1
|
Samanci B, Tan S, Michielse S, Kuijf ML, Temel Y. The habenula in Parkinson's disease: Anatomy, function, and implications for mood disorders - A narrative review. J Chem Neuroanat 2024; 136:102392. [PMID: 38237746 DOI: 10.1016/j.jchemneu.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Parkinson's disease (PD), a widespread neurodegenerative disorder, often coexists with mood disorders. Degeneration of serotonergic neurons in brainstem raphe nuclei have been linked to depression and anxiety. Additionally, the locus coeruleus and its noradrenergic neurons are among the first areas to degenerate in PD and contribute to stress, emotional memory, motor, sensory, and autonomic symptoms. Another brain region of interest is habenula, which is especially related to anti-reward processing, and its function has recently been linked to PD and to mood-related symptoms. There are several neuroimaging studies that investigated role of the habenula in mood disorders. Differences in habenular size and hemispheric symmetry were found in healthy controls compared to individuals with mood disorders. The lateral habenula, as a link between the dopaminergic and serotonergic systems, is thought to contribute to depressive symptoms in PD. However, there is only one imaging study about role of habenula in mood disorders in PD, although the relationship between PD and mood disorders is known. There is little known about habenula pathology in PD but given these observations, the question arises whether habenular dysfunction could play a role in PD and the development of PD-related mood disorders. In this review, we evaluate neuroimaging techniques and studies that investigated the habenula in the context of PD and mood disorders. Future studies are important to understand habenula's role in PD patients with mood disorders. Thus, new potential diagnostic and treatment opportunities would be found for mood disorders in PD.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
2
|
Piper JA, Musumeci G, Castorina A. The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors. J Funct Morphol Kinesiol 2024; 9:14. [PMID: 38249091 PMCID: PMC10801627 DOI: 10.3390/jfmk9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
The habenular complex is a diencephalic structure divided into the medial and lateral divisions that lie within the epithalamus of most vertebrates. This brain structure, whose activities are mainly regulated via inputs/outputs from and to the stria medullaris and the fasciculus retroflexus, plays a significant role in the modulation of anti-reward behaviors in both the rodent and human brain. Such anti-reward circuits are regulated by dopaminergic and serotonergic projections with several other subcortical and cortical regions; therefore, it is plausible that impairment to this key subcortical structure or its connections contributes to the pathogenesis of affective disorders. Current literature reveals the existence of structural changes in the habenula complex in individuals afflicted by such disorders; however, there is a need for more comprehensive investigations to elucidate the underlying neuroanatomical connections that underpin disease development. In this review article, we aim to provide a comprehensive view of the neuroanatomical differences between the rodent and human habenular complex, the main circuitries, and provide an update on the emerging roles of this understudied subcortical structure in the control of affective behaviors, with special emphasis to morbid conditions of the affective sphere.
Collapse
Affiliation(s)
- Jordan Allan Piper
- School of Health Sciences, College of Health and Medicine, University of Tasmania (Sydney), Sydney, NSW 2040, Australia;
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical & Biotechnological Sciences, Anatomy, Histology & Movement Sciences, University of Catania, 95123 Catania, Italy;
| | - Alessandro Castorina
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Manssuer L, Ding Q, Zhang Y, Gong H, Liu W, Yang R, Zhang C, Zhao Y, Pan Y, Zhan S, Li D, Sun B, Voon V. Risk and aversion coding in human habenula high gamma activity. Brain 2023; 146:2642-2653. [PMID: 36445730 PMCID: PMC10232252 DOI: 10.1093/brain/awac456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2023] Open
Abstract
Neurons in the primate lateral habenula fire in response to punishments and are inhibited by rewards. Through its modulation of midbrain monoaminergic activity, the habenula is believed to play an important role in adaptive behavioural responses to punishment and underlie depressive symptoms and their alleviation with ketamine. However, its role in value-based decision-making in humans is poorly understood due to limitations with non-invasive imaging methods which measure metabolic, not neural, activity with poor temporal resolution. Here, we overcome these limitations to more closely bridge the gap between species by recording local field potentials directly from the habenula in 12 human patients receiving deep brain stimulation treatment for bipolar disorder (n = 4), chronic pain (n = 3), depression (n = 3) and schizophrenia (n = 2). This allowed us to record neural activity during value-based decision-making tasks involving monetary rewards and losses. High-frequency gamma (60-240 Hz) activity, a proxy for population-level spiking involved in cognitive computations, increased during the receipt of loss and decreased during receipt of reward. Furthermore, habenula high gamma also encoded risk during decision-making, being larger in amplitude for high compared to low risk. For both risk and aversion, differences between conditions peaked approximately between 400 and 750 ms after stimulus onset. The findings not only demonstrate homologies with the primate habenula but also extend its role to human decision-making, showing its temporal dynamics and suggesting revisions to current models. The findings suggest that habenula high gamma could be used to optimize real-time closed-loop deep brain stimulation treatment for mood disturbances and impulsivity in psychiatric disorders.
