1
|
Toffoli L, Zdorovtsova N, Epihova G, Duma GM, Cristaldi FDP, Pastore M, Astle DE, Mento G. Dynamic transient brain states in preschoolers mirror parental report of behavior and emotion regulation. Hum Brain Mapp 2024; 45:e70011. [PMID: 39327923 PMCID: PMC11427750 DOI: 10.1002/hbm.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The temporal dynamics of resting-state networks may represent an intrinsic functional repertoire supporting cognitive control performance across the lifespan. However, little is known about brain dynamics during the preschool period, which is a sensitive time window for cognitive control development. The fast timescale of synchronization and switching characterizing cortical network functional organization gives rise to quasi-stable patterns (i.e., brain states) that recur over time. These can be inferred at the whole-brain level using hidden Markov models (HMMs), an unsupervised machine learning technique that allows the identification of rapid oscillatory patterns at the macroscale of cortical networks. The present study used an HMM technique to investigate dynamic neural reconfigurations and their associations with behavioral (i.e., parental questionnaires) and cognitive (i.e., neuropsychological tests) measures in typically developing preschoolers (4-6 years old). We used high-density EEG to better capture the fast reconfiguration patterns of the HMM-derived metrics (i.e., switching rates, entropy rates, transition probabilities and fractional occupancies). Our results revealed that the HMM-derived metrics were reliable indices of individual neural variability and differed between boys and girls. However, only brain state transition patterns toward prefrontal and default-mode brain states, predicted differences on parental-report questionnaire scores. Overall, these findings support the importance of resting-state brain dynamics as functional scaffolds for behavior and cognition. Brain state transitions may be crucial markers of individual differences in cognitive control development in preschoolers.
Collapse
Affiliation(s)
- Lisa Toffoli
- NeuroDev Lab, Department of General PsychologyUniversity of PaduaPaduaItaly
| | | | - Gabriela Epihova
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Gian Marco Duma
- Scientific Institute, IRCCS E. Medea, ConeglianoTrevisoItaly
| | | | - Massimiliano Pastore
- Department of Developmental Psychology and SocialisationUniversity of PaduaPaduaItaly
| | - Duncan E. Astle
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Giovanni Mento
- NeuroDev Lab, Department of General PsychologyUniversity of PaduaPaduaItaly
- Scientific Institute, IRCCS E. Medea, ConeglianoTrevisoItaly
| |
Collapse
|
2
|
Song C, Zhang X, Zhang Y, Han S, Ma K, Mao X, Lian Y, Cheng J. Comparision of spontaneous brain activity between hippocampal sclerosis and MRI-negative temporal lobe epilepsy. Epilepsy Behav 2024; 157:109751. [PMID: 38820678 DOI: 10.1016/j.yebeh.2024.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hippocampal sclerosis (HS) is a prevalent cause of temporal lobe epilepsy (TLE). However, up to 30% of individuals with TLE present negative magnetic resonance imaging (MRI) findings. A comprehensive grasp of the similarities and differences in brain activity among distinct TLE subtypes holds significant clinical and scientific importance. OBJECTIVE To comprehensively examine the similarities and differences between TLE with HS (TLE-HS) and MRI-negative TLE (TLE-N) regarding static and dynamic abnormalities in spontaneous brain activity (SBA). Furthermore, we aimed to determine whether these alterations correlate with epilepsy duration and cognition, and to determine a potential differential diagnostic index for clinical utility. METHODS We measured 12 SBA metrics in 38 patients with TLE-HS, 51 with TLE-N, and 53 healthy volunteers. Voxel-wise analysis of variance (ANOVA) and post-hoc comparisons were employed to compare these metrics. The six static metrics included amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), degree centrality (DC), and global signal correlation (GSCorr). Additionally, six corresponding dynamic metrics were assessed: dynamic ALFF (dALFF), dynamic fALFF (dfALFF), dynamic ReHo (dReHo), dynamic DC (dDC), dynamic VMHC (dVMHC), and dynamic GSCorr (dGSCorr). Receiver operating characteristic (ROC) curve analysis of abnormal indices was employed. Spearman correlation analyses were also conducted to examine the relationship between the abnormal