1
|
Lunkova E, McCabe S, Chen JK, Saluja RS, Ptito A. Exploring oculomotor functions in a pilot study with healthy controls: Insights from eye-tracking and fMRI. PLoS One 2024; 19:e0303596. [PMID: 38905269 PMCID: PMC11192399 DOI: 10.1371/journal.pone.0303596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024] Open
Abstract
Eye-tracking techniques have gained widespread application in various fields including research on the visual system, neurosciences, psychology, and human-computer interaction, with emerging clinical implications. In this preliminary phase of our study, we introduce a pilot test of innovative virtual reality technology designed for tracking head and eye movements among healthy individuals. This tool was developed to assess the presence of mild traumatic brain injury (mTBI), given the frequent association of oculomotor function deficits with such injuries. Alongside eye-tracking, we also integrated fMRI due to the complementary nature of these techniques, offering insights into both neural activation patterns and behavioural responses, thereby providing a comprehensive understanding of oculomotor function. We used fMRI with tasks evaluating oculomotor functions: Smooth Pursuit (SP), Saccades, Anti-Saccades, and Optokinetic Nystagmus (OKN). Prior to the scanning, the testing with a system of VR goggles with integrated eye and head tracking was used where subjects performed the same tasks as those used in fMRI. 31 healthy adult controls (HCs) were tested with the purpose of identifying brain regions associated with these tasks and collecting preliminary norms for later comparison with concussed subjects. HCs' fMRI results showed following peak activation regions: SP-cuneus, superior parietal lobule, paracentral lobule, inferior parietal lobule (IPL), cerebellartonsil (CT); Saccades-middle frontal gyrus (MFG), postcentral gyrus, medial frontal gyrus; Anti-saccades-precuneus, IPL, MFG; OKN-middle temporal gyrus, ACC, postcentral gyrus, MFG, CT. These results demonstrated brain regions associated with the performance on oculomotor tasks in healthy controls and most of the highlighted areas are corresponding with those affected in concussion. This suggests that the involvement of brain areas susceptible to mTBI in implementing oculomotor evaluation, taken together with commonly reported oculomotor difficulties post-concussion, may lead to finding objective biomarkers using eye-tracking tasks.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Sarah McCabe
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jen-Kai Chen
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rajeet Singh Saluja
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Alain Ptito
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Psychology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Grzeczkowski L, Shi Z, Rolfs M, Deubel H. Perceptual learning across saccades: Feature but not location specific. Proc Natl Acad Sci U S A 2023; 120:e2303763120. [PMID: 37844238 PMCID: PMC10614914 DOI: 10.1073/pnas.2303763120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
Perceptual learning is the ability to enhance perception through practice. The hallmark of perceptual learning is its specificity for the trained location and stimulus features, such as orientation. For example, training in discriminating a grating's orientation improves performance only at the trained location but not in other untrained locations. Perceptual learning has mostly been studied using stimuli presented briefly while observers maintained gaze at one location. However, in everyday life, stimuli are actively explored through eye movements, which results in successive projections of the same stimulus at different retinal locations. Here, we studied perceptual learning of orientation discrimination across saccades. Observers were trained to saccade to a peripheral grating and to discriminate its orientation change that occurred during the saccade. The results showed that training led to transsaccadic perceptual learning (TPL) and performance improvements which did not generalize to an untrained orientation. Remarkably, however, for the trained orientation, we found a complete transfer of TPL to the untrained location in the opposite hemifield suggesting high flexibility of reference frame encoding in TPL. Three control experiments in which participants were trained without saccades did not show such transfer, confirming that the location transfer was contingent upon eye movements. Moreover, performance at the trained location, but not at the untrained location, was also improved in an untrained fixation task. Our results suggest that TPL has both, a location-specific component that occurs before the eye movement and a saccade-related component that involves location generalization.
