1
|
Agathokleous E, Calabrese EJ, Veresoglou SD. The microbiome orchestrates contaminant low-dose phytostimulation. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00336-4. [PMID: 39736489 DOI: 10.1016/j.tplants.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025]
Abstract
Our understanding of the physiological mechanisms of the plant hormetic response to countless environmental contaminants is rapidly advancing. However, the microbiome is a critical determinant of plant responses to stressors, thus possibly influencing hormetic responses. Here, we review the otherwise neglected role of microbes in shaping plant stimulation by subtoxic concentrations of contaminants and vice versa. Numerous contaminants at subtoxic levels enhance microorganisms and proliferate symbionts, such as mycorrhizae and other plant beneficial microbes, leading to both direct and indirect improvements in plant physiological performance. Microbial symbiosis facilitates nutrient uptake by plants, indicating an important contribution of symbionts to phytostimulation under subtoxic contamination. We also discuss the mechanisms and implications of the stimulation of plant-microbe systems by subtoxic contaminants.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Zaman R, Shah A, Ishangulyyeva G, Erbilgin N. Exploring behavioural and physiological adaptations in mountain pine beetle in response to elevated ozone concentrations. CHEMOSPHERE 2024; 362:142751. [PMID: 38960047 DOI: 10.1016/j.chemosphere.2024.142751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Elevated ozone (eO3) concentrations pose a threat to insect populations by potentially altering their behaviour and physiology. This study investigates the effects of eO3 concentrations on the mountain pine beetle which is a major tree-killing species of conifers in northwestern North America. We are particularly interested in understanding the effects of eO3 concentrations on beetle behaviour and physiology and possible transgenerational impacts on bark beetle broods. We conducted O3-enrichment experiments in a controlled laboratory setting using different O3 concentrations (100-200 ppb; projected for 2050-2100) and assessed various beetle responses, including CO2 respiration, mating behaviour, survival probability, locomotion, and attraction behaviour. Transgenerational impacts on the first and second generations were also analyzed by studying brood morphology, mating behaviour, survival, and pheromone production. We found that beetles exposed to eO3 concentrations had shorter oviposition galleries and reduced brood production. Beetle pheromones were also degraded by eO3 exposure. However, exposure to eO3 also prompted various adaptive responses in beetles. Despite reduced respiration, eO3 improved locomotor activity and the olfactory response of beetles. Surprisingly, beetle survival probability was also improved both in the parents and their broods. We also observed transgenerational plasticity in the broods of eO3-exposed parents, suggesting potential stress resistance mechanisms. This was evident by similar mating success, oviposition gallery length, and brood numbers produced in both control and eO3 concentration treatments. This study demonstrates the sensitivity of mountain pine beetles to increased O3 concentrations, contributing crucial insights into the ecological implications of eO3 concentrations on their populations. Overall, the outcome of this study contributes to informed climate change mitigation strategies and adaptive management practices for the development of resilient forests in response to emerging forest insect pests worldwide.
Collapse
Affiliation(s)
- Rashaduz Zaman
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Ateeq Shah
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
3
|
Yao X, Cheng Z, Agathokleous E, Wei Y, Feng X, Li H, Zhang T, Li S, Dhawan G, Luo XS. Tetracycline and sulfadiazine toxicity in human liver cells Huh-7. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123454. [PMID: 38286259 DOI: 10.1016/j.envpol.2024.123454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
As typical antibiotics, tetracycline (TC) and sulfadiazine (SDZ) enter the human body through the food chain. Therefore, it is necessary to understand their individual and combined toxicity. In this study, the effects of TC, SDZ, and their mixture on cell viability, cell membrane damage, liver cell damage, and oxidative damage were evaluated in in vitro assays with human liver cells Huh-7. The results showed cytotoxicity of TC, SDZ, and their mixture, which induced oxidative stress and caused membrane and cell damage. The effect of antibiotics on Huh-7 cells increased with increasing concentration, except for lactate dehydrogenase (LDH) activity that commonly showed a threshold concentration response and cell viability, which commonly showed a biphasic trend, suggesting the possibility of hormetic responses where proper doses are included. The toxicity of TC was commonly higher than that of SDZ when applied at the same concentration. These findings shed light on the individual and joint effects of these major antibiotics on liver cells, providing a scientific basis for the evaluation of antibiotic toxicity and associated risks.
