1
|
Liesefeld HR, Lamy D, Gaspelin N, Geng JJ, Kerzel D, Schall JD, Allen HA, Anderson BA, Boettcher S, Busch NA, Carlisle NB, Colonius H, Draschkow D, Egeth H, Leber AB, Müller HJ, Röer JP, Schubö A, Slagter HA, Theeuwes J, Wolfe J. Terms of debate: Consensus definitions to guide the scientific discourse on visual distraction. Atten Percept Psychophys 2024; 86:1445-1472. [PMID: 38177944 PMCID: PMC11552440 DOI: 10.3758/s13414-023-02820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/06/2024]
Abstract
Hypothesis-driven research rests on clearly articulated scientific theories. The building blocks for communicating these theories are scientific terms. Obviously, communication - and thus, scientific progress - is hampered if the meaning of these terms varies idiosyncratically across (sub)fields and even across individual researchers within the same subfield. We have formed an international group of experts representing various theoretical stances with the goal to homogenize the use of the terms that are most relevant to fundamental research on visual distraction in visual search. Our discussions revealed striking heterogeneity and we had to invest much time and effort to increase our mutual understanding of each other's use of central terms, which turned out to be strongly related to our respective theoretical positions. We present the outcomes of these discussions in a glossary and provide some context in several essays. Specifically, we explicate how central terms are used in the distraction literature and consensually sharpen their definitions in order to enable communication across theoretical standpoints. Where applicable, we also explain how the respective constructs can be measured. We believe that this novel type of adversarial collaboration can serve as a model for other fields of psychological research that strive to build a solid groundwork for theorizing and communicating by establishing a common language. For the field of visual distraction, the present paper should facilitate communication across theoretical standpoints and may serve as an introduction and reference text for newcomers.
Collapse
Affiliation(s)
- Heinrich R Liesefeld
- Department of Psychology, University of Bremen, Hochschulring 18, D-28359, Bremen, Germany.
| | - Dominique Lamy
- The School of Psychology Sciences and The Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv 69978, POB 39040, Tel Aviv, Israel.
| | | | - Joy J Geng
- University of California Davis, Daivs, CA, USA
| | | | | | | | | | | | | | | | - Hans Colonius
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | - Anna Schubö
- Philipps University Marburg, Marburg, Germany
| | | | | | - Jeremy Wolfe
- Harvard Medical School, Boston, MA, USA
- Brigham & Women's Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Kim AJ, Senior J, Chu S, Mather M. Aging impairs reactive attentional control but not proactive distractor inhibition. J Exp Psychol Gen 2024; 153:1938-1959. [PMID: 38780565 PMCID: PMC11250690 DOI: 10.1037/xge0001602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Older adults tend to be more prone to distraction compared with young adults, and this age-related deficit has been attributed to a deficiency in inhibitory processing. However, recent findings challenge the notion that aging leads to global impairments in inhibition. To reconcile these mixed findings, we investigated how aging modulates multiple mechanisms of attentional control by tracking the timing and direction of eye movements. When engaged in feature-search mode and proactive distractor suppression, older adults made fewer first fixations to the target but inhibited the task-irrelevant salient distractor as effectively as did young adults. However, when engaged in singleton-search mode and required to reactively disengage from the distractor, older adults made significantly more first saccades toward the task-irrelevant salient distractor and showed increased fixation times in orienting to the target, longer dwell times on incorrect saccades, and increased saccadic reaction times compared with young adults. Our findings reveal that aging differently impairs attentional control depending on whether visual search requires proactive distractor suppression or reactive distractor disengagement. Furthermore, our oculomotor measures reveal both age-related deficits and age equivalence in various mechanisms of attention, including goal-directed orienting, selection history, disengagement, and distractor inhibition. These findings help explain why conclusions of age-related declines or age equivalence in mechanisms of attentional control are task specific and reveal that older adults do not exhibit global impairments in mechanisms of inhibition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Andy Jeesu Kim
- School of Gerontology, University of Southern California
| | - Joshua Senior
- School of Gerontology, University of Southern California
| | - Sonali Chu
- School of Gerontology, University of Southern California
| | - Mara Mather
- School of Gerontology, University of Southern California
| |
Collapse
|
3
|
Mahjoob M, Heravian Shandiz J, Mirzajani A, Behboodi M, Sharini H, Nakhjavanpour N, Foroutannia A. Characterizing the Visual Cortex Function in Cognitive Task-Induced Mental Load: An Functional Magnetic Resonance Imaging Study. Brain Connect 2024; 14:189-197. [PMID: 38386496 DOI: 10.1089/brain.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Introduction: The mental load caused by simultaneous multitasking can affect visual information processing and reduce its ability. This study investigated the effect of mental load caused by cognitive tasks simultaneously with visual task on the number of active voxels in the visual cortex. Methods: This study recruited 22 individuals with a mean age of 24.72 ± 5.47 years. 3-Tesla functional magnetic resonance imaging (fMRI) was used to examine the functions of the visual cortex and amygdala region during three different task conditions: visual task alone, visual task with an auditory n-back task, and visual task with an arithmetic task. The visual stimuli consisted of Gabor patches with a contrast of 55% at spatial frequencies of 0.25, 4, and 9 cycles per degree (cpd). These were presented in three trials of eight blocks with a stimulation time of 12 sec and a rest time of 14 sec. Results: Activated brain voxels in the primary, secondary, and associated visual cortex areas were reduced in response to the mental load imposed by the n-back and arithmetic tasks. This reduction was greater for a spatial frequency of 0.25 cpd in the n-back task condition and spatial frequency of 9 cpd in the arithmetic task condition. In addition, the amygdala was stimulated in 2-back task and arithmetic task conditions. Conclusions: This study revealed a decline in the number of activated voxels of the visual cortex due to the mental load caused by simultaneous cognitive tasks, confirming the findings of previous psychophysical studies.