Collapse
Affiliation(s)
- Lukasz Grzeczkowski
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität, Munich80802, Germany
- Department Psychologie, Humboldt-Universität zu Berlin, Berlin12489, Germany
| | - Zhuanghua Shi
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität, Munich80802, Germany
| | - Martin Rolfs
- Department Psychologie, Humboldt-Universität zu Berlin, Berlin12489, Germany
| | - Heiner Deubel
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität, Munich80802, Germany
| |
Collapse
|
3
|
Baltaretu BR, Stevens WD, Freud E, Crawford JD. Occipital and parietal cortex participate in a cortical network for transsaccadic discrimination of object shape and orientation. Sci Rep 2023; 13:11628. [PMID: 37468709 DOI: 10.1038/s41598-023-38554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Saccades change eye position and interrupt vision several times per second, necessitating neural mechanisms for continuous perception of object identity, orientation, and location. Neuroimaging studies suggest that occipital and parietal cortex play complementary roles for transsaccadic perception of intrinsic versus extrinsic spatial properties, e.g., dorsomedial occipital cortex (cuneus) is sensitive to changes in spatial frequency, whereas the supramarginal gyrus (SMG) is modulated by changes in object orientation. Based on this, we hypothesized that both structures would be recruited to simultaneously monitor object identity and orientation across saccades. To test this, we merged two previous neuroimaging protocols: 21 participants viewed a 2D object and then, after sustained fixation or a saccade, judged whether the shape or orientation of the re-presented object changed. We, then, performed a bilateral region-of-interest analysis on identified cuneus and SMG sites. As hypothesized, cuneus showed both saccade and feature (i.e., object orientation vs. shape change) modulations, and right SMG showed saccade-feature interactions. Further, the cuneus activity time course correlated with several other cortical saccade/visual areas, suggesting a 'functional network' for feature discrimination. These results confirm the involvement of occipital/parietal cortex in transsaccadic vision and support complementary roles in spatial versus identity updating.
Collapse
Affiliation(s)
- B R Baltaretu
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Psychology, Justus-Liebig University Giessen, Otto-Behaghel-Strasse 10F, 35394, Giessen, Hesse, Germany.
| | - W Dale Stevens
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, M3J 1P3, Canada
- Department of Psychology and Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada
| | - E Freud
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, M3J 1P3, Canada
- Department of Psychology and Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada
| | - J D Crawford
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, M3J 1P3, Canada
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Department of Psychology and Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada
- School of Kinesiology and Health Sciences, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
4
|
Dong L, Fan X, Fan Y, Li X, Li H, Zhou J. Impairments to the multisensory integration brain regions during migraine chronification: correlation with the vestibular dysfunction. Front Mol Neurosci 2023; 16:1153641. [PMID: 37465368 PMCID: PMC10350528 DOI: 10.3389/fnmol.2023.1153641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Objectives Migraine is often combined with vestibular dysfunction, particularly in patients with chronic migraine (CM). However, the pathogenesis of migraine chronification leading to vestibular dysfunction is not fully understood. The current study investigated whether structural or functional impairments to the brain during migraine chronification could be associated with vestibular dysfunction development. Methods The eligible participants underwent clinical assessment and magnetic resonance imaging (MRI) scans. Voxel-based morphometry (VBM) determined structural impairment by evaluating alterations in gray matter volume (GMV). Functional impairment was assessed by the mean amplitude of low-frequency fluctuation (mALFF). Furthermore, the resting-state functional connectivity (rsFC) of regions possessing impairment was examined with a seed-based approach. We also analyzed the correlations between altered neuroimaging features with clinical variables and performed multiple linear regression. Results Eighteen CM patients, 18 episodic migraine (EM) patients, and 18 healthy controls (HCs) were included in this study. A one-way ANOVA indicated the group differences in mALFF. These were located within right supramarginal gyrus (SMG), left angular gyrus (AG), middle frontal gyrus (MFG), left middle occipital gyrus (MOG), right rolandic operculum (Rol) and left superior parietal gyrus (SPG). During rsFC analysis, the CM group had more enhanced rsFC of left SPG with left MOG than the EM and HC groups. The EM group revealed enhanced rsFC of left SPG with left AG than the CM and HC groups. In multiple linear regression, after controlling for age, body mass index (BMI) and disease duration, the rsFC of left SPG with left MOG (β = 48.896, p = 0.021) was found to predict the total Dizziness Handicap Inventory (DHI) score with an explained variance of 25.1%. Moreover, the rsFC of left SPG with left MOG (β = 1.253, p = 0.003) and right SMG (β = -1.571, p = 0.049) were significant predictors of migraine frequency, accounting for a total explained variance of 73.8%. Conclusion The functional impairments due to migraine chronification are primarily concentrated in the multisensory integration-related brain regions. Additionally, the rsFC of SPG with MOG can predict the frequency of migraine and the degree of vestibular dysfunction. Therefore, these neuroimaging features could be potential mechanisms and therapeutic targets for developing vestibular dysfunction in migraine.