indices, epilepsy duration and cognition scores. RESULTS Both TLE-HS and TLE-N presented as extensive neural network disorders, sharing similar patterns of SBA alterations. The regions with increased fALFF, dALFF, and dfALFF levels were predominantly observed in the mesial temporal lobe, thalamus, basal ganglia, pons, and cerebellum, forming a previously proposed mesial temporal epilepsy network. Conversely, decreased SBA metrics (fALFF, ReHo, dReHo, DC, GSCorr, and VMHC) consistently appeared in the lateral temporal lobe ipsilateral to the epileptic foci. Notably, SBA alterations were more obvious in patients with TLE-HS than in those with TLE-N. Additionally, patients with TLE-HS exhibited reduced VMHC in both mesial and lateral temporal lobes compared with patients with TLE-N, with the hippocampus displaying moderate discriminatory power (AUC = 0.759). Correlation analysis suggested that alterations in SBA indicators may be associated with epilepsy duration and cognitive scores. CONCLUSIONS The simultaneous use of static and dynamic SBA metrics provides evidence supporting the characterisation of both TLE-HS and TLE-N as complex network diseases, facilitating the exploration of mechanisms underlying epileptic activity and cognitive impairment. Overall, SBA abnormality patterns were generally similar between the TLE-HS and TLE-N groups, encompassing networks related to TLE and auditory and occipital visual functions. These changes were more pronounced in the TLE-HS group, particularly within the mesial and lateral temporal lobes.
Collapse
Affiliation(s)
- Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Xinyue Mao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province.
| |
Collapse
|
3
|
Duma GM, Cuozzo S, Wilson L, Danieli A, Bonanni P, Pellegrino G. Excitation/Inhibition balance relates to cognitive function and gene expression in temporal lobe epilepsy: a high density EEG assessment with aperiodic exponent. Brain Commun 2024; 6:fcae231. [PMID: 39056027 PMCID: PMC11272395 DOI: 10.1093/braincomms/fcae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.
Collapse
Affiliation(s)
- Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Simone Cuozzo
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Luc Wilson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alberto Danieli
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| |
Collapse
|
4
|
Nucera B, Perulli M, Alvisi L, Bisulli F, Bonanni P, Canafoglia L, Cantalupo G, Ferlazzo E, Granvillano A, Mecarelli O, Meletti S, Strigaro G, Tartara E, Assenza G. Use, experience and perspectives of high-density EEG among Italian epilepsy centers: a national survey. Neurol Sci 2024; 45:1625-1634. [PMID: 37932644 DOI: 10.1007/s10072-023-07159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION High-density EEG (hdEEG) is a validated tool in presurgical evaluation of people with epilepsy. The aim of this national survey is to estimate diffusion and knowledge of hdEEG to develop a network among Italian epilepsy centers. METHODS A survey of 16 items (and 15 additional items) was distributed nationwide by email to all members of the Italian League Against Epilepsy and the Italian Society of Clinical Neurophysiology. The data obtained were analyzed using descriptive statistics. RESULTS A total of 104 respondents were collected from 85 centers, 82% from the Centre-North of Italy; 27% of the respondents had a hdEEG. The main applications were for epileptogenic focus characterization in the pre-surgical evaluation (35%), biomarker research (35%) and scientific activity (30%). The greatest obstacles to hdEEG were economic resources (35%), acquisition of dedicated personnel (30%) and finding expertise (17%). Dissemination was limited by difficulties in finding expertise and dedicated personnel (74%) more than buying devices (9%); 43% of the respondents have already published hdEEG data, and 91% of centers were available to participate in multicenter hdEEG studies, helping in both pre-processing and analysis. Eighty-nine percent of respondents would be interested in referring patients to centers with established experience for clinical and research purposes. CONCLUSIONS In Italy, hdEEG is mainly used in third-level epilepsy centers for research and clinical purposes. HdEEG diffusion is limited not only by costs but also by lack of trained personnel. Italian centers demonstrated a high interest in educational initiatives on hdEEG as well as in clinical and research collaborations.