Collapse
Affiliation(s)
- Monireh Mahjoob
- Health Promotion Research Center, Department of Optometry, Rehabilitation Sciences Faculty, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Javad Heravian Shandiz
- Refractive Error Research Center, Department of Optometry, Paramedical Faculty, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirzajani
- Department of Optometry, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Behboodi
- Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Sharini
- Department of Biomedical Engineering, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Neda Nakhjavanpour
- Department of Optometry, Rehabilitation Sciences Faculty, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Foroutannia
- Department of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information Processing (SCIIP), Ferdowsi University of Mashhad, Mashhad, Iran
- Neural Engineering Laboratory, Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran
| |
Collapse
|
4
|
Stanković M, Müller HJ, Shi Z. Task-irrelevant valence-preferred colors boost visual search for a singleton-shape target. PSYCHOLOGICAL RESEARCH 2024; 88:417-437. [PMID: 37819500 PMCID: PMC10858139 DOI: 10.1007/s00426-023-01880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Some studies have suggested that emotion-associated features might influence attentional capture. However, demonstrating valence-dependent distractor interference has proven challenging, possibly due to the neglect of individuals' color-valence preferences in standard, averaged reaction-time (RT) measures. To address this, we investigated valence-driven attentional-capture using an association phase in which emotionally neutral vs. positive-feedback photographs were paired with two alternative target colors, red vs. green. This was followed by a test phase requiring participants to search for a pop-out shape target in the presence or absence of an emotion-associated color. In Experiments 1 and 2, this color could only appear in a distractor, while in Experiment 3, it appeared in the target. Analyzing the standard, averaged RT measures, we found no significant valence association or valence-modulated attentional capture. However, correlational analyses revealed a positive relationship between individual participants' color-valence preference during the association phase and their valence-based effect during the test phase. Moreover, most individuals favored red over green in the association phase, leading to marked color-related asymmetries in the average measures. Crucially, the presence of the valence-preferred color anywhere in the test display facilitated RTs. This effect persisted even when the color appeared in one of the distractors (Experiments 1 and 2), at variance with this distractor capturing attention. These findings suggest that task-irrelevant valence-preferred color signals were registered pre-attentively and boosted performance, likely by raising the general (non-spatial) alertness level. However, these signals were likely kept out of attentional-priority computation to prevent inadvertent attentional capture.
Collapse
Affiliation(s)
- Miloš Stanković
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Hermann J Müller
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
5
|
Beffara B, Hadj‐Bouziane F, Hamed SB, Boehler CN, Chelazzi L, Santandrea E, Macaluso E. Separate and overlapping mechanisms of statistical regularities and salience processing in the occipital cortex and dorsal attention network. Hum Brain Mapp 2023; 44:6439-6458. [PMID: 37877138 PMCID: PMC10681649 DOI: 10.1002/hbm.26520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
Attention selects behaviorally relevant inputs for in-depth processing. Beside the role of traditional signals related to goal-directed and stimulus-driven control, a debate exists regarding the mechanisms governing the effect of statistical regularities on attentional selection, and how these are integrated with other control signals. Using a visuo-spatial search task under fMRI, we tested the joint effects of statistical regularities and stimulus-driven salience. We found that both types of signals modulated occipital activity in a spatially specific manner. Salience acted primarily by reducing the attention bias towards the target location when associated with irrelevant distractors, while statistical regularities reduced this attention bias when the target was presented at a low probability location, particularly at the lower levels of the visual hierarchy. In addition, we found that both statistical regularities and salience activated the dorsal frontoparietal network. Additional exploratory analyses of functional connectivity revealed that only statistical regularities modulated the inter-regional coupling between the posterior parietal cortex and the occipital cortex. These results show that statistical regularities and salience signals are both spatially represented at the occipital level, but that their integration into attentional processing priorities relies on dissociable brain mechanisms.