Collapse
Affiliation(s)
- Liang Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoping Fan
- Department of Hospice, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yulan Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ximao Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Fabius JH, Fracasso A, Deodato M, Melcher D, Van der Stigchel S. Bilateral increase in MEG planar gradients prior to saccade onset. Sci Rep 2023; 13:5830. [PMID: 37037892 PMCID: PMC10086038 DOI: 10.1038/s41598-023-32980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Every time we move our eyes, the retinal locations of objects change. To distinguish the changes caused by eye movements from actual external motion of the objects, the visual system is thought to anticipate the consequences of eye movements (saccades). Single neuron recordings have indeed demonstrated changes in receptive fields before saccade onset. Although some EEG studies with human participants have also demonstrated a pre-saccadic increased potential over the hemisphere that will process a stimulus after a saccade, results have been mixed. Here, we used magnetoencephalography to investigate the timing and lateralization of visually evoked planar gradients before saccade onset. We modelled the gradients from trials with both a saccade and a stimulus as the linear combination of the gradients from two conditions with either only a saccade or only a stimulus. We reasoned that any residual gradients in the condition with both a saccade and a stimulus must be uniquely linked to visually-evoked neural activity before a saccade. We observed a widespread increase in residual planar gradients. Interestingly, this increase was bilateral, showing activity both contralateral and ipsilateral to the stimulus, i.e. over the hemisphere that would process the stimulus after saccade offset. This pattern of results is consistent with predictive pre-saccadic changes involving both the current and the future receptive fields involved in processing an attended object, well before the start of the eye movement. The active, sensorimotor coupling of vision and the oculomotor system may underlie the seamless subjective experience of stable and continuous perception.
Collapse
Affiliation(s)
- Jasper H Fabius
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Van der Stigchel
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Ghaderi A, Niemeier M, Crawford JD. Saccades and presaccadic stimulus repetition alter cortical network topology and dynamics: evidence from EEG and graph theoretical analysis. Cereb Cortex 2023; 33:2075-2100. [PMID: 35639544 DOI: 10.1093/cercor/bhac194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parietal and frontal cortex are involved in saccade generation, and their output signals modify visual signals throughout cortex. Local signals associated with these interactions are well described, but their large-scale progression and network dynamics are unknown. Here, we combined source localized electroencephalography (EEG) and graph theory analysis (GTA) to understand how saccades and presaccadic visual stimuli interactively alter cortical network dynamics in humans. Twenty-one participants viewed 1-3 vertical/horizontal grids, followed by grid with the opposite orientation just before a horizontal saccade or continued fixation. EEG signals from the presaccadic interval (or equivalent fixation period) were used for analysis. Source localization-through-time revealed a rapid frontoparietal progression of presaccadic motor signals and stimulus-motor interactions, with additional band-specific modulations in several frontoparietal regions. GTA analysis revealed a saccade-specific functional network with major hubs in inferior parietal cortex (alpha) and the frontal eye fields (beta), and major saccade-repetition interactions in left prefrontal (theta) and supramarginal gyrus (gamma). This network showed enhanced segregation, integration, synchronization, and complexity (compared with fixation), whereas stimulus repetition interactions reduced synchronization and complexity. These cortical results demonstrate a widespread influence of saccades on both regional and network dynamics, likely responsible for both the motor and perceptual aspects of saccades.
Collapse
Affiliation(s)
- Amirhossein Ghaderi
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Matthias Niemeier
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - John Douglas Crawford
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Department of Biology, York University, 4700 Keele St,, Toronto, ON M3J 1P3, Canada.,Department of Psychology, York University, 4700 Keele St,, Toronto, ON M3J 1P3, Canada.,Department of Kinesiology and Health Sciences, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada
| |
Collapse
|
7
|
Linear vector models of time perception account for saccade and stimulus novelty interactions. Heliyon 2022; 8:e09036. [PMID: 35265767 PMCID: PMC8899236 DOI: 10.1016/j.heliyon.2022.e09036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Various models (e.g., scalar, state-dependent network, and vector models) have been proposed to explain the global aspects of time perception, but they have not been tested against specific visual phenomena like perisaccadic time compression and novel stimulus time dilation. Here, in two separate experiments (N = 31), we tested how the perceived duration of a novel stimulus is influenced by 1) a simultaneous saccade, in combination with 2) a prior series of repeated stimuli in human participants. This yielded a novel behavioral interaction: pre-saccadic stimulus repetition neutralizes perisaccadic time compression. We then tested these results against simulations of the above models. Our data yielded low correlations against scalar model simulations, high but non-specific correlations for our feedforward neural network, and correlations that were both high and specific for a vector model based on identity of objective and subjective time. These results demonstrate the power of global time perception models in explaining disparate empirical phenomena and suggest that subjective time has a similar essence to time's physical vector.
