this review. RESULTS Of the total of 171 publications retrieved, 11 met the inclusion criteria. The results of studies that examined the same outcome measures were pooled to draw conclusions on the effectiveness of transcranial Direct Current Stimulation and robot-assisted training in corticomotor excitability, upper limb kinematics, muscle strength and tone, function, disability, and quality of life after stroke. CONCLUSIONS To date, there is insufficient evidence to support the hypothesis that transcranial Direct Current Stimulation enhances the effects of robot-assisted arm training in poststroke patients. Further studies with more accurate, comparable and standardized methodology are needed in order to better define the effects of robotic training in combination with transcranial Direct Current Stimulation on poststroke upper limb impairment. Therefore, given the scarce resources available to rehabilitation researches, other, more promising approaches should be given attention.
Collapse
Affiliation(s)
- Cristina Fonte
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neurorehabilitation Unit, University Hospital of Verona, Verona, Italy
| | - Valentina Varalta
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neurorehabilitation Unit, University Hospital of Verona, Verona, Italy
| | - Arianna Rocco
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniele Munari
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mirko Filippetti
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Evangelista
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angela Modenese
- Neurorehabilitation Unit, University Hospital of Verona, Verona, Italy
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neurorehabilitation Unit, University Hospital of Verona, Verona, Italy
| | - Alessandro Picelli
- Neuromotor and Cognitive Rehabilitation Research Center, Section of Physical and Rehabilitation Medicine, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neurorehabilitation Unit, University Hospital of Verona, Verona, Italy.,Canadian Advances in Neuro-Orthopedics for Spasticity Congress (CANOSC), Kingston, ON, Canada
| |
Collapse
|
27
|
Esposito M, Ferrari C, Fracassi C, Miniussi C, Brignani D. Responsiveness to left-prefrontal tDCS varies according to arousal levels. Eur J Neurosci 2022; 55:762-777. [PMID: 34978110 PMCID: PMC9302688 DOI: 10.1111/ejn.15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
Over the past two decades, the postulated modulatory effects of transcranial direct current stimulation (tDCS) on the human brain have been extensively investigated. However, recent concerns on reliability of tDCS effects have been raised, principally due to reduced replicability and to interindividual variability in response to tDCS. These inconsistencies are likely due to the interplay between the level of induced cortical excitability and unaccounted structural and state‐dependent functional factors. On these grounds, we aimed at verifying whether the behavioural effects induced by a common tDCS montage (F3‐rSOA) were influenced by the participants' arousal levels, as part of a broader mechanism of state‐dependency. Pupillary dynamics were recorded during an auditory oddball task while applying either a sham or real tDCS. The tDCS effects were evaluated as a function of subjective and physiological arousal predictors (STAI‐Y State scores and pre‐stimulus pupil size, respectively). We showed that prefrontal tDCS hindered task learning effects on response speed such that performance improvement occurred during sham, but not real stimulation. Moreover, both subjective and physiological arousal predictors significantly explained performance during real tDCS, with interaction effects showing performance improvement only with moderate arousal levels; likewise, pupil response was affected by real tDCS according to the ongoing levels of arousal, with reduced dilation during higher arousal trials. These findings highlight the potential role of arousal in shaping the neuromodulatory outcome, thus emphasizing a more careful interpretation of null or negative results while also encouraging more individually tailored tDCS applications based on arousal levels, especially in clinical populations.
Collapse
Affiliation(s)
- Marco Esposito
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia Fracassi
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Debora Brignani
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
Chinzara T, Buckingham G, Harris D. Transcranial direct current stimulation (tDCS) and sporting performance: A systematic review and meta-analysis of tDCS effects on physical endurance, muscular strength, and visuomotor skills. Eur J Neurosci 2021; 55:468-486. [PMID: 34904303 DOI: 10.1111/ejn.15540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has been linked with a range of physiological and cognitive enhancements relevant to sporting performance. As a number of positive and null findings have been reported in the literature, the present meta-analysis sought to synthesise results across endurance, strength, and visuomotor skill domains to investigate if tDCS improves any aspect of sporting performance. Online database searches in August 2020 identified 43 full-text studies which examined the acute effects of tDCS compared to sham/control conditions on physical endurance, muscular strength, and visuomotor skills in healthy adults. Meta-analysis indicated a small overall effect favouring tDCS stimulation over sham/control (standardized mean difference (SMD)=0.25, CI95%[0.14;0.36]). Effects on strength (SMD=0.31, CI95%[0.10;0.51]) and visuomotor (SMD=0.29, CI95%[0.00;0.57]) tasks were larger than endurance performance (SMD=0.18, CI95%[0.00;0.37]). Meta-regressions indicated effect sizes were not related to stimulation parameters, but other factors such as genetics, gender, and experience may modulate tDCS effects. The results suggest tDCS has the potential to be used as an ergogenic aid in conjunction with a specified training regime.