Collapse
Affiliation(s)
- Bertrand Beffara
- Centre de Recherche en Neurosciences de Lyon (CRNL)Université Claude Bernard Lyon 1, CNRS, INSERMBronFrance
| | - Fadila Hadj‐Bouziane
- Centre de Recherche en Neurosciences de Lyon (CRNL)Université Claude Bernard Lyon 1, CNRS, INSERMBronFrance
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, Lyon, UMR5229, CNRSUniversité de LyonLyonFrance
| | - C. Nico Boehler
- Department of Experimental PsychologyGhent UniversityGhentBelgium
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine, and Movement SciencesUniversity of VeronaVeronaItaly
| | - Elisa Santandrea
- Department of Neuroscience, Biomedicine, and Movement SciencesUniversity of VeronaVeronaItaly
| | - Emiliano Macaluso
- Centre de Recherche en Neurosciences de Lyon (CRNL)Université Claude Bernard Lyon 1, CNRS, INSERMBronFrance
| |
Collapse
|
6
|
De Tommaso M, Turatto M. Habituation to visual onsets is affected by local and global distractors rate. Atten Percept Psychophys 2023; 85:2531-2537. [PMID: 36977908 PMCID: PMC10600284 DOI: 10.3758/s13414-023-02698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
Abstract
Recent findings demonstrate that habituation of capture is stronger where onset distractors are frequent and weaker where they are rare, thus showing that habituation to onsets has a spatial selective nature. However, a debated question is whether habituation at a specific location is exclusively determined by the distractors' local rate, or whether instead local habituation is also affected by the global rate of the distractors, which may occur also at other locations. Here, we report the results from a between-participants experiment involving three groups of participants exposed to visual onsets during a visual search task. In two groups, onsets appeared at a single location with a high 60% rate or a low 15% rate, respectively, whereas in a third group, distractors could appear in four distinct locations with the same 15% local rate, leading to a 60% global rate. Our results confirmed that locally, habituation of capture was stronger the higher the distractors rate. However, the key finding was that we found a clear and robust modulation of the global distractors rate on the local habituation level. Taken together, our results unambiguously show that habituation has both a spatially selective and a spatially nonselective nature.
Collapse
Affiliation(s)
- Matteo De Tommaso
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.
| | - Massimo Turatto
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
7
|
de Waard J, van Moorselaar D, Bogaerts L, Theeuwes J. Statistical learning of distractor locations is dependent on task context. Sci Rep 2023; 13:11234. [PMID: 37433849 PMCID: PMC10336038 DOI: 10.1038/s41598-023-38261-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
Through statistical learning, humans can learn to suppress visual areas that often contain distractors. Recent findings suggest that this form of learned suppression is insensitive to context, putting into question its real-life relevance. The current study presents a different picture: we show context-dependent learning of distractor-based regularities. Unlike previous studies which typically used background cues to differentiate contexts, the current study manipulated task context. Specifically, the task alternated from block to block between a compound search and a detection task. In both tasks, participants searched for a unique shape, while ignoring a uniquely colored distractor item. Crucially, a different high-probability distractor location was assigned to each task context in the training blocks, and all distractor locations were made equiprobable in the testing blocks. In a control experiment, participants only performed a compound search task such that the contexts were made indistinguishable, but the high-probability locations changed in exactly the same way as in the main experiment. We analyzed response times for different distractor locations and show that participants can learn to suppress a location in a context-dependent way, but suppression from previous task contexts lingers unless a new high-probability location is introduced.
Collapse
Affiliation(s)
- Jasper de Waard
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, The Netherlands.