Collapse
|
8
|
Kiefer CM, Ito J, Weidner R, Boers F, Shah NJ, Grün S, Dammers J. Revealing Whole-Brain Causality Networks During Guided Visual Searching. Front Neurosci 2022; 16:826083. [PMID: 35250461 PMCID: PMC8894880 DOI: 10.3389/fnins.2022.826083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
In our daily lives, we use eye movements to actively sample visual information from our environment ("active vision"). However, little is known about how the underlying mechanisms are affected by goal-directed behavior. In a study of 31 participants, magnetoencephalography was combined with eye-tracking technology to investigate how interregional interactions in the brain change when engaged in two distinct forms of active vision: freely viewing natural images or performing a guided visual search. Regions of interest with significant fixation-related evoked activity (FRA) were identified with spatiotemporal cluster permutation testing. Using generalized partial directed coherence, we show that, in response to fixation onset, a bilateral cluster consisting of four regions (posterior insula, transverse temporal gyri, superior temporal gyrus, and supramarginal gyrus) formed a highly connected network during free viewing. A comparable network also emerged in the right hemisphere during the search task, with the right supramarginal gyrus acting as a central node for information exchange. The results suggest that all four regions are vital to visual processing and guiding attention. Furthermore, the right supramarginal gyrus was the only region where activity during fixations on the search target was significantly negatively correlated with search response times. Based on our findings, we hypothesize that, following a fixation, the right supramarginal gyrus supplies the right supplementary eye field (SEF) with new information to update the priority map guiding the eye movements during the search task.
Collapse
Affiliation(s)
- Christian M. Kiefer
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA)-Brain – Institute Brain Structure and Function, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Junji Ito
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Brain – Institute Brain Structure and Function, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ralph Weidner
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Frank Boers
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-11), Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Brain – Translational Medicine, Aachen, Germany
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Brain – Institute Brain Structure and Function, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich GmbH, Jülich, Germany
- Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Dammers
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
9
|
Guo J, Shubeck K, Hu X. Relationship Between Item and Source Memory: Explanation of Connection-Strength Model. Front Psychol 2021; 12:691577. [PMID: 34659007 PMCID: PMC8511408 DOI: 10.3389/fpsyg.2021.691577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
The controversy in the relationship between item memory and source memory is a focus of episodic memory. Some studies show the trade-off between item memory and source memory, some show the consistency between them, and others show the independence between them. This review attempts to point out the connection-strength model, implying the different types and strengths of the important role of the item-source connections in the relationship between item memory and source memory, which is based on the same essence in the unified framework. The logic of the model is that when item memory and source memory share the same or relevant connection between item and source, they positively connect, or they are independently or negatively connected. This review integrates empirical evidence from the domains of cognition, cognitive neuroscience, and mathematical modeling to validate our hypothesis.
Collapse
Affiliation(s)
- Junjun Guo
- School of Psychology, Central China Normal University, Wuhan, China
| | - Keith Shubeck
- Department of Psychology, The University of Memphis, Memphis, TN, United States
- Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States
| | - Xiangen Hu
- School of Psychology, Central China Normal University, Wuhan, China
- Department of Psychology, The University of Memphis, Memphis, TN, United States
- Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States
| |
Collapse
|
10
|
Abstract
Our visual system is fundamentally retinotopic. When viewing a stable scene, each eye movement shifts object features and locations on the retina. Thus, sensory representations must be updated, or remapped, across saccades to align presaccadic and postsaccadic inputs. The earliest remapping studies focused on anticipatory, presaccadic shifts of neuronal spatial receptive fields. Over time, it has become clear that there are multiple forms of remapping and that different forms of remapping may be mediated by different neural mechanisms. This review attempts to organize the various forms of remapping into a functional taxonomy based on experimental data and ongoing debates about forward versus convergent remapping, presaccadic versus postsaccadic remapping, and spatial versus attentional remapping. We integrate findings from primate neurophysiological, human neuroimaging and behavioral, and computational modeling studies. We conclude by discussing persistent open questions related to remapping, with specific attention to binding of spatial and featural information during remapping and speculations about remapping's functional significance. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julie D Golomb
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210, USA;
| | - James A Mazer
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
11
|
Ge Y, Sun Z, Qian C, He S. Spatiotopic updating across saccades in the absence of awareness. J Vis 2021; 21:7. [PMID: 33961004 PMCID: PMC8114003 DOI: 10.1167/jov.21.5.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Despite the continuously changing visual inputs caused by eye movements, our perceptual representation of the visual world remains remarkably stable. Visual stability has been a major area of interest within the field of visual neuroscience. The early visual cortical areas are retinotopic-organized, and presumably there is a retinotopic to spatiotopic transformation process that supports the stable representation of the visual world. In this study, we used a cross-saccadic adaptation paradigm to show that both the orientation adaptation and face gender adaptation could still be observed at the same spatiotopic (but different retinotopic) locations even when the adapting stimuli were rendered invisible. These results suggest that awareness of a visual object is not required for its transformation from the retinotopic to the spatiotopic reference frame.