Collapse
Affiliation(s)
- Trish Chinzara
- Department of Sport and Health Science, University of Exeter, UK.,Goldsmiths University of London, London, UK
| | - Gavin Buckingham
- Department of Sport and Health Science, University of Exeter, UK
| | - David Harris
- Department of Sport and Health Science, University of Exeter, UK
| |
Collapse
|
29
|
Wu D, Zhang P, Liu N, Sun K, Xiao W. Effects of High-Definition Transcranial Direct Current Stimulation Over the Left Fusiform Face Area on Face View Discrimination Depend on the Individual Baseline Performance. Front Neurosci 2021; 15:704880. [PMID: 34867146 PMCID: PMC8639859 DOI: 10.3389/fnins.2021.704880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
A basic human visual function is to identify objects from different viewpoints. Typically, the ability to discriminate face views based on in-depth orientation is necessary in daily life. Early neuroimaging studies have identified the involvement of the left fusiform face area (FFA) and the left superior temporal sulcus (STS) in face view discrimination. However, many studies have documented the important role of the right FFA in face processing. Thus, there remains controversy over whether one specific region or all of them are involved in discriminating face views. Thus, this research examined the influence of high-definition transcranial direct current stimulation (HD-tDCS) over the left FFA, left STS or right FFA on face view discrimination in three experiments. In experiment 1, eighteen subjects performed a face view discrimination task before and immediately, 10 min and 20 min after anodal, cathodal and sham HD-tDCS (20 min, 1.5 mA) over the left FFA in three sessions. Compared with sham stimulation, anodal and cathodal stimulation had no effects that were detected at the group level. However, the analyses at the individual level showed that the baseline performance negatively correlated with the degree of change after anodal tDCS, suggesting a dependence of the change amount on the initial performance. Specifically, tDCS decreased performance in the subjects with better baseline performance but increased performance in those with poorer baseline performance. In experiments 2 and 3, the same experimental protocol was used except that the stimulation site was the left STS or right FFA, respectively. Neither anodal nor cathodal tDCS over the left STS or right FFA influenced face view discrimination in group- or individual-level analyses. These results not only indicated the importance of the left FFA in face view discrimination but also demonstrated that individual initial performance should be taken into consideration in future research and practical applications.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
30
|
Miraglia F, Vecchio F, Pellicciari MC, Cespon J, Rossini PM. Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex. Int J Neural Syst 2021; 32:2150056. [PMID: 34651550 DOI: 10.1142/s0129065721500568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evidence indicates that the transcranial direct current stimulation (tDCS) has the potential to transiently modulate cognitive function, including age-related changes in brain performance. Only a small number of studies have explored the interaction between the stimulation sites on the scalp, task performance, and brain network connectivity within the frame of physiological aging. We aimed to evaluate the spread of brain activation in both young and older adults in response to anodal tDCS applied to two different scalp stimulation sites: Prefrontal cortex (PFC) and posterior parietal cortex (PPC). EEG data were recorded during tDCS stimulation and evaluated using the Small World (SW) index as a graph theory metric. Before and after tDCS, participants performed a behavioral task; a performance accuracy index was computed and correlated with the SW index. Results showed that the SW index increased during tDCS of the PPC compared to the PFC at higher EEG frequencies only in young participants. tDCS at the PPC site did not exert significant effects on the performance, while tDCS at the PFC site appeared to influence task reaction times in the same direction in both young and older participants. In conclusion, studies using tDCS to modulate functional connectivity and influence behavior can help identify suitable protocols for the aging brain.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy.,eCampus University, Novedrate (Como), Italy
| | | | - Jesus Cespon
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy
| |
Collapse
|
31
|
Au J, Katz B, Moon A, Talati S, Abagis TR, Jonides J, Jaeggi SM. Post-training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance. J Neurosci Res 2021; 99:2351-2363. [PMID: 33438297 PMCID: PMC8273206 DOI: 10.1002/jnr.24784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/23/2020] [Indexed: 11/08/2022]
Abstract
Research investigating transcranial direct current stimulation (tDCS) to enhance cognitive training augments both our understanding of its long-term effects on cognitive plasticity as well as potential applications to strengthen cognitive interventions. Previous work has demonstrated enhancement of working memory training while applying concurrent tDCS to the dorsolateral prefrontal cortex (DLPFC). However, the optimal stimulation parameters are still unknown. For example, the timing of tDCS delivery has been shown to be an influential variable that can interact with task learning. In the present study, we used tDCS to target the right DLPFC while participants trained on a visuospatial working memory task. We sought to compare the relative efficacy of online stimulation delivered during training to offline stimulation delivered either immediately before or afterwards. We were unable to replicate previously demonstrated benefits of online stimulation; however, we did find evidence that offline stimulation delivered after training can actually be detrimental to training performance relative to sham. We interpret our results in light of evidence suggesting a role of the right DLPFC in promoting memory interference, and conclude that while tDCS may be a promising tool to influence the results of cognitive training, more research and an abundance of caution are needed before fully endorsing its use for cognitive enhancement. This work suggests that effects can vary substantially in magnitude and direction between studies, and may be heavily dependent on a variety of intervention protocol parameters such as the timing and location of stimulation delivery, about which our understanding is still nascent.
Collapse
Affiliation(s)
- Jacky Au
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Austin Moon
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sheebani Talati
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tessa R. Abagis
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susanne M. Jaeggi
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
32
|
Coldea A, Morand S, Veniero D, Harvey M, Thut G. Parietal alpha tACS shows inconsistent effects on visuospatial attention. PLoS One 2021; 16:e0255424. [PMID: 34351972 PMCID: PMC8341497 DOI: 10.1371/journal.pone.0255424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a popular technique that has been used for manipulating brain oscillations and inferring causality regarding the brain-behaviour relationship. Although it is a promising tool, the variability of tACS results has raised questions regarding the robustness and reproducibility of its effects. Building on recent research using tACS to modulate visuospatial attention, we here attempted to replicate findings of lateralized parietal tACS at alpha frequency to induce a change in attention bias away from the contra- towards the ipsilateral visual hemifield. 40 healthy participants underwent tACS in two separate sessions where either 10 Hz tACS or sham was applied via a high-density montage over the left parietal cortex at 1.5 mA for 20 min, while performance was assessed in an endogenous attention task. Task and tACS parameters were chosen to match those of previous studies reporting positive effects. Unlike these studies, we did not observe lateralized parietal alpha tACS to affect attention deployment or visual processing across the hemifields as compared to sham. Likewise, additional resting electroencephalography immediately offline to tACS did not reveal any notable effects on individual alpha power or frequency. Our study emphasizes the need for more replication studies and systematic investigations of the factors that drive tACS effects.