| | - Dirk van Moorselaar
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, The Netherlands
| | - Louisa Bogaerts
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, The Netherlands
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, The Netherlands
- William James Center for Research, ISPA-Instituto Universitario, Lisbon, Portugal
| |
Collapse
|
8
|
Noah S, Meyyappan S, Ding M, Mangun GR. Time Courses of Attended and Ignored Object Representations. J Cogn Neurosci 2023; 35:645-658. [PMID: 36735619 PMCID: PMC10024573 DOI: 10.1162/jocn_a_01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selective attention prioritizes information that is relevant to behavioral goals. Previous studies have shown that attended visual information is processed and represented more efficiently, but distracting visual information is not fully suppressed, and may also continue to be represented in the brain. In natural vision, to-be-attended and to-be-ignored objects may be present simultaneously in the scene. Understanding precisely how each is represented in the visual system, and how these neural representations evolve over time, remains a key goal in cognitive neuroscience. In this study, we recorded EEG while participants performed a cued object-based attention task that involved attending to target objects and ignoring simultaneously presented and spatially overlapping distractor objects. We performed support vector machine classification on the stimulus-evoked EEG data to separately track the temporal dynamics of target and distractor representations. We found that (1) both target and distractor objects were decodable during the early phase of object processing (∼100 msec to ∼200 msec after target onset), and (2) the representations of both objects were sustained over time, remaining decodable above chance until ∼1000-msec latency. However, (3) the distractor object information faded significantly beginning after about 300-msec latency. These findings provide information about the fate of attended and ignored visual information in complex scene perception.
Collapse
Affiliation(s)
- Sean Noah
- University of California, Davis.,University of California, Berkeley
| | | | | | | |
Collapse
|
9
|
Priming of probabilistic attentional templates. Psychon Bull Rev 2023; 30:22-39. [PMID: 35831678 DOI: 10.3758/s13423-022-02125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Attentional priming has a dominating influence on vision, speeding visual search, releasing items from crowding, reducing masking effects, and during free-choice, primed targets are chosen over unprimed ones. Many accounts postulate that templates stored in working memory control what we attend to and mediate the priming. But what is the nature of these templates (or representations)? Analyses of real-world visual scenes suggest that tuning templates to exact color or luminance values would be impractical since those can vary greatly because of changes in environmental circumstances and perceptual interpretation. Tuning templates to a range of the most probable values would be more efficient. Recent evidence does indeed suggest that the visual system represents such probability, gradually encoding statistical variation in the environment through repeated exposure to input statistics. This is consistent with evidence from neurophysiology and theoretical neuroscience as well as computational evidence of probabilistic representations in visual perception. I argue that such probabilistic representations are the unit of attentional priming and that priming of, say, a repeated single-color value simply involves priming of a distribution with no variance. This "priming of probability" view can be modelled within a Bayesian framework where priming provides contextual priors. Priming can therefore be thought of as learning of the underlying probability density function of the target or distractor sets in a given continuous task.
Collapse
|
10
|
Kim H, Ogden A, Anderson BA. Statistical learning of distractor shape modulates attentional capture. Vision Res 2023; 202:108155. [PMID: 36417810 PMCID: PMC9791481 DOI: 10.1016/j.visres.2022.108155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Physically salient but task-irrelevant stimuli have high attentional priority, although observers are able to capitalize on statistical regularities in the environment to more efficiently ignore such stimuli. Physically salient distractors that more frequently appear in a particular location are less distracting when they appear in this high probability location. Likewise, colors and orientations that are frequently associated with distractors become preferentially ignored with learning. Such statistically learned distractor suppression has been examined with respect to the frequency of elementary features across trials, and less is known about how statistics concerning the composition of distractor features within a trial influence attention, particularly with respect to how orientations combine to form shapes. Color, orientation, and location are also represented very early in vision, whereas more complex features such as shape are represented further downstream in the visual system; it remains unclear whether statistically leaned distractor suppression can operate over such downstream visual representations. In the present study, we demonstrate attentional capture by physically salient, shape-defined distractors that is reduced in magnitude for a high probability shape. Our findings demonstrate that statistical learning can modulate attentional priority at least at the level of basic shapes and is not restricted to modulations of priority at the earliest stages of visual information processing tied to elementary features.
Collapse
Affiliation(s)
- Haena Kim
- Texas A&M University, College Station, TX, United States.
| | - Alex Ogden
- Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
11
|
Bartolomeo P, di Pellegrino G, Chelazzi L. The Brain's brake: Inhibitory mechanisms in cognition and action. Cortex 2022; 157:323-326. [PMID: 36402063 DOI: 10.1016/j.cortex.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Paolo Bartolomeo
- Sorbonne Université, Institut Du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France.
| | - Giuseppe di Pellegrino
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena, FC, Italy.
| | - Leonardo Chelazzi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, Verona, Italy.
| |
Collapse
|
12
|
Kawashima T, Amano K. Can enhancement and suppression concurrently guide attention? An assessment at the individual level. F1000Res 2022; 11:232. [PMID: 35811789 PMCID: PMC9237560 DOI: 10.12688/f1000research.77430.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Although people can pay attention to targets while ignoring distractors, previous research suggests that target enhancement and distractor suppression work separately and independently. Here, we sought to replicate previous findings and re-establish their independence. Methods: We employed an internet-based psychological experiment. We presented participants with a visual search task in which they searched for a specified shape with or without a singleton. We replicated the singleton-presence benefit in search performance, but this effect was limited to cases where the target color was fixed across all trials. In a randomly intermixed probe task (30% of all trials), the participants searched for a letter among colored probes; we used this task to assess how far attention was separately allocated toward the target or distractor dimensions. Results: We found a negative correlation between target enhancement and distractor suppression, indicating that the participants who paid closer attention to target features ignored distractor features less effectively and vice versa. Averaged data showed no benefit from target color or cost from distractor color, possibly because of the substantial differences in strategy across participants. Conclusions: These results suggest that target enhancement and distractor suppression guide attention in mutually dependent ways and that the relative contribution of these components depends on the participants’ search strategy.