Collapse
Affiliation(s)
- Yijun Ge
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Vision and Attention Lab, Department of Psychology, University of Minnesota, MN, USA
| | - Zhouyuan Sun
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Chencan Qian
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng He
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Vision and Attention Lab, Department of Psychology, University of Minnesota, MN, USA
- Chinese Academy of Sciences, Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Occipital cortex is modulated by transsaccadic changes in spatial frequency: an fMRI study. Sci Rep 2021; 11:8611. [PMID: 33883578 PMCID: PMC8060420 DOI: 10.1038/s41598-021-87506-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/24/2021] [Indexed: 11/15/2022] Open
Abstract
Previous neuroimaging studies have shown that inferior parietal and ventral occipital cortex are involved in the transsaccadic processing of visual object orientation. Here, we investigated whether the same areas are also involved in transsaccadic processing of a different feature, namely, spatial frequency. We employed a functional magnetic resonance imaging paradigm where participants briefly viewed a grating stimulus with a specific spatial frequency that later reappeared with the same or different frequency, after a saccade or continuous fixation. First, using a whole-brain Saccade > Fixation contrast, we localized two frontal (left precentral sulcus and right medial superior frontal gyrus), four parietal (bilateral superior parietal lobule and precuneus), and four occipital (bilateral cuneus and lingual gyri) regions. Whereas the frontoparietal sites showed task specificity, the occipital sites were also modulated in a saccade control task. Only occipital cortex showed transsaccadic feature modulations, with significant repetition enhancement in right cuneus. These observations (parietal task specificity, occipital enhancement, right lateralization) are consistent with previous transsaccadic studies. However, the specific regions differed (ventrolateral for orientation, dorsomedial for spatial frequency). Overall, this study supports a general role for occipital and parietal cortex in transsaccadic vision, with a specific role for cuneus in spatial frequency processing.
Collapse
|
13
|
Fabius JH, Fracasso A, Acunzo DJ, Van der Stigchel S, Melcher D. Low-Level Visual Information Is Maintained across Saccades, Allowing for a Postsaccadic Handoff between Visual Areas. J Neurosci 2020; 40:9476-9486. [PMID: 33115930 PMCID: PMC7724139 DOI: 10.1523/jneurosci.1169-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Experience seems continuous and detailed despite saccadic eye movements changing retinal input several times per second. There is debate whether neural signals related to updating across saccades contain information about stimulus features, or only location pointers without visual details. We investigated the time course of low-level visual information processing across saccades by decoding the spatial frequency of a stationary stimulus that changed from one visual hemifield to the other because of a horizontal saccadic eye movement. We recorded magnetoencephalography while human subjects (both sexes) monitored the orientation of a grating stimulus, making spatial frequency task irrelevant. Separate trials, in which subjects maintained fixation, were used to train a classifier, whose performance was then tested on saccade trials. Decoding performance showed that spatial frequency information of the presaccadic stimulus remained present for ∼200 ms after the saccade, transcending retinotopic specificity. Postsaccadic information ramped up rapidly after saccade offset. There was an overlap of over 100 ms during which decoding was significant from both presaccadic and postsaccadic processing areas. This suggests that the apparent richness of perception across saccades may be supported by the continuous availability of low-level information with a "soft handoff" of information during the initial processing sweep of the new fixation.SIGNIFICANCE STATEMENT Saccades create frequent discontinuities in visual input, yet perception appears stable and continuous. How is this discontinuous input processed resulting in visual stability? Previous studies have focused on presaccadic remapping. Here we examined the time course of processing of low-level visual information (spatial frequency) across saccades with magnetoencephalography. The results suggest that spatial frequency information is not predictively remapped but also is not discarded. Instead, they suggest a soft handoff over time between different visual areas, making this information continuously available across the saccade. Information about the presaccadic stimulus remains available, while the information about the postsaccadic stimulus has also become available. The simultaneous availability of both the presaccadic and postsaccadic information could enable rich and continuous perception across saccades.