Collapse
Affiliation(s)
- Andra Coldea
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Stephanie Morand
- School of Life Sciences, MVLS College, University of Glasgow, Glasgow, United Kingdom
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Monika Harvey
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
33
|
Rodella C, Cespón J, Repetto C, Pellicciari MC. Customized Application of tDCS for Clinical Rehabilitation in Alzheimer's Disease. Front Hum Neurosci 2021; 15:687968. [PMID: 34393740 PMCID: PMC8358653 DOI: 10.3389/fnhum.2021.687968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Claudia Rodella
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy
| | - Jesús Cespón
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Claudia Repetto
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy
| | | |
Collapse
|
34
|
New Horizons on Non-invasive Brain Stimulation of the Social and Affective Cerebellum. THE CEREBELLUM 2021; 21:482-496. [PMID: 34270081 DOI: 10.1007/s12311-021-01300-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The cerebellum is increasingly attracting scientists interested in basic and clinical research of neuromodulation. Here, we review available studies that used either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) to examine the role of the posterior cerebellum in different aspects of social and affective cognition, from mood regulation to emotion discrimination, and from the ability to identify biological motion to higher-level social inferences (mentalizing). We discuss how at the functional level the role of the posterior cerebellum in these different processes may be explained by a generic prediction mechanism and how the posterior cerebellum may exert this function within different cortico-cerebellar and cerebellar limbic networks involved in social cognition. Furthermore, we suggest to deepen our understanding of the cerebro-cerebellar circuits involved in different aspects of social cognition by employing promising stimulation approaches that have so far been primarily used to study cortical functions and networks, such as paired-pulse TMS, frequency-tuned stimulation, state-dependent protocols, and chronometric TMS. The ability to modulate cerebro-cerebellar connectivity opens up possible clinical applications for improving impairments in social and affective skills associated with cerebellar abnormalities.
Collapse
|
35
|
Contributions of the Right Prefrontal and Parietal Cortices to the Attentional Blink: A tDCS Study. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The AB refers to the performance impairment that occurs when visual selective attention is overloaded through the very rapid succession of two targets (T1 and T2) among distractors by using the rapid serial visual presentation task (RSVP). Under these conditions, performance is typically impaired when T2 is presented within 200–500 ms from T1 (AB). Based on neuroimaging studies suggesting a role of top-down attention and working memory brain hubs in the AB, here we potentiated via anodal or sham tDCS the activity of the right DLPFC (F4) and of the right PPC (P4) during an AB task. The findings showed that anodal tDCS over the F4 and over P4 had similar effects on the AB. Importantly, potentiating the activity of the right frontoparietal network via anodal tDCS only benefitted poor performers, reducing the AB, whereas in good performers it accentuated the AB. The contribution of the present findings is twofold: it shows both top-down and bottom-up contributions of the right frontoparietal network in the AB, and it indicates that there is an optimal level of excitability of this network, resulting from the individual level of activation and the intensity of current stimulation.
Collapse
|
36
|
Lahogue C, Pinault D. Frontoparietal anodal tDCS reduces ketamine-induced oscillopathies. Transl Neurosci 2021; 12:282-296. [PMID: 34239718 PMCID: PMC8240415 DOI: 10.1515/tnsci-2020-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
During the prodromal phase of schizophrenia with its complex and insidious clinical picture, electroencephalographic recordings detect widespread oscillation disturbances (or oscillopathies) during the wake-sleep cycle. Neural oscillations are electrobiomarkers of the connectivity state within systems. A single-systemic administration of ketamine, a non-competitive NMDA glutamate receptor antagonist, transiently reproduces the oscillopathies with a clinical picture reminiscent of the psychosis prodrome. This acute pharmacological model may help the research and development of innovative treatments against psychotic transition. Transcranial electrical stimulation is recognized as an appropriate non-invasive therapeutic modality since it can increase cognitive performance and modulate neural oscillations with little or no side effects. Therefore, our objective was to set up, in the sedated adult rat, a stimulation method that is able to normalize ketamine-induced increase in gamma-frequency (30-80 Hz) oscillations and decrease in sigma-frequency (10-17 Hz) oscillations. Unilateral and bipolar frontoparietal (FP), transcranial anodal stimulation by direct current (<+1 mA) was applied in ketamine-treated rats. A concomitant bilateral electroencephalographic recording of the parietal cortex measured the stimulation effects on its spontaneously occurring oscillations. A 5 min FP anodal tDCS immediately and quickly reduced, significantly with an intensity-effect relationship, the ketamine-induced gamma hyperactivity, and sigma hypoactivity at least in the bilateral parietal cortex. A duration effect was also recorded. The tDCS also tended to diminish the ketamine-induced delta hypoactivity. These preliminary neurophysiological findings are promising for developing a therapeutic proof-of-concept against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Caroline Lahogue
- Université de Strasbourg, Strasbourg, France
- INSERM U1114, Neuropsychologie Cognitive et Physiopathologie de la Schizophrénie, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de médecine, Strasbourg, France
| | - Didier Pinault
- Université de Strasbourg, Strasbourg, France
- INSERM U1114, Neuropsychologie Cognitive et Physiopathologie de la Schizophrénie, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de médecine, Strasbourg, France
| |
Collapse
|
37
|
