1
|
Freeman AE, Willis KA, Qiao L, Abdelgawad AS, Halloran B, Rezonzew G, Nizami Z, Wenger N, Gaggar A, Ambalavanan N, Tipple TE, Lal CV. Microbial-induced Redox Imbalance in the Neonatal Lung Is Ameliorated by Live Biotherapeutics. Am J Respir Cell Mol Biol 2023; 68:267-278. [PMID: 36287630 PMCID: PMC9989473 DOI: 10.1165/rcmb.2021-0508oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants. Hyperoxia exposure and microbial dysbiosis are contributors to BPD development. However, the mechanisms linking pulmonary microbial dysbiosis to worsening lung injury are unknown. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that regulates oxidative stress responses and modulates hyperoxia-induced lung injury. We hypothesized that airway dysbiosis would attenuate Nrf2-dependent antioxidant function, resulting in a more severe phenotype of BPD. Here, we show that preterm infants with a Gammaproteobacteria-predominant dysbiosis have increased endotoxin in tracheal aspirates, and mice monocolonized with the representative Gammaproteobacteria Escherichia coli show increased tissue damage compared with germ-free (GF) control mice. Furthermore, we show Nrf2-deficient mice have worse lung structure and function after exposure to hyperoxia when the airway microbiome is augmented with E. coli. To confirm the disease-initiating potential of airway dysbiosis, we developed a novel humanized mouse model by colonizing GF mice with tracheal aspirates from human infants with or without severe BPD, producing gnotobiotic mice with BPD-associated and non-BPD-associated lung microbiomes. After hyperoxia exposure, BPD-associated mice demonstrated a more severe BPD phenotype and increased expression of Nrf2-regulated genes, compared with GF and non-BPD-associated mice. Furthermore, augmenting Nrf2-mediated antioxidant activity by supporting colonization with Lactobacillus species improved dysbiotic-augmented lung injury. Our results demonstrate that a lack of protective pulmonary microbiome signature attenuates an Nrf2-mediated antioxidant response, which is augmented by a respiratory probiotic blend. We anticipate antioxidant pathways will be major targets of future microbiome-based therapeutics for respiratory disease.
Collapse
Affiliation(s)
| | | | - Luhua Qiao
- Division of Neonatology, Department of Pediatrics
| | | | | | | | | | | | - Amit Gaggar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Trent E. Tipple
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | | |
Collapse
|
2
|
Noël A, Yilmaz S, Farrow T, Schexnayder M, Eickelberg O, Jelesijevic T. Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3710. [PMID: 36834405 PMCID: PMC9967225 DOI: 10.3390/ijerph20043710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sultan Yilmaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tori Farrow
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
| | | | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Vellers HL, Cho HY, Gladwell W, Gerrish K, Santos JH, Ofman G, Miller-DeGraff L, Mahler TB, Kleeberger SR. NRF2 Alters Mitochondrial Gene Expression in Neonate Mice Exposed to Hyperoxia. Antioxidants (Basel) 2022; 11:antiox11040760. [PMID: 35453445 PMCID: PMC9031618 DOI: 10.3390/antiox11040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Approximately 1 in 10 newborns are born preterm and require supplemental oxygen (O2) in an extrauterine environment following birth. Supplemental O2 can induce oxidative stress that can impair mitochondrial function, resulting in lung injury and increased risk in early life pulmonary diseases. The nuclear factor-erythroid 2 related factor 2 (NRF2) protects the cells from oxidative stress by regulating the expression of genes containing antioxidant response elements and many mitochondrial-associated genes. In this study, we compared Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice to define the role of NRF2 in lung mitochondrial genomic features in late embryonic development in mice (embryonic days, E13.5 and E18.5) versus birth (postnatal day 0, PND0). We also determined whether NRF2 protects lung mitochondrial genome parameters in postnatal mice exposed to a 72 h hyperoxia environment. We found Nrf2−/− embryonic lungs were characterized by decreases in mtDNA copies from E13.5 to E18.5. Interestingly, Nrf2−/− heteroplasmy frequency was significantly higher than Nrf2+/+ at E18.5, though this effect reversed at PND0. In postnatal mice exposed to hyperoxia, we identified three- to four-fold increases in mitochondria-encoded mitochondrial genes, which regulate oxidative phosphorylation. Overall, our findings demonstrate a potentially critical role of NRF2 in mediating long-term effects of hyperoxia on mitochondrial function.