Collapse
Affiliation(s)
- Jasper H Fabius
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - David J Acunzo
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, I-38122 Trento, Italy
| | - Stefan Van der Stigchel
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, I-38122 Trento, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Parietal Cortex Integrates Saccade and Object Orientation Signals to Update Grasp Plans. J Neurosci 2020; 40:4525-4535. [PMID: 32354854 DOI: 10.1523/jneurosci.0300-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/21/2022] Open
Abstract
Coordinated reach-to-grasp movements are often accompanied by rapid eye movements (saccades) that displace the desired object image relative to the retina. Parietal cortex compensates for this by updating reach goals relative to current gaze direction, but its role in the integration of oculomotor and visual orientation signals for updating grasp plans is unknown. Based on a recent perceptual experiment, we hypothesized that inferior parietal cortex (specifically supramarginal gyrus [SMG]) integrates saccade and visual signals to update grasp plans in additional intraparietal/superior parietal regions. To test this hypothesis in humans (7 females, 6 males), we used a functional magnetic resonance paradigm, where saccades sometimes interrupted grasp preparation toward a briefly presented object that later reappeared (with the same/different orientation) just before movement. Right SMG and several parietal grasp regions, namely, left anterior intraparietal sulcus and bilateral superior parietal lobule, met our criteria for transsaccadic orientation integration: they showed task-dependent saccade modulations and, during grasp execution, they were specifically sensitive to changes in object orientation that followed saccades. Finally, SMG showed enhanced functional connectivity with both prefrontal saccade regions (consistent with oculomotor input) and anterior intraparietal sulcus/superior parietal lobule (consistent with sensorimotor output). These results support the general role of parietal cortex for the integration of visuospatial perturbations, and provide specific cortical modules for the integration of oculomotor and visual signals for grasp updating.SIGNIFICANCE STATEMENT How does the brain simultaneously compensate for both external and internally driven changes in visual input? For example, how do we grasp an unstable object while eye movements are simultaneously changing its retinal location? Here, we used fMRI to identify a group of inferior parietal (supramarginal gyrus) and superior parietal (intraparietal and superior parietal) regions that show saccade-specific modulations during unexpected changes in object/grasp orientation, and functional connectivity with frontal cortex saccade centers. This provides a network, complementary to the reach goal updater, that integrates visuospatial updating into grasp plans, and may help to explain some of the more complex symptoms associated with parietal damage, such as constructional ataxia.
Collapse
|
15
|
Fabius JH, Nijboer TCW, Fracasso A, Van der Stigchel S. Intra-saccadic displacement sensitivity after a lesion to the posterior parietal cortex. Cortex 2020; 127:108-119. [PMID: 32172025 PMCID: PMC7254053 DOI: 10.1016/j.cortex.2020.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/20/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022]
Abstract
Visual perception is introspectively stable and continuous across eye movements. It has been hypothesized that displacements in retinal input caused by eye movements can be dissociated from displacements in the external world using extra-retinal information, such as a corollary discharge from the oculomotor system. The extra-retinal information can inform the visual system about an upcoming eye movement and accompanying displacements in retinal input. The parietal cortex has been hypothesized to be critically involved in integrating retinal and extra-retinal information. Two tasks have been widely used to assess the quality of this integration: double-step saccades and intra-saccadic displacements. Double-step saccades performed by patients with parietal cortex lesions seemed to show hypometric second saccades. However, recently idea has been refuted by demonstrating that patients with very similar lesions were able to perform the double step saccades, albeit taking multiple saccades to reach the saccade target. So, it seems that extra-retinal information is still available for saccade execution after a lesion to the parietal lobe. Here, we investigated whether extra-retinal signals are also available for perceptual judgements in nine patients with strokes affecting the posterior parietal cortex. We assessed perceptual continuity with the intra-saccadic displacement task. We exploited the increased sensitivity when a small temporal blank is introduced after saccade offset (blank effect). The blank effect is thought to reflect the availability of extra-retinal signals for perceptual judgements. Although patients exhibited a relative difference to control subjects, they still demonstrated the blank effect. The data suggest that a lesion to the posterior parietal cortex (PPC) alters the processing of extra-retinal signals but does not abolish their influence altogether.