Collapse
Affiliation(s)
- Xuewen Yao
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhaokang Cheng
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Academy of Environmental Planning & Design, Co., Ltd, Nanjing University, Nanjing, 210008, China
| | - Evgenios Agathokleous
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yaqian Wei
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xinyuan Feng
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hanhan Li
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tingting Zhang
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuting Li
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Xiao-San Luo
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
4
|
Agathokleous E, Calabrese EJ. Evolution of hormesis research: a bibliometric analysis. Arch Toxicol 2024; 98:577-578. [PMID: 38017292 DOI: 10.1007/s00204-023-03635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Affiliation(s)
- Evgenios Agathokleous
- Department of Ecology, School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, China.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
5
|
Agathokleous E, Calabrese EJ, Barceló D. Environmental hormesis: New developments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167450. [PMID: 37806016 DOI: 10.1016/j.scitotenv.2023.167450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Lin H, Ning X, Wang D, Wang Q, Bai Y, Qu J. Quorum-sensing gene regulates hormetic effects induced by sulfonamides in Comamonadaceae. Appl Environ Microbiol 2023; 89:e0166223. [PMID: 38047646 PMCID: PMC10734536 DOI: 10.1128/aem.01662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Antibiotics can induce dose-dependent hormetic effects on bacterial cell proliferation, i.e., low-dose stimulation and high-dose inhibition. However, the underlying molecular basis has yet to be clarified. Here, we showed that sulfonamides play dual roles as a weapon and signal against Comamonas testosteroni that can modulate cell physiology and phenotype. Subsequently, through investigating the hormesis mechanism, we proposed a comprehensive regulatory pathway for the hormetic effects of Comamonas testosteroni low-level sulfonamides and determined the generality of the observed regulatory model in the Comamonadaceae family. Considering the prevalence of Comamonadaceae in human guts and environmental ecosystems, we provide critical insights into the health and ecological effects of antibiotics.
Collapse
Affiliation(s)
- Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork, Ireland
| | - Donglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Tao MT, Liu SS, Gu ZW, Ding TT, Huang P. Beneficial or harmful: Time-dependent hormesis induced by typical disinfectants and their mixtures with toxicological interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167204. [PMID: 37741385 DOI: 10.1016/j.scitotenv.2023.167204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Disinfectants and their mixtures can induce hormesis. However, how the mixture hormesis is related to those of components and the interactions in disinfectant mixtures remain unclear. In this paper, the luminescence inhibition toxicities of chlorinated sodium phosphate (CSP), dodecyl dimethyl benzyl ammonium bromide (DOB), dodecyl dimethyl benzyl ammonium chloride (DOC), ethanol (EtOH), glutaraldehyde (GLA), hydrogen peroxide (H2O2), isopropyl alcohol (IPA), n-propanol (NPA), and 20 mixture rays in four mixture systems (EtOH-H2O2, DOB-H2O2, DOC-EtOH, and EtOH-IPA-NPA) containing at least one component showing hormesis to Vibrio qinghaiensis sp.-Q67 (Q67) were determined at 0.25, 3, 6, 9, and 12 h. The synergism-antagonism heatmap based on independent action model (noted as SAHmapIA) was developed to systematically evaluate the interactions in various mixtures. It was shown that five disinfectants (CSP, EtOH, H2O2, NPA, and IPA) and 17 mixture rays exhibited time-dependent hormesis. The hormetic component was responsible for the hormesis of the mixture rays. Most mixture rays showed low- concentration/dose additive action and high-concentration/dose synergism at different time. This study further exemplified the interrelationship between the hormesis in the mixtures and their components and implied the need to pay attention to the time-dependent hormesis and interactions induced by the disinfectants.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
8
|
Agathokleous E, Blande JD, Masui N, Calabrese EJ, Zhang J, Sicard P, Guedes RNC, Benelli G. Sublethal chemical stimulation of arthropod parasitoids and parasites of agricultural and environmental importance. ENVIRONMENTAL RESEARCH 2023; 237:116876. [PMID: 37573021 DOI: 10.1016/j.envres.2023.116876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
An increasing number of studies have reported stimulation of various organisms in the presence of environmental contaminants. This has created a need to critically evaluate sublethal stimulation and hormetic responses of arthropod parasitoids and parasites following exposure to pesticides and other contaminants. Examining this phenomenon with a focus on arthropods of agricultural and environmental importance serves as the framework for this literature review. This review shows that several pesticides, with diverse chemical structures and different modes of action, applied individually or in combination at sublethal doses, commonly stimulate an array of arthropod parasitoids and parasites. Exposure at sublethal doses can enhance responses related to physiology (e.g., respiration, total lipid content, and total protein content), behavior (e.g., locomotor activity, antennal drumming