1
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
2
|
Ghozal M, Kadawathagedara M, Delvert R, Adel-Patient K, Tafflet M, Annesi-Maesano I, Crépet A, Sirot V, Charles MA, Heude B, de Lauzon-Guillain B. Prenatal dietary exposure to chemicals and allergy or respiratory diseases in children in the EDEN mother-child cohort. ENVIRONMENT INTERNATIONAL 2023; 180:108195. [PMID: 37734145 DOI: 10.1016/j.envint.2023.108195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Maternal exposure to food chemicals may increase the risk of allergy and respiratory disorders in offspring. We aimed to assess the association of prenatal dietary exposure to single chemicals and chemical mixtures with allergy or respiratory events reported before age 8 y in children. METHODS We included 1428 mother-child pairs enrolled in the EDEN mother-child cohort. Maternal dietary exposure to 209 chemicals and eight associated mixtures was investigated. Allergic and respiratory diseases (wheezing, asthma, allergic rhinitis, eczema and food allergy) were reported by parents between birth and age 8 y. Associations with the studied outcomes were evaluated with three approaches based on adjusted logistic regression, estimating odds ratios (ORs) and 95 % confidence intervals (CIs). First, food chemicals were considered individually, with correction for multiple testing. Second, chemicals selected by elastic net regression were considered simultaneously in a multiple exposure model. Third, predefined mixtures were introduced in the same adjusted logistic regression. Results are expressed as odds ratio (OR[95 % CI]). RESULTS Prenatal single exposure to 74 food chemicals was associated with higher risk of allergic rhinitis. Prenatal single exposure to 11 chemicals was associated with higher risk of wheezing. In the multi-exposure approach, risk of wheezing was associated with the pesticides diazinon and triadimenol, and polycyclic aromatic hydrocarbon 5-methylchrysene. Phytoestrogen resveratrol was negatively associated with lower risk of both wheezing and allergic rhinitis, and mycotoxin monoacetoxyscirpenol was negatively associated with risk of eczema. Finally, a chemical mixture composed mainly of trace elements, furans and polycyclic aromatic hydrocarbons, was associated with higher risk of allergic rhinitis (1.33 [1.02;1.73]). CONCLUSION Prenatal dietary exposure to chemicals was associated with risk of allergic rhinitis or wheezing up to age 8 y. A few chemicals were associated with other allergic and respiratory diseases. Larger prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Manel Ghozal
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France.
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Rosalie Delvert
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94805 Villejuif, France
| | | | - Muriel Tafflet
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health (IDESP), Montpellier University and INSERM, Montpellier, France, Pneumology, Allergology and Thoracic Oncology Department, Montpellier University Hospital, Montpellier, France
| | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Véronique Sirot
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Marie Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Blandine de Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| |
Collapse
|
3
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
4
|
Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int J Mol Sci 2021; 22:ijms22179460. [PMID: 34502366 PMCID: PMC8430475 DOI: 10.3390/ijms22179460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361005, China
| |
Collapse
|
5
|
Zadorozhnii PV, Kiselev VV, Kharchenko AV. In silico toxicity evaluation of Salubrinal and its analogues. Eur J Pharm Sci 2020; 155:105538. [PMID: 32889087 DOI: 10.1016/j.ejps.2020.105538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
This paper reports on a comprehensive in silico toxicity assessment of Salubrinal and its analogues containing a cinnamic acid residue or quinoline ring using the online servers admetSAR, ADMETlab, ProTox, ADVERPred, Pred-hERG and Vienna LiverTox. Apart from rare exceptions, in all 55 studied structures, mild or practical absence of acute toxicity was predicted for rats (III or IV toxicity class). Cardiotoxic, hepatotoxic and immunotoxic effects were predicted for Salubrinal and its analogues. We constructed models of the main predicted anti-targets hERG, BSEP, MRP3, MRP4 and AhR using the principle of homologous modeling. Molecular docking studies were carried out with the obtained models. We carried out molecular docking for all targets using AutoDock Vina, implemented in the PyRx 0.8 software package. According to the results of molecular docking, the compounds analyzed are potential moderate or weak hERG blockers. Induction of cholestasis and, as a consequence, liver damage by these drugs, directly related to inhibition of BSEP, MRP3 and MRP4, most likely will not be observed. Interaction with AhR for the studied compounds is impossible for steric reasons and, as a consequence, toxic effects on the immune and other organ systems associated with the activation of the AhR signaling pathway are excluded.
Collapse
Affiliation(s)
- Pavlo V Zadorozhnii
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine.
| | - Vadym V Kiselev
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| | - Aleksandr V Kharchenko
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| |
Collapse
|