Collapse
Affiliation(s)
- Bruna Nucera
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Franz Tappeiner Hospital, Via Rossini, 5-39012, Merano, Italy.
- Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Marco Perulli
- Child Neurology and Psychiatry Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | - Lara Alvisi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Epilepsy Center, (full member of the European Reference Network EpiCARE), Bologna, Italy
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Epilepsy Center, (full member of the European Reference Network EpiCARE), Bologna, Italy
| | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | - Laura Canafoglia
- Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gaetano Cantalupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- UOC Di Neuropsichiatria Infantile, AOUI Di Verona (full member of the European Reference Network EpiCARE), Verona, Italy
- Centro Ricerca Per Le Epilessie in Età Pediatrica (CREP), AOUI Di Verona, Verona, Italy
| | - Edoardo Ferlazzo
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alice Granvillano
- Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Oriano Mecarelli
- Department of Human Neurosciences, Umberto I Polyclinic, Sapienza University of Rome, Rome, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, AOU Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Gionata Strigaro
- Epilepsy Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, and Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Novara, Italy
| | - Elena Tartara
- Epilepsy Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
5
|
Rigoni I, Vorderwülbecke BJ, Carboni M, Roehri N, Spinelli L, Tononi G, Seeck M, Perogamvros L, Vulliémoz S. Network alterations in temporal lobe epilepsy during non-rapid eye movement sleep and wakefulness. Clin Neurophysiol 2024; 159:56-65. [PMID: 38335766 DOI: 10.1016/j.clinph.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Investigate sleep and temporal lobe epilepsy (TLE) effects on brain networks derived from electroencephalography (EEG). METHODS High-density EEG was recorded during non-rapid eye movement (NREM) sleep stage 2 (N2) and wakefulness in 23 patients and healthy controls (HC). Epochs without epileptic discharges were source-reconstructed in 72 brain regions and connectivity was estimated. We calculated network integration and segregation at global (global efficiency, GE; average clustering coefficient, avgCC) and hemispheric level. These were compared between groups across frequency bands and correlated with the individual proportion of wakefulness- or sleep-related seizures. RESULTS At the global level, patients had higher delta GE, delta avgCC and theta avgCC than controls, irrespective of the vigilance state. During wakefulness, theta GE of patients was higher than controls and, for patients, theta GE during wakefulness was higher than during N2. Wake-to-sleep differences in TLE were notable only in the ipsilateral hemisphere. Only measures from wakefulness recordings correlated with the proportion of wakefulness- or sleep-related seizures. CONCLUSIONS TLE network alterations are more prominent during wakefulness and at lower frequencies. Increased integration and segregation suggest a pathological 'small world' configuration with a possible inhibitory role. SIGNIFICANCE Network alterations in TLE occur and are easier to detect during wakefulness.
Collapse
Affiliation(s)
- I Rigoni
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland.