frequency, host location, and parasitization), and fitness (longevity, growth, fecundity, population net and gross reproduction). Concordantly, the parasitic potential (e.g., infestation efficacy, parasitization rate, and parasitoid/parasite emergence) can be increased, and as a result host activities inhibited. There is some evidence illustrating hormetic dose-responses, but the relevant literature commonly included a limited number and range of doses, precluding a robust differentiation between sub- and superNOAEL (no-observed-adverse-effect level) stimulation. These results reveal a potentially significant threat to ecological health, through stimulation of harmful parasitic organisms by environmental contaminants, and highlight the need to include sublethal stimulation and hormetic responses in relevant ecological pesticide risk assessments. Curiously, considering a more utilitarian view, hormesis may also assist in optimizing mass rearing of biological control agents for field use, a possibility that also remains neglected.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Noboru Masui
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 4228526, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | | | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
9
|
Agathokleous E, Sonne C, Benelli G, Calabrese EJ, Guedes RNC. Low-dose chemical stimulation and pest resistance threaten global crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162989. [PMID: 36948307 DOI: 10.1016/j.scitotenv.2023.162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Pesticide resistance increases and threatens crop production sustainability. Chemical contamination contributes to the development of pest resistance to pesticides, in part by causing stimulatory effects on pests at low sub-toxic doses and facilitating the spread of resistance genes. This article discusses hormesis and low-dose biological stimulation and their relevance to crop pest resistance. It highlights that a holistic approach is needed to tackle pest resistance to pesticides and reduce imbalance in accessing food and improving food security in accordance with the UN's Sustainable Development Goals. Among others, the effects of sub-toxic doses of pesticides should be considered when assessing the impact of synthetic and natural pesticides, while the promotion of alternative agronomical practices is needed to decrease the use of agrochemicals. Potential alternative solutions include camo-cropping, exogenous application of phytochemicals that are pest-suppressing or -repelling and/or attractive to carnivorous arthropods and other pest natural enemies, and nano-technological innovations. Moreover, to facilitate tackling of pesticide resistance in poorer countries, less technology-demanding and low-cost practices are needed. These include mixed cropping systems, diversification of cultures, use of 'push-pull cropping', incorporation of flower strips into cultivations, modification of microenvironment, and application of beneficial microorganisms and insects. However, there are still numerous open questions, and more research is needed to address the ecological and environmental effects of many of these potential solutions, with special reference to trophic webs.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
10
|
Hang Z, Tong P, Zhao P, He Z, Shao L, Jia Y, Wang XC, Li Z. Hierarchical stringent response behaviors of activated sludge system to stressed conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161832. [PMID: 36716870 DOI: 10.1016/j.scitotenv.2023.161832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The stringent response of activated sludge systems to either stressed or harmful environments is important for the stable operation of activated sludge, which is examined by taking copper ion (Cu2+) as a stress model in this study. When weak stress was employed (Cu2+ ≤ 2.5 mg/L), the N-acyl-homoserine lactones (AHLs) of C6-, C8-, and C10-HSL increased by 30 %, 13 %, and 127 %, respectively, while the redox sensor green (RSG) intensity decreased by 28 %. Encountering the increased stress (2.5 mg/L < Cu2+ ≤ 5 mg/L), bacteria concentration in the supernatant increased by 87 %. However, the respiration rates of autotrophic and heterotrophic bacteria (SOURa and SOURh) and adenosine triphosphate decreased by 52 %, 18 %, and 27 %, respectively, and the flocs disintegrated with a diameter decreasing from 57 to 51 μm. When the stress became more serious (Cu2+ > 5 mg/L), the respiration rates continued to decline, but the quasi-endogenous respiration ratio (Rq/t) increased from 31 % to 47 %. Negligible changes occurred in the endogenous respiration rate (SOURe), adenosine diphosphate, and adenosine monophosphate. Based on these results, a hierarchical stringent response model of the activated sludge system to stressed conditions was proposed, and these responses were evaluated by respirogram. The initial response to weak stress was related to the most sensitive signals of quorum sensing and RSG intensity, well described by the quasi-endogenous respiration rate. The adaptive response to increased stress was the proactive migrations of low- and high-nucleic-acid bacteria to the supernatant, causing the looseness and even disintegration of sludge flocs, well described by SOURa, SOURh, and Rq/t. The lethal response to lethal stress was related to endogenous metabolic processes, well described by SOURe. This work provides new insights into understanding the stringent response of activated sludge systems to some stressed conditions. It helps to regulate the stability of activated sludge systems with respirogram technology.