Collapse
Affiliation(s)
- Heather L. Vellers
- Health and Exercise Science Department, University of Oklahoma, Norman, OK 73019, USA
- Correspondence:
| | - Hye-Youn Cho
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (H.-Y.C.); (L.M.-D.); (S.R.K.)
| | - Wesley Gladwell
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (W.G.); (K.G.)
| | - Kevin Gerrish
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (W.G.); (K.G.)
| | - Janine H. Santos
- Division of the National Toxicology Program, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Gaston Ofman
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Laura Miller-DeGraff
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (H.-Y.C.); (L.M.-D.); (S.R.K.)
| | - T. Beth Mahler
- Division of the National Toxicology Program, Comparative and Molecular Pathogenesis Branch, Research Triangle Park, NC 27709, USA;
| | - Steven R. Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (H.-Y.C.); (L.M.-D.); (S.R.K.)
| |
Collapse
|
4
|
Cho HY, Miller-DeGraff L, Perrow LA, Gladwell W, Panduri V, Lih FB, Kleeberger SR. Murine Neonatal Oxidant Lung Injury: NRF2-Dependent Predisposition to Adulthood Respiratory Viral Infection and Protection by Maternal Antioxidant. Antioxidants (Basel) 2021; 10:antiox10121874. [PMID: 34942977 PMCID: PMC8698620 DOI: 10.3390/antiox10121874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/04/2022] Open
Abstract
NRF2 protects against oxidant-associated airway disorders via cytoprotective gene induction. To examine if NRF2 is an important determinant of respiratory syncytial virus (RSV) susceptibility after neonate lung injury, Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice neonatally exposed to hyperoxia were infected with RSV. To investigate the prenatal antioxidant effect on neonatal oxidative lung injury, time-pregnant Nrf2−/− and Nrf2+/+ mice were given an oral NRF2 agonist (sulforaphane) on embryonic days 11.5–17.5, and offspring were exposed to hyperoxia. Bronchoalveolar lavage and histopathologic analyses determined lung injury. cDNA microarray analyses were performed on placenta and neonatal lungs. RSV-induced pulmonary inflammation, injury, oxidation, and virus load were heightened in hyperoxia-exposed mice, and injury was more severe in hyperoxia-susceptible Nrf2−/− mice than in Nrf2+/+ mice. Maternal sulforaphane significantly alleviated hyperoxic lung injury in both neonate genotypes with more marked attenuation of severe neutrophilia, edema, oxidation, and alveolarization arrest in Nrf2−/− mice. Prenatal sulforaphane altered different genes with similar defensive functions (e.g., inhibition of cell/perinatal death and inflammation, potentiation of angiogenesis/organ development) in both strains, indicating compensatory transcriptome changes in Nrf2−/− mice. Conclusively, oxidative injury in underdeveloped lungs NRF2-dependently predisposed RSV susceptibility. In utero sulforaphane intervention suggested NRF2-dependent and -independent pulmonary protection mechanisms against early-life oxidant injury.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; (L.M.-D.); (L.A.P.); (W.G.); (S.R.K.)
- Correspondence: ; Tel.: +1-984-287-4088
| | - Laura Miller-DeGraff
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; (L.M.-D.); (L.A.P.); (W.G.); (S.R.K.)
| | - Ligon A. Perrow
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; (L.M.-D.); (L.A.P.); (W.G.); (S.R.K.)
| | - Wesley Gladwell
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; (L.M.-D.); (L.A.P.); (W.G.); (S.R.K.)
| | - Vijayalakshmi Panduri
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA;
| | - Fred B. Lih
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA;
| | - Steven R. Kleeberger
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; (L.M.-D.); (L.A.P.); (W.G.); (S.R.K.)