| | - B J Vorderwülbecke
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland; Epilepsy-Center Berlin-Brandenburg, Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - M Carboni
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - N Roehri
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - L Spinelli
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - G Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - M Seeck
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - L Perogamvros
- Center for Sleep Medicine, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - S Vulliémoz
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| |
Collapse
|
6
|
Baldini S, Duma GM, Danieli A, Antoniazzi L, Vettorel A, Baggio M, Da Rold M, Bonanni P. Electroencephalographic microstates as a potential neurophysiological marker differentiating bilateral from unilateral temporal lobe epilepsy. Epilepsia 2024; 65:664-674. [PMID: 38265624 DOI: 10.1111/epi.17893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Electroencephalographic (EEG) microstate abnormalities have been documented in different neurological disorders. We aimed to assess whether EEG microstates are altered also in patients with temporal epilepsy (TLE) and whether they show different activations in patients with unilateral TLE (UTLE) and bilateral TLE (BTLE). METHODS Nineteen patients with UTLE, 12 with BTLE, and 15 healthy controls were enrolled. Resting state high-density electroencephalography (128 channels) was recorded for 15 min with closed eyes. We obtained a set of stable scalp maps representing the EEG activity, named microstates, from which we acquired the following variables: global explained variance (GEV), mean duration (MD), time coverage (TC), and frequency of occurrence (FO). Two-way repeated measures analysis of variance was used to compare groups, and Spearman correlation was performed to study the maps in association with the clinical and neuropsychological data. RESULTS Patients with BTLE and UTLE showed differences in most of the parameters (GEV, MD, TC, FO) of the four microstate maps (A-D) compared to controls. Patients with BTLE showed a significant increase in all parameters for the microstates in Map-A and a decrease in Map-D compared to UTLE and controls. We observed a correlation between Map-A, disease duration, and spatial short-term memory, whereas microstate Map-D was correlated with the global intelligence score and short-term memory performance. SIGNIFICANCE A global alteration of the neural dynamics was observed in patients with TLE compared to controls. A different pattern of EEG microstate abnormalities was identified in BTLE compared to UTLE, which might represent a distinctive biomarker.
Collapse
Affiliation(s)
- Sara Baldini
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Gian Marco Duma
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| | - Alberto Danieli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| | - Lisa Antoniazzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| | | | - Martina Baggio
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| | | | - Paolo Bonanni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| |
Collapse
|
7
|
Cairós-González M, Verche E, Hernández S, Alonso MÁ. Cognitive flexibility impairment in temporal lobe epilepsy: The impact of epileptic foci lateralization on executive functions. Epilepsy Behav 2024; 151:109587. [PMID: 38159506 DOI: 10.1016/j.yebeh.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Temporal Lobe Epilepsy (TLE) has been associated with memory impairments, which are typically linked to hippocampal and mesial temporal cortex lesions. Considering the presence of extensive bidirectional frontotemporal connections, it can be hypothesized that executive dysfunction in TLE is modulated by the lateralization of the epileptic foci. MATERIAL AND METHODS A comprehensive neuropsychological executive functions protocol was administered to 63 participants, including 42 individuals with temporal lobe epilepsy (20 with right-TLE and 22 with left-TLE) and 21 healthy controls aged 20-49. RESULTS The results indicate that TLE patients exhibit poorer executive performance compared to healthy controls in working memory (F(2,60) = 4.18, p <.01), planning (F(2,60) = 4.71, p <.05), set shifting (F(2,60) = 10.1, p <.001), phonetic verbal fluency (F(2,60) = 11.71, p <.01) and semantic verbal fluency (F(2,60) = 9.61, p <.001. No significant differences were found in cognitive inhibition. Furthermore, right-TLE patients showed lower performance than left-TLE in set shifting (F(1,61) = 6.45, p <.05), while no significant differences were observed in working memory, planning, inhibition, and verbal fluency. CONCLUSIONS This research emphasize the importance of considering the lateralization of the temporal lobe focus to achieve a more accurate neuropsychological characterization. The cognitive differences between left and right TLE patients highlight the need for individualized approaches in their treatment and care.
Collapse
Affiliation(s)
- Mariana Cairós-González
- Faculty of Health Sciences, Valencian International University, Pintor Sorolla St., 21, 46002, Valencia, Spain.