Collapse
Affiliation(s)
- Tomoya Kawashima
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
13
|
Learned distractor rejection persists across target search in a different dimension. Atten Percept Psychophys 2022; 85:785-795. [PMID: 36045310 DOI: 10.3758/s13414-022-02559-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
Attention is guided by several factors, including task-relevant target features, which attract attention, but also statistical regularities associated distractors, which repel attention away from themselves. However, whether feature-based distractor regularities (e.g., color) are extracted automatically from a feature dimension orthogonal to the target-guiding dimension (e.g., shape) remains to be tested. In two experiments, we tested if learned distractor rejection by color operated when color was not part of the attentional control settings, specifically, while attention was guided by a shape-based target template. Participants performed a visual search task for a task-relevant shape in displays containing two unsegregated colors. These displays allowed us to manipulate target guidance (based on shape) independently from distractor-based regularities (based on color). In both experiments we found clear evidence for learned distractor rejection: faster mean response times to locate the target when a consistent distractor color was present than when it was absent. Critically, these task-irrelevant learned distractor rejection effects were robust despite strong target guidance by an orthogonal search dimension. These findings corroborate recent demonstrations of learned distractor rejection during strong target guidance, indicating that learned distractor rejection and target guidance can operate on separate feature dimensions.
Collapse
|
14
|
Theeuwes J, Bogaerts L, van Moorselaar D. What to expect where and when: how statistical learning drives visual selection. Trends Cogn Sci 2022; 26:860-872. [PMID: 35840476 DOI: 10.1016/j.tics.2022.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/26/2022]
Abstract
While the visual environment contains massive amounts of information, we should not and cannot pay attention to all events. Instead, we need to direct attention to those events that have proven to be important in the past and suppress those that were distracting and irrelevant. Experiences molded through a learning process enable us to extract and adapt to the statistical regularities in the world. While previous studies have shown that visual statistical learning (VSL) is critical for representing higher order units of perception, here we review the role of VSL in attentional selection. Evidence suggests that through VSL, attentional priority settings are optimally adjusted to regularities in the environment, without intention and without conscious awareness.
Collapse
Affiliation(s)
- Jan Theeuwes
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior (iBBA), Amsterdam, the Netherlands; William James Center for Research, ISPA-Instituto Universitario, Lisbon, Portugal.
| | - Louisa Bogaerts
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior (iBBA), Amsterdam, the Netherlands; Ghent University, Ghent, Belgium
| | - Dirk van Moorselaar
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior (iBBA), Amsterdam, the Netherlands
| |
Collapse
|
15
|
Wöstmann M, Störmer VS, Obleser J, Addleman DA, Andersen SK, Gaspelin N, Geng JJ, Luck SJ, Noonan MP, Slagter HA, Theeuwes J. Ten simple rules to study distractor suppression. Prog Neurobiol 2022. [PMID: 35427732 DOI: 10.1016/j.pneurobio.2022.102269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Distractor suppression refers to the ability to filter out distracting and task-irrelevant information. Distractor suppression is essential for survival and considered a key aspect of selective attention. Despite the recent and rapidly evolving literature on distractor suppression, we still know little about how the brain suppresses distracting information. What limits progress is that we lack mutually agreed upon principles of how to study the neural basis of distractor suppression and its manifestation in behavior. Here, we offer ten simple rules that we believe are fundamental when investigating distractor suppression. We provide guidelines on how to design conclusive experiments on distractor suppression (Rules 1-3), discuss different types of distractor suppression that need to be distinguished (Rules 4-6), and provide an overview of models of distractor suppression and considerations of how to evaluate distractor suppression statistically (Rules 7-10). Together, these rules provide a concise and comprehensive synopsis of promising advances in the field of distractor suppression. Following these rules will propel research on distractor suppression in important ways, not only by highlighting prominent issues to both new and more advanced researchers in the field, but also by facilitating communication between sub-disciplines.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Viola S Störmer
- Department of Psychological and Brain Sciences, Dartmouth College, USA.