Smits FM, Schutter DJLG, van Honk J, Geuze E. Does non-invasive brain stimulation modulate emotional stress reactivity? Soc Cogn Affect Neurosci 2021; 15:23-51. [PMID: 31993648 PMCID: PMC7171378 DOI: 10.1093/scan/nsaa011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive emotional responses to stressful events can detrimentally affect psychological functioning and mental health. Recent studies have provided evidence that non-invasive brain stimulation (NBS) targeting the prefrontal cortex (PFC) can affect the regulation of stress-related emotional responses. However, the reliability and effect sizes have not been systematically analyzed. In the present study, we reviewed and meta-analyzed the effects of repetitive transcranial magnetic (rTMS) and transcranial direct current stimulation (tDCS) over the PFC on acute emotional stress reactivity in healthy individuals. Forty sham-controlled single-session rTMS and tDCS studies were included. Separate random effects models were performed to estimate the mean effect sizes of emotional reactivity. Twelve rTMS studies together showed no evidence that rTMS over the PFC influenced emotional reactivity. Twenty-six anodal tDCS studies yielded a weak beneficial effect on stress-related emotional reactivity (Hedges’ g = −0.16, CI95% = [−0.33, 0.00]). These findings suggest that a single session of NBS is insufficient to induce reliable, clinically significant effects but also provide preliminary evidence that specific NBS methods can affect emotional reactivity. This may motivate further research into augmenting the efficacy of NBS protocols on stress-related processes.
Collapse
Affiliation(s)
- Fenne M Smits
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Jack van Honk
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Department of Psychiatry and Mental Health, University of Cape Town, Observatory, 7925, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Elbert Geuze
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
38
|
Brambilla M, Dinkelbach L, Bigler A, Williams J, Zokaei N, Cohen Kadosh R, Brem AK. The Effect of Transcranial Random Noise Stimulation on Cognitive Training Outcome in Healthy Aging. Front Neurol 2021; 12:625359. [PMID: 33767658 PMCID: PMC7985554 DOI: 10.3389/fneur.2021.625359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Objective: Aging is associated with a decline in attentional and executive abilities, which are linked to physiological, structural, and functional brain changes. A variety of novel non-invasive brain stimulation methods have been probed in terms of their neuroenhancement efficacy in the last decade; one that holds significant promise is transcranial random noise stimulation (tRNS) that delivers an alternate current at random amplitude and frequency. The aim of this study was to investigate whether repeated sessions of tRNS applied as an add-on to cognitive training (CT) may induce long-term near and far transfer cognitive improvements. Methods: In this sham-controlled, randomized, double-blinded study forty-two older adults (age range 60-86 years) were randomly assigned to one of three intervention groups that received 20 min of 0.705 mA tRNS (N = 14), 1 mA tRNS (N = 14), or sham tRNS (N = 19) combined with 30 min of CT of executive functions (cognitive flexibility, inhibitory control, working memory). tRNS was applied bilaterally over the dorsolateral prefrontal cortices for five sessions. The primary outcome (non-verbal logical reasoning) and other cognitive functions (attention, memory, executive functions) were assessed before and after the intervention and at a 1-month follow-up. Results: Non-verbal logical reasoning, inhibitory control and reaction time improved significantly over time, but stimulation did not differentially affect this improvement. These changes occurred during CT, while no further improvement was observed during follow-up. Performance change in logical reasoning was significantly correlated with age in the group receiving 1 mA tRNS, indicating that older participants profited more from tRNS than younger participants. Performance change in non-verbal working memory was significantly correlated with age in the group receiving sham tRNS, indicating that in contrast to active tRNS, older participants in the sham group declined more than younger participants. Interpretation: CT induced cognitive improvements in all treatment groups, but tRNS did not modulate most of these cognitive improvements. However, the effect of tRNS depended on age in some cognitive functions. We discuss possible explanations leading to this result that can help to improve the design of future neuroenhancement studies in older populations.
Collapse
Affiliation(s)
- Michela Brambilla
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Biomedical and Clinical Sciences Department, Center for Research and Treatment on Cognitive Dysfunctions, “Luigi Sacco” Hospital, University of Milan, Milan, Italy
| | - Lars Dinkelbach
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Duesseldorf, Germany
| | - Annelien Bigler
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Joseph Williams
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nahid Zokaei
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna-Katharine Brem
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
London RE, Slagter HA. No Effect of Transcranial Direct Current Stimulation over Left Dorsolateral Prefrontal Cortex on Temporal Attention. J Cogn Neurosci 2021; 33:756-768. [PMID: 33464163 DOI: 10.1162/jocn_a_01679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (lDLPFC)-a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the "attentional blink" (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed an AB task before (baseline), during and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on the basis of suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over lDLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Behavioral results did not provide support for this hypothesis. At the group level, we also did not observe any significant effects of tDCS, and a Bayesian analysis revealed strong evidence that tDCS to lDLPFC did not affect AB performance. Together, these findings do not support the idea that there is an optimal level of prefrontal cortical excitability for cognitive function. More generally, they add to a growing body of work that challenges the idea that the effects of tDCS can be predicted from baseline levels of behavior.