| | - Emilio Verche
- Department of Psychobiology and Methodology in Behavioural Sciences, University Complutense de Madrid, Rector Royo Villanova St., 1, 28040, Madrid, Spain
| | - Sergio Hernández
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Psychology and Language Therapy, University of La Laguna, Campus de Guajara, 456, 38200, San Cristóbal de La Laguna, Spain
| | - María Ángeles Alonso
- Department of Cognitive Psychology, Social and Organizational Faculty of Psychology and Language Therapy, University of La Laguna, Campus de Guajara, 456, 38200, San Cristóbal de La Laguna, Spain
| |
Collapse
|
8
|
Duma GM, Pellegrino G, Rabuffo G, Danieli A, Antoniazzi L, Vitale V, Scotto Opipari R, Bonanni P, Sorrentino P. Altered spread of waves of activities at large scale is influenced by cortical thickness organization in temporal lobe epilepsy: a magnetic resonance imaging-high-density electroencephalography study. Brain Commun 2023; 6:fcad348. [PMID: 38162897 PMCID: PMC10754317 DOI: 10.1093/braincomms/fcad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Temporal lobe epilepsy is a brain network disorder characterized by alterations at both the structural and the functional levels. It remains unclear how structure and function are related and whether this has any clinical relevance. In the present work, we adopted a novel methodological approach investigating how network structural features influence the large-scale dynamics. The functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations (neuronal avalanches), as observed utilizing high-density electroencephalography in patients with temporal lobe epilepsy. The structural network was modelled as the region-based thickness covariance. Loosely speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across groups and at the individual level, the latter utilizing a novel approach to define the subject-wise structural covariance network. In order to compare the structural and functional networks (at the nodal level), we studied the correlation between the probability that a wave of activity would propagate from a source to a target region and the similarity of the source region thickness as compared with other target brain regions. Building on the recent evidence that large-waves of activities pathologically spread through the epileptogenic network in temporal lobe epilepsy, also during resting state, we hypothesize that the structural cortical organization might influence such altered spatio-temporal dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas across subjects, highlighting group-specific features for left, right and bilateral temporal epilepsy. The involvement of contralateral areas was observed in unilateral temporal lobe epilepsy. We showed that in temporal lobe epilepsy, alterations of structural and functional networks pair in the regions where seizures propagate and are linked to disease severity. In this study, we leveraged on a well-defined model of neurological disease and pushed forward personalization approaches potentially useful in clinical practice. Finally, the methods developed here could be exploited to investigate the relationship between structure-function networks at subject level in other neurological conditions.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| | - Giovanni Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Lisa Antoniazzi
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza 36100, Italy
| | | | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
9
|
Baggio M, Danieli A, Crescentini C, Duma GM, Da Rold M, Baldini S, Pascoli E, Antoniazzi L, Vestri A, Fabbro F, Bonanni P. Neuropsychological Functioning in Bilateral versus Unilateral Temporal Lobe Epilepsy. Brain Sci 2023; 13:1526. [PMID: 38002486 PMCID: PMC10669306 DOI: 10.3390/brainsci13111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Although relatively specific anatomo-electro-clinical features of temporal lobe epilepsy (TLE) with bilateral ictal involvement (bitemporal epilepsy-BTLE) have been described, differentiating between BTLE and unilateral TLE (UTLE) remains challenging. Surgery is often the treatment of choice for drug-resistant UTLE, whereas its use is more controversial in BTLE. It is currently unclear whether neuropsychological assessment can contribute to the differential diagnosis. We retrospectively reviewed the neuropsychological evaluation of 46 consecutive patients with refractory TLE. Eighteen patients were diagnosed with BTLE on the basis of ictal electro-clinical data, in particular a video EEG recording of at least one seizure simultaneously involving the two temporal lobes without the possibility of lateralizing its onset or at least two different seizures independently arising from the two temporal lobes. Twenty-eight patients were classified as UTLE. Presurgery evaluation data were used in this study. Compared with UTLE, BTLE was associated with a lower intelligence quotient (IQ) and more severe impairment in long-term memory, the latter remaining significant even after controlling for IQ. No significant differences were found between right and left UTLE. In conclusion, BTLE and UTLE are associated with relatively distinct neuropsychological profiles, further supporting their classification as different disorders within the TLE spectrum.