Collapse
Affiliation(s)
- Jasper H Fabius
- Experimental Psychology, Utrecht University, Utrecht, the Netherlands; Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Tanja C W Nijboer
- Experimental Psychology, Utrecht University, Utrecht, the Netherlands; Center of Excellence for Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University and De Hoogstraat Rehabilitation, Utrecht, the Netherlands
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Radiology, Center for Image Sciences, University Medical Center Utrecht, GA, Utrecht, the Netherlands; Spinoza Center for Neuroimaging, University of Amsterdam, BK, Amsterdam, the Netherlands
| | | |
Collapse
|
16
|
Post-Saccadic Face Processing Is Modulated by Pre-Saccadic Preview: Evidence from Fixation-Related Potentials. J Neurosci 2020; 40:2305-2313. [PMID: 32001610 DOI: 10.1523/jneurosci.0861-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/02/2023] Open
Abstract
Humans actively sample their environment with saccadic eye movements to bring relevant information into high-acuity foveal vision. Despite being lower in resolution, peripheral information is also available before each saccade. How the pre-saccadic extrafoveal preview of a visual object influences its post-saccadic processing is still an unanswered question. The current study investigated this question by simultaneously recording behavior and fixation-related brain potentials while human subjects made saccades to face stimuli. We manipulated the relationship between pre-saccadic "previews" and post-saccadic images to explicitly isolate the influences of the former. Subjects performed a gender discrimination task on a newly foveated face under three preview conditions: scrambled face, incongruent face (different identity from the foveated face), and congruent face (same identity). As expected, reaction times were faster after a congruent-face preview compared with a scrambled-face preview. Importantly, intact face previews (either incongruent or congruent) resulted in a massive reduction of post-saccadic neural responses. Specifically, we analyzed the classic face-selective N170 component at occipitotemporal electroencephalogram electrodes, which was still present in our experiments with active looking. However, the post-saccadic N170 was strongly attenuated following intact-face previews compared with the scrambled condition. This large and long-lasting decrease in evoked activity is consistent with a trans-saccadic mechanism of prediction that influences category-specific neural processing at the start of a new fixation. These findings constrain theories of visual stability and show that the extrafoveal preview methodology can be a useful tool to investigate its underlying mechanisms.SIGNIFICANCE STATEMENT Neural correlates of object recognition have traditionally been studied by flashing stimuli to the central visual field. This procedure differs in fundamental ways from natural vision, where viewers actively sample the environment with eye movements and also obtain a low-resolution preview of soon-to-be-fixated objects. Here we show that the N170, a classic electrophysiological marker of the structural encoding of faces, also occurs during a more natural viewing condition but is strongly reduced due to extrafoveal preprocessing (preview benefit). Our results therefore highlight the importance of peripheral vision during trans-saccadic processing in building a coherent and stable representation of the world around us.
Collapse
|
17
|
He T, Fritsche M, de Lange FP. Predictive remapping of visual features beyond saccadic targets. J Vis 2019; 18:20. [PMID: 30593063 DOI: 10.1167/18.13.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual stability is thought to be mediated by predictive remapping of the relevant object information from its current, presaccadic location to its future, postsaccadic location on the retina. However, it is heavily debated whether and what feature information is predictively remapped during the presaccadic interval. Here we examined the spatial and featural properties of predictive remapping in a set of three psychophysical studies. We made use of an orientation-adaptation paradigm, in which we induced a tilt aftereffect by prolonged exposure to an oriented adaptor stimulus. Following this adaptation phase, a test stimulus was presented shortly before saccade onset. We found strong evidence for predictive remapping of the features of this test stimulus presented shortly before saccade onset, evidenced by a large tilt aftereffect elicited when the adaptor was positioned at the postsaccadic retinal location of the test stimulus. Conversely, the adaptation state itself, caused by the exposure to the adaptor stimulus, was not predictively remapped. Furthermore, we establish that predictive remapping also occurs for stimuli that are not saccade targets, pointing toward a forward remapping process operating across the whole visual field. Together, our findings suggest that predictive feature remapping of object information plays an important role in mediating visual stability.
Collapse
Affiliation(s)
- Tao He
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Matthias Fritsche
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Abstract
Humans move their eyes several times per second, yet we perceive the outside world as continuous despite the sudden disruptions created by each eye movement. To date, the mechanism that the brain employs to achieve visual continuity across eye movements remains unclear. While it has been proposed that the oculomotor system quickly updates and informs the visual system about the upcoming eye movement, behavioral studies investigating the time course of this updating suggest the involvement of a slow mechanism, estimated to take more than 500 ms to operate effectively. This is a surprisingly slow estimate, because both the visual system and the oculomotor system process information faster. If spatiotopic updating is indeed this slow, it cannot contribute to perceptual continuity, because it is outside the temporal regime of typical oculomotor behavior. Here, we argue that the behavioral paradigms that have been used previously are suboptimal to measure the speed of spatiotopic updating. In this study, we used a fast gaze-contingent paradigm, using high phi as a continuous stimulus across eye movements. We observed fast spatiotopic updating within 150 ms after stimulus onset. The results suggest the involvement of a fast updating mechanism that predictively influences visual perception after an eye movement. The temporal characteristics of this mechanism are compatible with the rate at which saccadic eye movements are typically observed in natural viewing.