Collapse
|
40
|
Gheorghe DA, Panouillères MTN, Walsh ND. Investigating the effects of cerebellar transcranial direct current stimulation on saccadic adaptation and cortisol response. CEREBELLUM & ATAXIAS 2021; 8:1. [PMID: 33397502 PMCID: PMC7784285 DOI: 10.1186/s40673-020-00124-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) over the prefrontal cortex has been shown to modulate subjective, neuronal and neuroendocrine responses, particularly in the context of stress processing. However, it is currently unknown whether tDCS stimulation over other brain regions, such as the cerebellum, can similarly affect the stress response. Despite increasing evidence linking the cerebellum to stress-related processing, no studies have investigated the hormonal and behavioural effects of cerebellar tDCS. METHODS This study tested the hypothesis of a cerebellar tDCS effect on mood, behaviour and cortisol. To do this we employed a single-blind, sham-controlled design to measure performance on a cerebellar-dependent saccadic adaptation task, together with changes in cortisol output and mood, during online anodal and cathodal stimulation. Forty-five participants were included in the analysis. Stimulation groups were matched on demographic variables, potential confounding factors known to affect cortisol levels, mood and a number of personality characteristics. RESULTS Results showed that tDCS polarity did not affect cortisol levels or subjective mood, but did affect behaviour. Participants receiving anodal stimulation showed an 8.4% increase in saccadic adaptation, which was significantly larger compared to the cathodal group (1.6%). CONCLUSION The stimulation effect on saccadic adaptation contributes to the current body of literature examining the mechanisms of cerebellar stimulation on associated function. We conclude that further studies are needed to understand whether and how cerebellar tDCS may module stress reactivity under challenge conditions.
Collapse
Affiliation(s)
- Delia A. Gheorghe
- School of Psychology, University of East Anglia, Norwich, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Muriel T. N. Panouillères
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- CIAMS, Université Paris-Saclay, 91405 Orsay Cedex, France
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | | |
Collapse
|
41
|
tDCS over posterior parietal cortex increases cortical excitability but decreases learning: An ERPs and TMS-EEG study. Brain Res 2020; 1753:147227. [PMID: 33385376 DOI: 10.1016/j.brainres.2020.147227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
The application of anodal transcranial direct current stimulation (AtDCS) is generally associated with increased neuronal excitability and enhanced cognitive functioning. Nevertheless, previous work showed that applying this straight reasoning does not always lead to the desired results at behavioural level. Here, we investigated electrophysiological markers of AtDCS-mediated effects on visuo-spatial contextual learning (VSCL). In order to assess cortical excitability changes after 3 mA AtDCS applied over posterior parietal cortex, event-related potentials (ERPs) were collected during task performance. Additionally, AtDCS-induced effects on cortical excitability were explored by measuring TMS-evoked potentials (TEPs) collected before AtDCS, after AtDCS and after AtDCS and VSCL interaction. Behavioural results revealed that the application of AtDCS induced a reduction of VSCL. At the electrophysiological level, ERPs showed enhanced cortical response (P2 component) in the group receiving Real-AtDCS as compared to Sham-AtDCS. Cortical responsiveness at rest as measured by TEP, did not indicate any significant difference between Real- and Sham-tDCS groups, albeit a trend was present. Overall, our results suggest that AtDCS increases cortical response to incoming visuo-spatial stimuli, but with no concurrent increase in learning. Detrimental effects on behaviour could result from the interaction between AtDCS- and task-mediated cortical activation. This interaction might enhance cortical excitability and hinder normal task-related neuroplastic phenomena subtending learning.
Collapse
|
42
|
Modulating the activity of right temporo-parietal junction by anodal tDCS enhances the agent's repayment in hold-up game. Brain Res Bull 2020; 168:17-24. [PMID: 33370587 DOI: 10.1016/j.brainresbull.2020.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Hold-up problem is very common in non-contractible relation-specific investment transactions. And this problem can affect by trust, cooperation and altruism behavior of human beings. Recent neuroscience researches had explored a network of right temporo-parietal junction (rTPJ) involved in human cooperation and altruism behavior. The purpose of this study is to modulate the activation of rTPJ through transcranial direct current stimulation (tDCS), and to study the influence of rTPJ on investment and offer behavior in hold-up game. The results of our study showed that the anodal stimulation significantly increased participants' offer compared with the cathodal and sham stimulation. A possible explanation is that changes in rTPJ activity induced by anodal stimulation improve the accuracy of agents' mental reasoning and promote cooperation by influencing agents' offer behavior.