Collapse
Affiliation(s)
- Martina Baggio
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, Via Costa Alta 37, 31015 Conegliano, Italy; (M.B.); (A.D.); (A.V.); (P.B.)
| | - Alberto Danieli
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, Via Costa Alta 37, 31015 Conegliano, Italy; (M.B.); (A.D.); (A.V.); (P.B.)
| | - Cristiano Crescentini
- Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| | - Gian Marco Duma
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, Via Costa Alta 37, 31015 Conegliano, Italy; (M.B.); (A.D.); (A.V.); (P.B.)
| | - Martina Da Rold
- Aulss 2 Marca Trevigiana, Piazzale Dell’Ospedale, 1, 31100 Treviso, Italy
| | - Sara Baldini
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34129 Trieste, Italy
| | - Eric Pascoli
- Department of Medicine—DAME, University of Udine, 33100 Udine, Italy
| | - Lisa Antoniazzi
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, Via Costa Alta 37, 31015 Conegliano, Italy; (M.B.); (A.D.); (A.V.); (P.B.)
| | - Alec Vestri
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, Via Costa Alta 37, 31015 Conegliano, Italy; (M.B.); (A.D.); (A.V.); (P.B.)
| | - Franco Fabbro
- Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
- PERCRO Perceptual Robotics Laboratory, Scuola Superiore Sant’Anna, 56010 Pisa, Italy
| | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, Via Costa Alta 37, 31015 Conegliano, Italy; (M.B.); (A.D.); (A.V.); (P.B.)
| |
Collapse
|
10
|
Mao X, Zhang X, Song C, Ma K, Wang K, Wang X, Lian Y, Zhang Y, Han S, Cheng J, Zhang Y. Alterations in static and dynamic regional homogeneity in mesial temporal lobe epilepsy with and without initial precipitating injury. Front Neurosci 2023; 17:1226077. [PMID: 37600006 PMCID: PMC10434245 DOI: 10.3389/fnins.2023.1226077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives Initial precipitating injury (IPI) such as febrile convulsion and intracranial infection will increase the susceptibility to epilepsy. It is still unknown if the functional deficits differ between mesial temporal lobe epilepsy with IPI (mTLE-IPI) and without IPI (mTLE-NO). Methods We recruited 25 mTLE-IPI patients, 35 mTLE-NO patients and 33 healthy controls (HC). Static regional homogeneity (sReHo) and dynamic regional homogeneity (dReHo) were then adopted to estimate the alterations of local neuronal activity. One-way analysis of variance was used to analyze the differences between the three groups in sReHo and dReHo. Then the results were utilized as masks for further between-group comparisons. Besides, correlation analyses were carried out to detect the potential relationships between abnormal regional homogeneity indicators and clinical characteristics. Results When compared with HC, the bilateral thalamus and the visual cortex in mTLE-IPI patients showed an increase in both sReHo and variability of dReHo. Besides, mTLE-IPI patients exhibited decreased sReHo in the right cerebellum crus1/crus2, inferior parietal lobule and temporal neocortex. mTLE-NO patients showed decreased sReHo and variability of dReHo in the bilateral temporal neocortex compared with HC. Increased sReHo and variability of dReHo were found in the bilateral visual cortex when mTLE-IPI patients was compared with mTLE-NO patients, as well as increased variability of dReHo in the left thalamus and decreased sReHo in the right dorsolateral prefrontal cortex. Additionally, we discovered a negative correlation between the national hospital seizure severity scale testing score and sReHo in the right cerebellum crus1 in mTLE-IPI patients. Conclusion According to the aforementioned findings, both mTLE-IPI and mTLE-NO patients had significant anomalies in local neuronal activity, although the functional deficits were much severer in mTLE-IPI patients. The use of sReHo and dReHo may provide a novel insight into the impact of the presence of IPI on the development of mTLE.