Collapse
|
19
|
Rolfs M, Murray-Smith N, Carrasco M. Perceptual learning while preparing saccades. Vision Res 2018; 152:126-138. [PMID: 29277450 PMCID: PMC6028304 DOI: 10.1016/j.visres.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Traditional perceptual learning protocols rely almost exclusively on long periods of uninterrupted fixation. Taking a first step towards understanding perceptual learning in natural vision, we had observers report the orientation of a briefly flashed stimulus (clockwise or counterclockwise from a reference orientation) presented strictly during saccade preparation at a location offset from the saccade target. For each observer, the saccade direction, stimulus location, and orientation remained the same throughout training. Subsequently, we assessed performance during fixation in three transfer sessions, either at the trained or at an untrained location, and either using an untrained (Experiment 1) or the trained (Experiment 2) stimulus orientation. We modeled the evolution of contrast thresholds (i.e., the stimulus contrast necessary to discriminate its orientation correctly 75% of the time) as an exponential learning curve, and quantified departures from this curve in transfer sessions using two new, complementary measures of transfer costs (i.e., performance decrements after the transition into the Transfer phase). We observed robust perceptual learning and associated transfer costs for untrained locations and orientations. We also assessed if spatial transfer costs were reduced for the remapped location of the pre-saccadic stimulus-the location the stimulus would have had (but never had) after the saccade. Although the pattern of results at that location differed somewhat from that at the control location, we found no clear evidence for perceptual learning at remapped locations. Using novel, model-based ways to assess learning and transfer costs, our results show that location and feature specificity, hallmarks of perceptual learning, subsist if the target stimulus is presented strictly during saccade preparation throughout training.
Collapse
Affiliation(s)
- Martin Rolfs
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA; Department of Psychology, Humboldt-Universität zu Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Germany.
| | | | - Marisa Carrasco
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA
| |
Collapse
|
20
|
Decoding Trans-Saccadic Memory. J Neurosci 2017; 38:1114-1123. [PMID: 29263239 DOI: 10.1523/jneurosci.0854-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/26/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022] Open
Abstract
We examine whether peripheral information at a planned saccade target affects immediate postsaccadic processing at the fovea on saccade landing. Current neuroimaging research suggests that presaccadic stimulation has a late effect on postsaccadic processing, in contrast to the early effect seen in behavioral studies. Human participants (both male and female) were instructed to saccade toward a face or a house that, on different trials, remained the same, changed, or disappeared during the saccade. We used a multivariate pattern analysis of electroencephalography data to decode face versus house processing directly after the saccade. The classifier was trained on separate trials without a saccade, where a house or face was presented at the fovea. When the saccade target remained the same across the saccade, we could reliably decode the target 123 ms after saccade offset. In contrast, when the target was changed during the saccade, the new target was decoded at a later time-point, 151 ms after saccade offset. The "same" condition advantage suggests that congruent presaccadic information facilitates processing of the postsaccadic stimulus compared with incongruent information. Finally, the saccade target could be decoded above chance even when it had been removed during the saccade, albeit with a slower time course (162 ms) and poorer signal strength. These findings indicate that information about the (peripheral) presaccadic stimulus is transferred across the saccade so that it becomes quickly available and influences processing at its expected new retinal position (the fovea).SIGNIFICANCE STATEMENT Here we provide neural evidence for early information transfer across saccades. Specifically, we examined the effect of presaccadic sensory information on the initial neuronal processing of a postsaccadic stimuli. Using electroencephalography and multivariate pattern analysis, we found the following: (1) that the identity of the presaccadic stimulus modulated the postsaccadic latency of stimulus relevant information; and (2) that a saccadic neural marker for a saccade target stimulus could be detected even when the stimulus had been removed during saccade. These results demonstrate that information about the peripheral presaccadic stimulus was transferred across the saccade and influenced processing at a new retinal position (the fovea) directly after the saccade landed.
Collapse
|
21
|
Spatiotopic updating across saccades revealed by spatially-specific fMRI adaptation. Neuroimage 2016; 147:339-345. [PMID: 27913216 DOI: 10.1016/j.neuroimage.2016.11.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022] Open
Abstract
Brain representations of visual space are predominantly eye-centred (retinotopic) yet our experience of the world is largely world-centred (spatiotopic). A long-standing question is how the brain creates continuity between these reference frames across successive eye movements (saccades). Here we use functional magnetic resonance imaging (fMRI) to address whether spatially specific repetition suppression (RS) is evident during trans-saccadic perception. We presented two successive Gabor patches (S1 and S2) in either the upper or lower visual field, left or right of fixation. Spatial congruency was manipulated by having S1 and S2 occur in the same or different upper/lower visual field. On half the trials, a saccade was cued between S1 and S2, placing spatiotopic and retinotopic reference frames in opposition. Equivalent RS was observed in the posterior parietal cortex and frontal eye fields when S1-S2 were spatiotopically congruent, irrespective of whether retinotopic and spatiotopic coordinates were in accord or were placed in opposition by a saccade. Additionally the post-saccadic response to S2 demonstrated spatially-specific RS in retinotopic visual regions, with stronger RS in extrastriate than striate cortex. Collectively, these results are consistent with a robust trans-saccadic spatial updating mechanism for object position that directly influences even the earliest levels of visual processing.
Collapse
|