| |
Collapse
|
5
|
Auranofin-Mediated NRF2 Induction Attenuates Interleukin 1 Beta Expression in Alveolar Macrophages. Antioxidants (Basel) 2021; 10:antiox10050632. [PMID: 33919055 PMCID: PMC8143169 DOI: 10.3390/antiox10050632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Alveolar macrophages (AMs) are resident inflammatory cells in the lung that serve as early sentinels of infection or injury. We have identified thioredoxin reductase 1 inhibition by gold compounds increases activation of nuclear factor erythroid 2-related factor 2 (NRF2)-dependent pathways to attenuate inflammatory responses. The present studies utilized murine alveolar macrophages (MH-S) to test the hypothesis that the gold compound, auranofin (AFN), decreases interleukin (IL)-1β expression through NRF2-mediated interactions with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway genes and/or increases in glutathione synthesis. Methods: MH-S cells were treated with AFN and lipopolysaccharide (LPS) and analyzed at 6 and 24 h. The Il1b promoter was analyzed by chromatin immunoprecipitation for direct interaction with NRF2. Results: Expression of IL-1β, p-IκBα, p-p65 NF-kB, and NOD-, LRR-, and pyrin domain-containing protein 3 were elevated by LPS exposure, but only IL-1β expression was suppressed by AFN treatment. Both AFN and LPS treatments increased cellular glutathione levels, but attenuation of glutathione synthesis by buthionine sulfoximine (BSO) did not alter expression of Il-1β. Analysis revealed direct NRF2 binding to the Il1b promoter which was enhanced by AFN and inhibited the transcriptional activity of DNA polymerase II. Conclusions: Our data demonstrate that AFN-induced NRF2 activation directly suppresses IL-1β synthesis independent of NFκB and glutathione-mediated antioxidant mechanisms. NRF2 binding to the promoter region of IL1β directly inhibits transcription of the IL1β gene. Collectively, our research suggests that gold compounds elicit NRF2-dependent pulmonary protection by suppressing macrophage-mediated inflammation.
Collapse
|
6
|
Teng RJ, Jing X, Martin DP, Hogg N, Haefke A, Konduri GG, Day BW, Naylor S, Pritchard KA. N-acetyl-lysyltyrosylcysteine amide, a novel systems pharmacology agent, reduces bronchopulmonary dysplasia in hyperoxic neonatal rat pups. Free Radic Biol Med 2021; 166:73-89. [PMID: 33607217 PMCID: PMC8009865 DOI: 10.1016/j.freeradbiomed.2021.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 01/26/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is caused primarily by oxidative stress and inflammation. To induce BPD, neonatal rat pups were raised in hyperoxic (>90% O2) environments from day one (P1) until day ten (P10) and treated with N-acetyl-lysyltyrosylcysteine amide (KYC). In vivo studies showed that KYC improved lung complexity, reduced myeloperoxidase (MPO) positive (+) myeloid cell counts, MPO protein, chlorotyrosine formation, increased endothelial cell CD31 expression, decreased 8-OH-dG and Cox-1/Cox-2, HMGB1, RAGE, TLR4, increased weight gain and improved survival in hyperoxic pups. EPR studies confirmed that MPO reaction mixtures oxidized KYC to a KYC thiyl radical. Adding recombinant HMGB1 to the MPO reaction mixture containing KYC resulted in KYC thiylation of HMGB1. In rat lung microvascular endothelial cell (RLMVEC) cultures, KYC thiylation of RLMVEC proteins was increased the most in RLMVEC cultures treated with MPO + H2O2, followed by H2O2, and then KYC alone. KYC treatment of hyperoxic pups decreased total HMGB1 in lung lysates, increased KYC thiylation of HMGB1, terminal HMGB1 thiol oxidation, decreased HMGB1 association with TLR4 and RAGE, and shifted HMGB1 in lung lysates from a non-acetylated to a lysyl-acetylated isoform, suggesting that KYC reduced lung cell death and that recruited immune cells had become the primary source of HMGB1 released into the hyperoxic lungs. MPO-dependent and independent KYC-thiylation of Keap1 were both increased in RLMVEC cultures. Treating hyperoxic pups with KYC increased KYC thiylation and S-glutathionylation of Keap1, and Nrf2 activation. These data suggest that KYC is a novel system pharmacological agent that exploits MPO to inhibit toxic oxidant production and is oxidized into a thiyl radical that inactivates HMGB1, activates Nrf2, and increases antioxidant enzyme expression to improve lung complexity and reduce BPD in hyperoxic rat pups.