Collapse
Affiliation(s)
- Xinyue Mao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Kefan Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xin Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| |
Collapse
|
11
|
Dini H, Simonetti A, Bruni LE. Exploring the Neural Processes behind Narrative Engagement: An EEG Study. eNeuro 2023; 10:ENEURO.0484-22.2023. [PMID: 37460223 DOI: 10.1523/eneuro.0484-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
Past cognitive neuroscience studies using naturalistic stimuli have considered narratives holistically and focused on cognitive processes. In this study, we incorporated the narrative structure, the dramatic arc, as an object of investigation, to examine how engagement levels fluctuate across a narrative-aligned dramatic arc. We explored the possibility of predicting self-reported engagement ratings from neural activity and investigated the idiosyncratic effects of each phase of the dramatic arc on brain responses as well as the relationship between engagement and brain responses. We presented a movie excerpt following the six-phase narrative arc structure to female and male participants while collecting EEG signals. We then asked this group of participants to recall the excerpt, another group to segment the video based on the dramatic arc model, and a third to rate their engagement levels while watching the movie. The results showed that the self-reported engagement ratings followed the pattern of the narrative dramatic arc. Moreover, while EEG amplitude could not predict group-averaged engagement ratings, other features comprising dynamic intersubject correlation (dISC), including certain frequency bands, dynamic functional connectivity patterns and graph features were able to achieve this. Furthermore, neural activity in the last two phases of the dramatic arc significantly predicted engagement patterns. This study is the first to explore the cognitive processes behind the dramatic arc and its phases. By demonstrating how neural activity predicts self-reported engagement, which itself aligns with the narrative structure, this study provides insights on the interrelationships between narrative structure, neural responses, and viewer engagement.
Collapse
Affiliation(s)
- Hossein Dini
- The Augmented Cognition Lab, Aalborg University, Copenhagen 2450, Denmark
| | - Aline Simonetti
- Department of Marketing and Market Research, University of Valencia, Valencia 46022, Spain
| | - Luis Emilio Bruni
- The Augmented Cognition Lab, Aalborg University, Copenhagen 2450, Denmark
| |
Collapse
|
12
|
Coccaro A, Di Bono MG, Maffei A, Orefice C, Lievore R, Mammarella I, Liotti M. Resting State Dynamic Reconfiguration of Spatial Attention Cortical Networks and Visuospatial Functioning in Non-Verbal Learning Disability (NVLD): A HD-EEG Investigation. Brain Sci 2023; 13:brainsci13050731. [PMID: 37239203 DOI: 10.3390/brainsci13050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Nonverbal learning disability (NVLD) is a neurodevelopmental disorder characterized by deficits in visuospatial processing but spared verbal competencies. Neurocognitive markers may provide confirmatory evidence for characterizing NVLD as a separate neurodevelopmental disorder. Visuospatial performance and high-density electroencephalography (EEG) were measured in 16 NLVD and in 16 typically developing (TD) children. Cortical source modeling was applied to assess resting-state functional connectivity (rs-FC) in spatial attention networks (dorsal (DAN) and ventral attention networks (VAN)) implicated in visuospatial abilities. A machine-learning approach was applied to investigate whether group membership could be predicted from rs-FC maps and if these connectivity patterns were predictive of visuospatial performance. Graph theoretical measures were applied to nodes inside each network. EEG rs-FC maps in the gamma and beta band differentiated children with and without NVLD, with increased but more diffuse and less efficient functional connections bilaterally in the NVLD group. While rs-FC of the left DAN in the gamma range predicted visuospatial scores for TD children, in the NVLD group rs-FC of the right DAN in the delta range predicted impaired visuospatial performance, confirming that NVLD is a disorder with a predominant dysfunction in right hemisphere connectivity patterns.