Collapse
Affiliation(s)
- Luis Manssuer
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Qiong Ding
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yingying Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Hengfeng Gong
- Shanghai Pudong New Area Mental Health Centre, Tongji University School of Medicine, Shanghai 200124, China
| | - Wei Liu
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Ruoqi Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yijie Zhao
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yixin Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Valerie Voon
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Wilhelm RA, Spechler PA, Demuth MJ, Gonzalez M, Kemp C, Walls M, Aupperle RL, Paulus MP, Stewart JL, White EJ. Striatal hypoactivation during monetary loss anticipation in individuals with substance use disorders in a heterogenous urban American Indian sample. Drug Alcohol Depend 2023; 246:109852. [PMID: 37003108 PMCID: PMC10614574 DOI: 10.1016/j.drugalcdep.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Research suggests that disproportionate exposure to risk factors places American Indian (AI) peoples at higher risk for substance use disorders (SUD). Although SUD is linked to striatal prioritization of drug rewards over other appetitive stimuli, there are gaps in the literature related to the investigation of aversive valuation processing, and inclusion of AI samples. To address these gaps, this study compared striatal anticipatory gain and loss processing between AI-identified with SUD (SUD+; n = 52) and without SUD (SUD-; n = 35) groups from the Tulsa 1000 study who completed a monetary incentive delay (MID) task during functional magnetic resonance imaging. Results indicated that striatal activations in the nucleus accumbens (NAcc), caudate, and putamen were greatest for anticipating gains (ps < 0.001) but showed no group differences. In contrast to gains, the SUD+ exhibited lower NAcc (p = .01, d =0.53) and putamen (p = .04, d =0.40) activation to anticipating large losses than the comparison group. Within SUD+ , lower striatal responses during loss anticipations were associated with slower MID reaction times (NAcc: r = -0.43; putamen: r = -0.35) during loss trials. This is among the first imaging studies to examine underlying neural mechanisms associated with SUD within AIs. Attenuated loss processing provides initial evidence of a potential mechanism wherein blunted prediction of aversive consequences may be a defining feature of SUD that can inform future prevention and intervention targets.
Collapse
Affiliation(s)
| | | | - Mara J Demuth
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Miigis Gonzalez
- Center for American Indian Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher Kemp
- Center for American Indian Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Melissa Walls
- Center for American Indian Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley School of Community Medicine, University of Tulsa, Tulsa, OK, USA
| | | | - Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley School of Community Medicine, University of Tulsa, Tulsa, OK, USA
| | - Evan J White
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley School of Community Medicine, University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|
5
|
Zhang JL, Zhou N, Song KR, Zou BW, Xu LX, Fu Y, Geng XM, Wang ZL, Li X, Potenza MN, Nan Y, Zhang JT. Neural activations to loss anticipation mediates the association between difficulties in emotion regulation and screen media activities among early adolescent youth: A moderating role for depression. Dev Cogn Neurosci 2022; 58:101186. [PMID: 36516611 PMCID: PMC9764194 DOI: 10.1016/j.dcn.2022.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Screen media activities (SMAs; e.g., watching videos, playing videogames) have become increasingly prevalent among youth as ways to alleviate or escape from negative emotional states. However, neural mechanisms underlying these processes in youth are incompletely understood. METHOD Seventy-nine youth aged 11-15 years completed a monetary incentive delay task during fMRI scanning. Neural correlates of reward/loss processing and their associations with SMAs were explored. Next, brain activations during reward/loss processing in regions implicated in the processing of emotions were examined as potential mediating factors between difficulties in emotion regulation (DER) and engagement in SMAs. Finally, a moderated mediation model tested the effects of depressive symptoms in such relationships. RESULT The emotional components associated with SMAs in reward/loss processing included activations in the left anterior insula (AI) and right dorsolateral prefrontal cortex (DLPFC) during anticipation of working to avoid losses. Activations in both the AI and DLPFC mediated the relationship between DER and SMAs. Moreover, depressive symptoms moderated the relationship between AI activation in response to loss anticipation and SMAs. CONCLUSION The current findings suggest that DER link to SMAs through loss-related brain activations implicated in the processing of emotions and motivational avoidance, particularly in youth with greater levels of depressive symptoms. The findings suggest the importance of enhancing emotion-regulation tendencies/abilities in youth and, in particular, their regulatory responses to negative emotional situations in order to guide moderate engagement in SMAs.
Collapse
Affiliation(s)
- Jia-Lin Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Nan Zhou
- Faculty of Education, University of Macau, Macau, China
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bo-Wen Zou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Lin-Xuan Xu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yu Fu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Min Geng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zi-Liang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Department of Neuroscience and Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Yun Nan
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
Lehmann M, Neumann C, Wasserthal S, Delis A, Schultz J, Hurlemann R, Ettinger U. Ketamine increases fronto-posterior functional connectivity during meta-perceptual confidence ratings. Behav Brain Res 2022; 430:113925. [DOI: 10.1016/j.bbr.2022.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|
7
|
Yee DM, Leng X, Shenhav A, Braver TS. Aversive motivation and cognitive control. Neurosci Biobehav Rev 2022; 133:104493. [PMID: 34910931 PMCID: PMC8792354 DOI: 10.1016/j.neubiorev.2021.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Aversive motivation plays a prominent role in driving individuals to exert cognitive control. However, the complexity of behavioral responses attributed to aversive incentives creates significant challenges for developing a clear understanding of the neural mechanisms of this motivation-control interaction. We review the animal learning, systems neuroscience, and computational literatures to highlight the importance of experimental paradigms that incorporate both motivational context manipulations and mixed motivational components (e.g., bundling of appetitive and aversive incentives). Specifically, we postulate that to understand aversive incentive effects on cognitive control allocation, a critical contextual factor is whether such incentives are associated with negative reinforcement or punishment. We further illustrate how the inclusion of mixed motivational components in experimental paradigms enables increased precision in the measurement of aversive influences on cognitive control. A sharpened experimental and theoretical focus regarding the manipulation and assessment of distinct motivational dimensions promises to advance understanding of the neural, monoaminergic, and computational mechanisms that underlie the interaction of motivation and cognitive control.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA; Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA.
| | - Xiamin Leng
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|