Collapse
|
43
|
Gray OJ, McFarquhar M, Montaldi D. A reassessment of the pseudoneglect effect: Attention allocation systems are selectively engaged by semantic and spatial processing. J Exp Psychol Hum Percept Perform 2020; 47:223-237. [PMID: 33271044 PMCID: PMC7818672 DOI: 10.1037/xhp0000882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Healthy individuals display systematic inaccuracies when allocating attention to perceptual space. Under many conditions, optimized spatial attention processing of the right hemisphere’s frontoparietal attention network directs more attention to the left side of perceptual space than the right. This is the pseudoneglect effect. We present evidence reshaping our fundamental understanding of this neural mechanism. We describe a previously unrecognized, but reliable, attention bias to the right side of perceptual space that is associated with semantic object processing. Using an object bisection task, we revealed a significant rightward bias distinct from the leftward bias elicited by the traditional line bisection task. In Experiment 2, object-like shapes that were not easily recognizable exhibited an attention bias between that of horizontal lines and objects. Our results support our proposal that the rightward attention bias is a product of semantic processing and its lateralization in the left hemisphere. In Experiment 3, our novel object-based adaptation of the landmark task further supported this proposition and revealed temporal dynamics of the effect. This research provides novel and crucial insight into the systems supporting intricate and complex attention allocation and provides impetus for a shift toward studying attention in ways that increasingly reflect our complex environments. This study describes a previously unrecognized but reliable spatial attention bias that is associated with the processing of the semantic meaning of objects. This counters the spatial attention bias well-known as the pseudoneglect effect. Our findings implicate a crucial role for the understudied left frontoparietal cortex in distributing attention, and open new, exciting areas for research. This work also reveals a mechanism that potentially enables our attention to be directed equally to different areas of space in daily life.
Collapse
Affiliation(s)
- Oliver J Gray
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester
| | - Martyn McFarquhar
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester
| | - Daniela Montaldi
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester
| |
Collapse
|
44
|
Turner C, Jackson C, Learmonth G. Is the "end-of-study guess" a valid measure of sham blinding during transcranial direct current stimulation? Eur J Neurosci 2020; 53:1592-1604. [PMID: 33098709 PMCID: PMC8048983 DOI: 10.1111/ejn.15018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 11/28/2022]
Abstract
Studies using transcranial direct current stimulation (tDCS) typically incorporate a fade‐in, short‐stimulation, fade‐out sham (placebo) protocol, which is assumed to be indistinct from a 10–30 min active protocol on the scalp. However, many studies report that participants can dissociate active stimulation from sham, even during low‐intensity 1 mA currents. We recently identified differences in the perception of an active (10 min of 1 mA) and a sham (20 s of 1 mA) protocol that lasted for 5 min after the cessation of sham. In the present study we assessed whether delivery of a higher‐intensity 2 mA current would exacerbate these differences. Two protocols were delivered to 32 adults in a double‐blinded, within‐subjects design (active: 10 min of 2 mA, and sham: 20 s of 2 mA), with the anode over the left primary motor cortex and the cathode on the right forehead. Participants were asked “Is the stimulation on?” and “How sure are you?” at 30 s intervals during and after stimulation. The differences between active and sham were more consistent and sustained during 2 mA than during 1 mA. We then quantified how well participants were able to track the presence and absence of stimulation (i.e. their sensitivity) during the experiment using cross‐correlations. Current strength was a good classifier of sensitivity during active tDCS, but exhibited only moderate specificity during sham. The accuracy of the end‐of‐study guess was no better than chance at predicting sensitivity. Our results indicate that the traditional end‐of‐study guess poorly reflects the sensitivity of participants to stimulation, and may not be a valid method of assessing sham blinding.
Collapse
Affiliation(s)
| | | | - Gemma Learmonth
- School of Psychology, University of Glasgow, Glasgow, UK.,Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
45
|
Mahoney JJ, Hanlon CA, Marshalek PJ, Rezai AR, Krinke L. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci 2020; 418:117149. [PMID: 33002757 PMCID: PMC7702181 DOI: 10.1016/j.jns.2020.117149] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Given the high prevalence of individuals diagnosed with substance use disorder, along with the elevated rate of relapse following treatment initiation, investigating novel approaches and new modalities for substance use disorder treatment is of vital importance. One such approach involves neuromodulation which has been used therapeutically for neurological and psychiatric disorders and has demonstrated positive preliminary findings for the treatment of substance use disorder. The following article provides a review of several forms of neuromodulation which warrant consideration as potential treatments for substance use disorder. PubMed, PsycINFO, Ovid MEDLINE, and Web of Science were used to identify published articles and clinicaltrials.gov was used to identify currently ongoing or planned studies. Search criteria for Brain Stimulation included the following terminology: transcranial direct current stimulation, transcranial magnetic stimulation, theta burst stimulation, deep brain stimulation, vagus nerve stimulation, trigeminal nerve stimulation, percutaneous nerve field stimulation, auricular nerve stimulation, and low intensity focused ultrasound. Search criteria for Addiction included the following terminology: addiction, substance use disorder, substance-related disorder, cocaine, methamphetamine, amphetamine, alcohol, nicotine, tobacco, smoking, marijuana, cannabis, heroin, opiates, opioids, and hallucinogens. Results revealed that there are currently several forms of neuromodulation, both invasive and non-invasive, which are being investigated for the treatment of substance use disorder. Preliminary findings have demonstrated the potential of these various neuromodulation techniques in improving substance treatment outcomes by reducing those risk factors (e.g. substance craving) associated with relapse. Specifically, transcranial magnetic stimulation has shown the most promise with several well-designed studies supporting the potential for reducing substance craving. Deep brain stimulation has also shown promise, though lacks well-controlled clinical trials to support its efficacy. Transcranial direct current stimulation has also demonstrated promising results though consistently designed, randomized trials are also needed. There are several other forms of neuromodulation which have not yet been investigated clinically but warrant further investigation given their mechanisms and potential efficacy based on findings from other studied indications. In summary, given promising findings in reducing substance use and craving, neuromodulation may provide a non-pharmacological option as a potential treatment and/or treatment augmentation for substance use disorder. Further research investigating neuromodulation, both alone and in combination with already established substance use disorder treatment (e.g. medication treatment), warrants consideration.