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | | - Søren K Andersen
- School of Psychology, University of Aberdeen, UK; Department of Psychology, University of Southern Denmark, Denmark
| | - Nicholas Gaspelin
- Department of Psychology and Department of Integrative Neuroscience, Binghamton University, State University of New York, USA
| | - Joy J Geng
- Center for Mind and Brain and Department of Psychology, University of California, Davis, USA
| | - Steven J Luck
- Center for Mind and Brain and Department of Psychology, University of California, Davis, USA
| | | | - Heleen A Slagter
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Beffara B, Hadj-Bouziane F, Hamed SB, Boehler CN, Chelazzi L, Santandrea E, Macaluso E. Dynamic causal interactions between occipital and parietal cortex explain how endogenous spatial attention and stimulus-driven salience jointly shape the distribution of processing priorities in 2D visual space. Neuroimage 2022; 255:119206. [PMID: 35427770 DOI: 10.1016/j.neuroimage.2022.119206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Visuo-spatial attention prioritizes the processing of relevant inputs via different types of signals, including current goals and stimulus salience. Complex mixtures of these signals engage in everyday life situations, but little is known about how these signals jointly modulate distributed patterns of activity across the occipital regions that represent visual space. Here, we measured spatio-topic, quadrant-specific occipital activity during the processing of visual displays containing both task-relevant targets and salient color-singletons. We computed spatial bias vectors indexing the effect of attention in 2D space, as coded by distributed activity in the occipital cortex. We found that goal-directed spatial attention biased activity towards the target and that salience further modulated this endogenous effect: salient distractors decreased the spatial bias, while salient targets increased it. Analyses of effective connectivity revealed that the processing of salient distractors relied on the modulation of the bidirectional connectivity between the occipital and the posterior parietal cortex, as well as the modulation of the lateral interactions within the occipital cortex. These findings demonstrate that goal-directed attention and salience jointly contribute to shaping processing priorities in the occipital cortex and highlight that multiple functional paths determine how spatial information about these signals is distributed across occipital regions.
Collapse
Affiliation(s)
- Bertrand Beffara
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France.
| | - Fadila Hadj-Bouziane
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, Lyon, UMR5229, CNRS, Université de Lyon, France
| | - C Nico Boehler
- Department of Experimental Psychology, Ghent University, Belgium
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Elisa Santandrea
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Emiliano Macaluso
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France
| |
Collapse
|
17
|
Wöstmann M, Störmer VS, Obleser J, Addleman DA, Andersen SK, Gaspelin N, Geng JJ, Luck SJ, Noonan MP, Slagter HA, Theeuwes J. Ten simple rules to study distractor suppression. Prog Neurobiol 2022; 213:102269. [PMID: 35427732 PMCID: PMC9069241 DOI: 10.1016/j.pneurobio.2022.102269] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/23/2023]
Abstract
Distractor suppression refers to the ability to filter out distracting and task-irrelevant information. Distractor suppression is essential for survival and considered a key aspect of selective attention. Despite the recent and rapidly evolving literature on distractor suppression, we still know little about how the brain suppresses distracting information. What limits progress is that we lack mutually agreed upon principles of how to study the neural basis of distractor suppression and its manifestation in behavior. Here, we offer ten simple rules that we believe are fundamental when investigating distractor suppression. We provide guidelines on how to design conclusive experiments on distractor suppression (Rules 1–3), discuss different types of distractor suppression that need to be distinguished (Rules 4–6), and provide an overview of models of distractor suppression and considerations of how to evaluate distractor suppression statistically (Rules 7–10). Together, these rules provide a concise and comprehensive synopsis of promising advances in the field of distractor suppression. Following these rules will propel research on distractor suppression in important ways, not only by highlighting prominent issues to both new and more advanced researchers in the field, but also by facilitating communication between sub-disciplines. Distractor suppression is the ability to filter out irrelevant information. At present, we know little about how the brain suppresses distraction. We offer ten rules that are fundamental when investigating distractor suppression. Following the rules will propel research and foster interaction between disciplines.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Viola S Störmer
- Department of Psychological and Brain Sciences, Dartmouth College, USA.