Collapse
Affiliation(s)
- Ambra Coccaro
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
| | - Maria Grazia Di Bono
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Antonio Maffei
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
| | - Camilla Orefice
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Rachele Lievore
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Irene Mammarella
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Mario Liotti
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
- Department of Psychology, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| |
Collapse
|
13
|
Duma GM, Danieli A, Mento G, Vitale V, Opipari RS, Jirsa V, Bonanni P, Sorrentino P. Altered spreading of neuronal avalanches in temporal lobe epilepsy relates to cognitive performance: A resting-state hdEEG study. Epilepsia 2023; 64:1278-1288. [PMID: 36799098 DOI: 10.1111/epi.17551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Large aperiodic bursts of activations named neuronal avalanches have been used to characterize whole-brain activity, as their presence typically relates to optimal dynamics. Epilepsy is characterized by alterations in large-scale brain network dynamics. Here we exploited neuronal avalanches to characterize differences in electroencephalography (EEG) basal activity, free from seizures and/or interictal spikes, between patients with temporal lobe epilepsy (TLE) and matched controls. METHOD We defined neuronal avalanches as starting when the z-scored source-reconstructed EEG signals crossed a specific threshold in any region and ending when all regions returned to baseline. This technique avoids data manipulation or assumptions of signal stationarity, focusing on the aperiodic, scale-free components of the signals. We computed individual avalanche transition matrices to track the probability of avalanche spreading across any two regions, compared them between patients and controls, and related them to memory performance in patients. RESULTS We observed a robust topography of significant edges clustering in regions functionally and structurally relevant for the TLE, such as the entorhinal cortex, the inferior parietal and fusiform area, the inferior temporal gyrus, and the anterior cingulate cortex. We detected a significant correlation between the centrality of the entorhinal cortex in the transition matrix and the long-term memory performance (delay recall Rey-Osterrieth Complex Figure Test). SIGNIFICANCE Our results show that the propagation patterns of large-scale neuronal avalanches are altered in TLE during the resting state, suggesting a potential diagnostic application in epilepsy. Furthermore, the relationship between specific patterns of propagation and memory performance support the neurophysiological relevance of neuronal avalanches.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Treviso, Italy
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Treviso, Italy
| | - Giovanni Mento
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza, Italy
| | | | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Treviso, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| |
Collapse
|
14
|
Ren Z, Zhao Y, Han X, Yue M, Wang B, Zhao Z, Wen B, Hong Y, Wang Q, Hong Y, Zhao T, Wang N, Zhao P. An objective model for diagnosing comorbid cognitive impairment in patients with epilepsy based on the clinical-EEG functional connectivity features. Front Neurosci 2023; 16:1060814. [PMID: 36711136 PMCID: PMC9878185 DOI: 10.3389/fnins.2022.1060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Cognitive impairment (CI) is a common disorder in patients with epilepsy (PWEs). Objective assessment method for diagnosing CI in PWEs would be beneficial in reality. This study proposed to construct a diagnostic model for CI in PWEs using the clinical and the phase locking value (PLV) functional connectivity features of the electroencephalogram (EEG). Methods PWEs who met the inclusion and exclusion criteria were divided into a cognitively normal (CON) group (n = 55) and a CI group (n = 76). The 23 clinical features and 684 PLV EEG features at the time of patient visit were screened and ranked using the Fisher score. Adaptive Boosting (AdaBoost) and Gradient Boosting Decision Tree (GBDT) were used as algorithms to construct diagnostic models of CI in PWEs either with pure clinical features, pure PLV EEG features, or combined clinical and PLV EEG features. The performance of these models was assessed using a five-fold cross-validation method. Results GBDT-built model with combined clinical and PLV EEG features performed the best with accuracy, precision, recall, F1-score, and an area under the curve (AUC) of 90.11, 93.40, 89.50, 91.39, and 0.95%. The top 5 features found to influence the model performance based on the Fisher scores were the magnetic resonance imaging (MRI) findings of the head for abnormalities, educational attainment, PLV EEG in the beta (β)-band C3-F4, seizure frequency, and PLV EEG in theta (θ)-band Fp1-Fz. A total of 12 of the top 5% of features exhibited statistically different PLV EEG features, while eight of which were PLV EEG features in the θ band. Conclusion The model constructed from the combined clinical and PLV EEG features could effectively identify CI in PWEs and possess the potential as a useful objective evaluation method. The PLV EEG in the θ band could be a potential biomarker for the complementary diagnosis of CI comorbid with epilepsy.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yibo Zhao
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Xiong Han
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Xiong Han,
| | - Mengyan Yue
- Department of Rehabilitation, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bin Wen
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yang Hong
- Department of Neurology, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Qi Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yingxing Hong
- Department of Neurology, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Ting Zhao
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Wang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pan Zhao
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|