Collapse
Affiliation(s)
- Ru-Jeng Teng
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Xigang Jing
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Dustin P Martin
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA; ReNeuroGen LLC, Milwaukee, WI, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aaron Haefke
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Girija G Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI, USA
| | | | | | - Kirkwood A Pritchard
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA; ReNeuroGen LLC, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Ambient particulate matter attenuates Sirtuin1 and augments SREBP1-PIR axis to induce human pulmonary fibroblast inflammation: molecular mechanism of microenvironment associated with COPD. Aging (Albany NY) 2020; 11:4654-4671. [PMID: 31299012 PMCID: PMC6660058 DOI: 10.18632/aging.102077] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Evidences have shown a strong link between particulate matter (PM) and increased risk in human mortality and morbidity, including asthma, chronic obstructive pulmonary disease (COPD), respiratory infection, and lung cancer. However, the underlying toxicologic mechanisms remain largely unknown. Utilizing PM-treated human pulmonary fibroblasts (HPF) models, we analyzed gene expression microarray data and Ingenuity Pathway Analysis (IPA) to identify that the transcription factor sterol regulatory element-binding protein 1 (SREBP1) was the main downstream regulator of Sirtuin1 (SIRT1). Quantitative PCR and western blot results showed that SIRT1 inhibited SREBP1 and further downregulated Pirin (PIR) and Nod-like receptor protein 3 (NLRP3) inflammasome after PM exposure. Inhibitors of SIRT1, SREBP1, and PIR could reverse PM-induced inflammation. An in silico analysis revealed that PIR correlated with smoke exposure and early COPD. Immunohistochemical analysis of tissue microarrays from PM-fed mouse models was used to determine the association of PIR with PM. These data demonstrate that the SIRT1-SREBP1-PIR/ NLRP3 inflammasome axis may be associated with PM-induced adverse health issues. SIRT1 functions as a protector from PM exposure, whereas PIR acts as a predictor of PM-induced pulmonary disease. The SIRT1-SREBP1-PIR/ NLRP3 inflammasome axis may present several potential therapeutic targets for PM-related adverse health events.
Collapse
|
8
|
Zhang X, Chu X, Gong X, Zhou H, Cai C. The expression of miR-125b in Nrf2-silenced A549 cells exposed to hyperoxia and its relationship with apoptosis. J Cell Mol Med 2019; 24:965-972. [PMID: 31713992 PMCID: PMC6933325 DOI: 10.1111/jcmm.14808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/24/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects the quality of life of infants. At present, premature exposure to hyperoxia for extended periods of time is believed to affect the development of lung tissue and vascularity, resulting in BPD. The oxidative stress caused by hyperoxia exposure is an important risk factor for BPD in premature infants. Nuclear factor E2‐related factor 2 (Nrf2) is an important regulator of antioxidant mechanisms. As a microRNA, microRNA‐125b (miR‐125b) plays an important role in cell proliferation, differentiation and apoptosis. Although the Nrf2/ARE pathway has been extensively studied, little is known about the regulatory role of microRNAs in Nrf2 expression. In this study, the expression levels of Nrf2 and miR‐125b in the lung tissues of premature Sprague Dawley (SD) rats and A549 cells exposed to hyperoxia were detected by quantitative real‐time polymerase chain reaction (qRT‐PCR), and the apoptosis of A549 cells was detected by flow cytometry. The results showed that Nrf2 and miRNA‐125b in the lung tissues of premature rats increased significantly upon exposure to hyperoxia and played a protective role. Nrf2 was suppressed by small interfering RNA (siRNA) in A549 cells, miR‐125b was similarly inhibited, and apoptosis was significantly increased. These results suggest that miR‐125b helps protect against BPD as a downstream target of Nrf2.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Chu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huilin Zhou
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Abstract
Fetal development occurs in a relatively hypoxemic environment, and birth represents significant oxidative stress. Premature infants are disadvantaged by a lack of maternal antioxidant transfer and impaired endogenous antioxidant responses. O2 metabolism is essential for life and its biochemical reactions are dynamic, compartmentalized, and difficult to characterize in vivo. There is a growing appreciation for the role of reactive oxygen species in nonpathologic processes, including regulation of cell signaling and mitochondrial function. There are several gaps in the knowledge about the role of reactive oxygen species in normal development and how oxidative stress alters normal signaling and subsequent development.
Collapse
Affiliation(s)
- Trent E Tipple
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, 176 F Suite 9380, 619 19th Street South, Birmingham, AL 35249-7335, USA.
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, 176 F Suite 9380, 619 19th Street South, Birmingham, AL 35249-7335, USA
| |
Collapse
|