Collapse
Affiliation(s)
- James J Mahoney
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Behavioral Medicine and Psychiatry, 930 Chestnut Ridge Road, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America.
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Cancer Biology and Center for Substance Use and Addiction, 475 Vine Street, Winston-Salem, NC 27101, United States of America
| | - Patrick J Marshalek
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Behavioral Medicine and Psychiatry, 930 Chestnut Ridge Road, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America
| | - Ali R Rezai
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neurosurgery, 64 Medical Center Drive, Morgantown, WV 26505, United States of America
| | - Lothar Krinke
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America; Magstim Inc., 9855 West 78 Street, Suite 12, Eden Prairie, MN 55344, United States of America
| |
Collapse
|
46
|
de Melo GA, de Oliveira EA, Dos Santos Andrade SMM, Fernández-Calvo B, Torro N. Comparison of two tDCS protocols on pain and EEG alpha-2 oscillations in women with fibromyalgia. Sci Rep 2020; 10:18955. [PMID: 33144646 PMCID: PMC7609530 DOI: 10.1038/s41598-020-75861-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has been used as an alternative treatment for pain reduction in fibromyalgia. In this study, in addition to behavioral measures, we analyzed oscillations in alpha 2 frequency band in the frontal, occipital, and parietal regions, in response to the application of two neuromodulation protocols in fibromyalgia. The study was a randomized, double-blind, placebo-controlled clinical trial with 31 women diagnosed with fibromyalgia. The participants were allocated to three groups with the anodic stimulation applied on the left motor cortex: Group 1, for five consecutive days; Group 2, for 10 consecutive days; and Group 3, sham stimulation for five consecutive days. Statistical analysis showed a reduction in pain intensity after treatment for groups in general [F (1.28) = 8.02; p = 0.008; η2 = 0.223], in addition to a reduction in alpha 2 in the frontal (p = 0.039; d = 0.384) and parietal (p = 0.021; d = 0.520) regions after the treatment on five consecutive days. We conclude that neuromodulation protocols produced similar effects on pain reduction, but differed with respect to the changes in the alpha 2 frequency band in the frontal and parietal regions.
Collapse
Affiliation(s)
- Géssika Araújo de Melo
- Department of Psychology, Federal University of Paraiba, João Pessoa, 58051-900, Brazil.
| | | | | | - Bernardino Fernández-Calvo
- Department of Psychology, Federal University of Paraiba, João Pessoa, 58051-900, Brazil
- Department of Psychology, University of Córdoba, 14071, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Nelson Torro
- Department of Psychology, Federal University of Paraiba, João Pessoa, 58051-900, Brazil
| |
Collapse
|
47
|
Cerreta AGB, Mruczek REB, Berryhill ME. Predicting Working Memory Training Benefits From Transcranial Direct Current Stimulation Using Resting-State fMRI. Front Psychol 2020; 11:570030. [PMID: 33154728 PMCID: PMC7591503 DOI: 10.3389/fpsyg.2020.570030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The effects of transcranial direct current stimulation (tDCS) on working memory (WM) performance are promising but variable and contested. In particular, designs involving one session of tDCS are prone to variable outcomes with notable effects of individual differences. Some participants benefit, whereas others are impaired by the same tDCS protocol. In contrast, protocols including multiple sessions of tDCS more consistently report WM improvement across participants. The objective of the current project was to test whether differences in resting-state connectivity between stimulation site and two WM-relevant networks [default mode network (DMN) and central executive network (CEN)] could account for initial and longitudinal responses to tDCS. Healthy young adults completed 5 days of visual WM training during sham or anodal right frontal tDCS. The behavioral data showed that only the active tDCS group significantly improved over the visual WM training period. There were no significant correlations between initial response to tDCS and resting-state activity. DMN activity in the anterior cingulate cortex significantly correlated with WM training slope. These data underscore the importance of sampling in studies applying tDCS; homogeneity (e.g., of gender, special population, and WM capacity) may produce more consistent data in a single experiment with limited power, whereas heterogeneity is important in determining the mechanism(s) and potential for tDCS-linked protocols. This issue is a limitation in tDCS findings that continues to hamper its optimization and translational value.