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | | - Søren K Andersen
- School of Psychology, University of Aberdeen, UK; Department of Psychology, University of Southern Denmark, Denmark
| | - Nicholas Gaspelin
- Department of Psychology and Department of Integrative Neuroscience, Binghamton University, State University of New York, USA
| | - Joy J Geng
- Center for Mind and Brain and Department of Psychology, University of California, Davis, USA
| | - Steven J Luck
- Center for Mind and Brain and Department of Psychology, University of California, Davis, USA
| | | | - Heleen A Slagter
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Won BY, Venkatesh A, Witkowski PP, Banh T, Geng JJ. Memory precision for salient distractors decreases with learned suppression. Psychon Bull Rev 2022; 29:169-181. [PMID: 34322846 PMCID: PMC8815312 DOI: 10.3758/s13423-021-01968-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Attention operates as a cognitive gate that selects sensory information for entry into memory and awareness (Driver, 2001, British Journal of Psychology, 92, 53-78). Under many circumstances, the selected information is task-relevant and important to remember, but sometimes perceptually salient nontarget objects will capture attention and enter into awareness despite their irrelevance (Adams & Gaspelin, 2020, Attention, Perception, & Psychophysics, 82[4], 1586-1598). Recent studies have shown that repeated exposures with salient distractor will diminish their ability to capture attention, but the relationship between suppression and later cognitive processes such as memory and awareness remains unclear. If learned attentional suppression (indicated by reduced capture costs) occurs at the sensory level and prevents readout to other cognitive processes, one would expect memory and awareness to dimmish commensurate with improved suppression. Here, we test this hypothesis by measuring memory precision and awareness of salient nontargets over repeated exposures as capture costs decreased. Our results show that stronger learned suppression is accompanied by reductions in memory precision and confidence in having seen a color singleton at all, suggesting that such suppression operates at the sensory level to prevent further processing of the distractor object.
Collapse
Affiliation(s)
- Bo-Yeong Won
- Center for Mind and Brain, University of California Davis, Davis, CA, USA.
| | - Aditi Venkatesh
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Phillip P Witkowski
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Timothy Banh
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Joy J Geng
- Center for Mind and Brain, University of California Davis, Davis, CA, USA.
- Department of Psychology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
19
|
Stilwell BT, Egeth H, Gaspelin N. Electrophysiological Evidence for the Suppression of Highly Salient Distractors. J Cogn Neurosci 2022; 34:787-805. [PMID: 35104346 DOI: 10.1162/jocn_a_01827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There has been a longstanding debate as to whether salient stimuli have the power to involuntarily capture attention. As a potential resolution to this debate, the signal suppression hypothesis proposes that salient items generate a bottom-up signal that automatically attracts attention, but that salient items can be suppressed by top-down mechanisms to prevent attentional capture. Despite much support, the signal suppression hypothesis has been challenged on the grounds that many prior studies may have used color singletons with relatively low salience that are too weak to capture attention. The current study addressed this by using previous methods to study suppression but increased the set size to improve the relative salience of the color singletons. To assess whether salient distractors captured attention, electrophysiological markers of attentional allocation (the N2pc component) and suppression (the PD component) were measured. The results provided no evidence of attentional capture, but instead indicated suppression of the highly salient singleton distractors, as indexed by the PD component. This suppression occurred even though a computational model of saliency confirmed that the color singleton was highly salient. Altogether, this supports the signal suppression hypothesis and is inconsistent with stimulus-driven models of attentional capture.
Collapse
|
20
|
Zhang B, Weidner R, Allenmark F, Bertleff S, Fink GR, Shi Z, Müller HJ. Statistical Learning of Frequent Distractor Locations in Visual Search Involves Regional Signal Suppression in Early Visual Cortex. Cereb Cortex 2021; 32:2729-2744. [PMID: 34727169 DOI: 10.1093/cercor/bhab377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Observers can learn locations where salient distractors appear frequently to reduce potential interference-an effect attributed to better suppression of distractors at frequent locations. But how distractor suppression is implemented in the visual cortex and within the frontoparietal attention networks remains unclear. We used fMRI and a regional distractor-location learning paradigm with two types of distractors defined in either the same (orientation) or a different (color) dimension to the target to investigate this issue. fMRI results showed that BOLD signals in early visual cortex were significantly reduced for distractors (as well as targets) occurring at the frequent versus rare locations, mirroring behavioral patterns. This reduction was more robust with same-dimension distractors. Crucially, behavioral interference was correlated with distractor-evoked visual activity only for same- (but not different-) dimension distractors. Moreover, with different- (but not same-) dimension distractors, a color-processing area within the fusiform gyrus was activated more when a distractor was present in the rare region versus being absent and more with a distractor in the rare versus frequent locations. These results support statistical learning of frequent distractor locations involving regional suppression in early visual cortex and point to differential neural mechanisms of distractor handling with different- versus same-dimension distractors.