Collapse
Affiliation(s)
- Adelle G B Cerreta
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| | - Ryan E B Mruczek
- Department of Psychology, College of the Holy Cross, Worcester, MA, United States
| | - Marian E Berryhill
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| |
Collapse
|
48
|
Battaglini L, Mena F, Casco C. Improving motion detection via anodal transcranial direct current stimulation. Restor Neurol Neurosci 2020; 38:395-405. [PMID: 33016896 DOI: 10.3233/rnn-201050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND To study motion perception, a stimulus consisting of a field of small, moving dots is often used. Generally, some of the dots coherently move in the same direction (signal) while the rest move randomly (noise). A percept of global coherent motion (CM) results when many different local motion signals are combined. CM computation is a complex process that requires the integrity of the middle-temporal area (MT/V5) and there is evidence that increasing the number of dots presented in the stimulus makes such computation more efficient. OBJECTIVE In this study, we explored whether anodal direct current stimulation (tDCS) over MT/V5 would increase individual performance in a CM task at a low signal-to-noise ratio (SNR, i.e. low percentage of coherent dots) and with a target consisting of a large number of moving dots (high dot numerosity, e.g. >250 dots) with respect to low dot numerosity (<60 dots), indicating that tDCS favour the integration of local motion signal into a single global percept (global motion). METHOD Participants were asked to perform a CM detection task (two-interval forced-choice, 2IFC) while they received anodal, cathodal, or sham stimulation on three different days. RESULTS Our findings showed no effect of cathodal tDCS with respect to the sham condition. Instead, anodal tDCS improves performance, but mostly when dot numerosity is high (>400 dots) to promote efficient global motion processing. CONCLUSIONS The present study suggests that tDCS may be used under appropriate stimulus conditions (low SNR and high dot numerosity) to boost the global motion processing efficiency, and may be useful to empower clinical protocols to treat visual deficits.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Federica Mena
- Department of General Psychology, University of Padova, Padova, Italy
| | - Clara Casco
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
49
|
Beltran Serrano G, Pooch Rodrigues L, Schein B, Zortea M, Torres ILS, Fregni F, Caumo W. The Hypnotic Analgesia Suggestion Mitigated the Effect of the Transcranial Direct Current Stimulation on the Descending Pain Modulatory System: A Proof of Concept Study. J Pain Res 2020; 13:2297-2311. [PMID: 32982393 PMCID: PMC7502396 DOI: 10.2147/jpr.s253747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Objective We evaluated whether active(a)-tDCS combined with hypnotic analgesia suggestion (HS) would be more effective than a single active(a)-tDCS, and/or sham-(s)-tDCS and s-tDCS/HS on the following outcomes: function of descending pain modulatory system (DPMS) during the conditioned pain modulation test (CPM-test) (primary outcome), heat pain threshold (HPT), heat pain tolerance (HPTo) and cold pressor test (CPT) (secondary outcomes). We also examined whether their effects are related to neuroplasticity state evaluated by serum brain-derived-neurotropic factor (BDNF). Materials and Methods Forty-eight females received one session of one of the four interventions (a-tDCS/HS, s-tDCS/HS, a-tDCS, and s-tDCS) in an incomplete randomized crossover sequence. The a-tDCS or s-tDCS was applied over the left dorsolateral prefrontal cortex (DLPFC) for 30 minutes at 2mA. Results A generalized linear model revealed a significant main effect for the intervention group (P <0.032). The delta-(Δ) pain score on the Numerical Pain Scale (NPS0-10) during CPM-test in the a-tDCS/HS group was -0.25 (0.43). The (Δ) pain score on NPS (0-10) during CPM-test in the other three groups was a-tDCS=-0.54 (0.41), HS -0.01 (0.41) and s-tDCS/HS=-0.19 (0.43). A-tDCS/HS intervention increased the CPT substantially compared to all other interventions. Also, higher baseline levels of BDNF were associated with a larger change in CPT and HPTo. Conclusion These findings indicate that the HS combined with a-tDCS mitigated the effect of the a-tDCS on the DPMS. The a-tDCS up-regulates the inhibition on DPMS, and the HS improved pain tolerance. And, together they enhanced the reaction time substantially upon the CPT. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT03744897.
Collapse
Affiliation(s)
- Gerardo Beltran Serrano
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil.,Psychology Department, Universidad Catolica De Cuenca, UCACUE, Cuenca, Ecuador
| | - Laura Pooch Rodrigues
- Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Bruno Schein
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Maxciel Zortea
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Iraci Lucenada Silva Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Department of Pharmacology, Institute of Health Sciences (ICBS), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Pharmacology of Pain and Neuromodulation: Pre-Clinical Investigations Research Group, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil.,Pharmacology of Pain and Neuromodulation: Pre-Clinical Investigations Research Group, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
50
|
Guo Z, Bao D, Manor B, Zhou J. The Effects of Transcranial Direct Current Stimulation (tDCS) on Balance Control in Older Adults: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2020; 12:275. [PMID: 33024431 PMCID: PMC7516302 DOI: 10.3389/fnagi.2020.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Recently, considerable research has been conducted to study the effects of transcranial direct current stimulation (tDCS) on balance control in older adults. We completed a comprehensive systematic review and meta-analysis to assess the efficacy of tDCS on balance control in this population. Methods: A search strategy based on the PICOS principle was used to find the literatures in the databases of PubMed, EMBASE, EBSCO, Web of Science. The quality and risk of bias in the studies were independently assessed by two researchers. Results: Ten studies were included in the systematic review. A meta-analysis was completed on six of these ten, with a total of 280 participants. As compared to sham (i.e., control), tDCS induced significant improvement with low heterogeneity in balance control in older adults. Specifically, tDCS induced large effects on the performance of the timed-up-and-go test, the Berg balance scale, and standing postural sway (e.g., sway area) and gait (e.g., walking speed) in dual task conditions (standardized mean differences (SMDs) = -0.99~3.41 95% confidence limits (CL): -1.52~4.50, p < 0.006, I 2 < 52%). Moderate-to-large effects of tDCS were also observed in the standing posture on a static or movable platform (SMDs = 0.37~1.12 95%CL: -0.09~1.62, p < 0.03, I 2 < 62%). Conclusion: Our analysis indicates that tDCS holds promise to promote balance in older adults. These results warrant future studies of larger sample size and rigorous study design and results report, as well as specific research to establish the relationship between the parameter of tDCS and the extent of tDCS-induced improvement in balance control in older adults.
Collapse
Affiliation(s)
- Zhenxiang Guo
- Sports Coaching College, Beijing Sport University, Bejing, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Bejing, China
| | - Brad Manor
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|