Collapse
Affiliation(s)
- Bei Zhang
- General and Experimental Psychology, Ludwig-Maximilians-Universität München, München 80802, Germany
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich 52428, Germany
| | - Fredrik Allenmark
- General and Experimental Psychology, Ludwig-Maximilians-Universität München, München 80802, Germany
| | - Sabine Bertleff
- Traffic Psychology and Acceptance, Institute for Automotive Engineering (ika), RWTH Aachen University, Aachen 52074, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich 52428, Germany.,Department of Neurology, University Hospital Cologne, Cologne University, Cologne 50937, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Ludwig-Maximilians-Universität München, München 80802, Germany
| | - Hermann J Müller
- General and Experimental Psychology, Ludwig-Maximilians-Universität München, München 80802, Germany
| |
Collapse
|
21
|
Geng JJ, Duarte SE. Unresolved issues in distractor suppression: Proactive and reactive mechanisms, implicit learning, and naturalistic distraction. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.1928806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joy J. Geng
- Department of Psychology and Center for Mind and Brain, University of California, Davis, USA
| | - Shea E. Duarte
- Department of Psychology and Center for Mind and Brain, University of California, Davis, USA
| |
Collapse
|
22
|
Di Caro V, Della Libera C. Statistical learning of target selection and distractor suppression shape attentional priority according to different timeframes. Sci Rep 2021; 11:13761. [PMID: 34215819 PMCID: PMC8253746 DOI: 10.1038/s41598-021-93335-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent findings suggest that attentional and oculomotor control is heavily affected by past experience, giving rise to selection and suppression history effects, so that target selection is facilitated if they appear at frequently attended locations, and distractor filtering is facilitated at frequently ignored locations. While selection history effects once instantiated seem to be long-lasting, whether suppression history is similarly durable is still debated. We assessed the permanence of these effects in a unique experimental setting investigating eye-movements, where the locations associated with statistical unbalances were exclusively linked with either target selection or distractor suppression. Experiment 1 and 2 explored the survival of suppression history in the long and in the short term, respectively, revealing that its lingering traces are relatively short lived. Experiment 3 showed that in the very same experimental context, selection history effects were long lasting. These results seem to suggest that different mechanisms support the learning-induced plasticity triggered by selection and suppression history. Specifically, while selection history may depend on lasting changes within stored representations of the visual space, suppression history effects hinge instead on a functional plasticity which is transient in nature, and involves spatial representations which are constantly updated and adaptively sustain ongoing oculomotor control.
Collapse
Affiliation(s)
- Valeria Di Caro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Della Libera
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
- Section of Physiology and Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona - Medical School, Strada Le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
23
|
Lockhofen DEL, Hübner N, Hemdan F, Sammer G, Henare D, Schubö A, Mulert C. Differing Time Courses of Reward-Related Attentional Processing: An EEG Source-Space Analysis. Brain Topogr 2021; 34:283-296. [PMID: 33733706 PMCID: PMC8099853 DOI: 10.1007/s10548-021-00827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 01/06/2023]
Abstract
Since our environment typically contains more information than can be processed at any one time due to the limited capacity of our visual system, we are bound to differentiate between relevant and irrelevant information. This process, termed attentional selection, is usually categorized into bottom-up and top-down processes. However, recent research suggests reward might also be an important factor in guiding attention. Monetary reward can bias attentional selection in favor of task-relevant targets and reduce the efficiency of visual search when a reward-associated, but task-irrelevant distractor is present. This study is the first to investigate reward-related target and distractor processing in an additional singleton task using neurophysiological measures and source space analysis. Based on previous studies, we hypothesized that source space analysis would find enhanced neural activity in regions of the value-based attention network, such as the visual cortex and the anterior cingulate. Additionally, we went further and explored the time courses of the underlying attentional mechanisms. Our neurophysiological results showed that rewarding distractors led to a stronger attentional capture. In line with this, we found that reward-associated distractors (compared with reward-associated targets) enhanced activation in frontal regions, indicating the involvement of top-down control processes. As hypothesized, source space analysis demonstrated that reward-related targets and reward-related distractors elicited activation in regions of the value-based attention network. However, these activations showed time-dependent differences, indicating that the neural mechanisms underlying reward biasing might be different for task-relevant and task-irrelevant stimuli.
Collapse
Affiliation(s)
- Denise E L Lockhofen
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Klinikstraße 36, 35385, Giessen, Hessen, Germany.
| | - Nils Hübner
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Klinikstraße 36, 35385, Giessen, Hessen, Germany
| | - Fatma Hemdan
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Klinikstraße 36, 35385, Giessen, Hessen, Germany
| | - Gebhard Sammer
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Klinikstraße 36, 35385, Giessen, Hessen, Germany
| | - Dion Henare
- Cognitive Neuroscience of Perception and Action, Faculty of Psychology, Philipps-University Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Anna Schubö
- Cognitive Neuroscience of Perception and Action, Faculty of Psychology, Philipps-University Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Christoph Mulert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Klinikstraße 36, 35385, Giessen, Hessen, Germany
| |
Collapse
|