Collapse
Affiliation(s)
- Zhenyu Hang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peipei Tong
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pian Zhao
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhangwei He
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Linjun Shao
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yanru Jia
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology in Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
11
|
Shen H, Yang M, Wang J, Zou X, Tong D, Zhang Y, Tang L, Sun H, Yang L. Dose-dependent joint resistance action of antibacterial mixtures in their hormetic effects on bacterial resistance based on concentration addition model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160574. [PMID: 36455746 DOI: 10.1016/j.scitotenv.2022.160574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The judgment of joint resistance action is significant for evaluating the resistance risk of antibacterial mixture. Using bacterial mutation frequency (MF) and conjugative transfer frequency (CTF) to respectively characterize the bacterial endogenous and exogenous resistance, mutation unit and conjugative transfer unit have been proposed to judge the joint resistance action of antibacterial mixture at a certain dose. However, these methods could not evaluate the antibacterial mixture's joint resistance action at a larger concentration-range. In this study, the concentration addition for bacterial resistance (CA-BR) approach was used to judge the joint resistance actions between kanamycin sulfate (KAN) and some other typical antibacterial agents, including sulfonamides (SAs), sulfonamide potentiators (SAPs), and silver antibacterial compounds (SACs). Through comparing the hormetic dose-response curves of the binary mixtures on the MF (or CTF) in Escherichia coli (E. coli) and the corresponding CA-BR curves calculated from the hormetic dose-responses of the single agents, the joint resistance actions between KAN and other agents were judged to exhibit dose-dependent feature: with the increase of mixture concentration, the joint mutation actions between KAN and SAs (or SAPs) were fixed at synergism, and the joint mutation actions between KAN and SACs varied from antagonism to synergism; the joint conjugative transfer actions between KAN and other agents changed from antagonism to synergism. Mechanistic explanation suggested that the heterogeneous pattern of joint resistance action had a close relationship with the interplays among the agents' modes of action, and meanwhile was significantly influenced by their joint survival pressure on E. coli. This study reveals the dose-dependent feature for the joint resistance action of antibacterial mixture and highlights the importance of exposure concentration, which will benefit clarifying the resistance risk of antibacterial mixture in the environment.
Collapse
Affiliation(s)
- Hongyan Shen
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Mingru Yang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Danqing Tong
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulian Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lei Yang
- Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| |
Collapse
|
12
|
Maruyama H, Fukuchi K, Seki H. Modeling of separation of fatty acid methyl esters derived from fisheries waste by urea complexation method. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Agathokleous E, Peñuelas J, Azevedo RA, Rillig MC, Sun H, Calabrese EJ. Low Levels of Contaminants Stimulate Harmful Algal Organisms and Enrich Their Toxins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11991-12002. [PMID: 35968681 DOI: 10.1021/acs.est.2c02763] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A widespread increase in intense phytoplankton blooms has been noted in lakes worldwide since the 1980s, with the summertime peak intensity amplifying in most lakes. Such blooms cause annual economic losses of multibillion USD and present a major challenge, affecting 11 out of the 17 United Nations Sustainable Development Goals. Here, we evaluate recent scientific evidence for hormetic effects of emerging contaminants and regulated pollutants on Microcystis sp., the most notorious cyanobacteria forming harmful algal blooms and releasing phycotoxins in eutrophic freshwater systems. This new evidence leads to the conclusion that pollution is linked to algal bloom intensification. Concentrations of contaminants that are considerably smaller than the threshold for toxicity enhance the formation of harmful colonies, increase the production of phycotoxins and their release into the environment, and lower the efficacy of algaecides to control algal blooms. The low-dose enhancement of microcystins is attributed to the up-regulation of a protein controlling microcystin release (McyH) and various microcystin synthetases in tandem with the global nitrogen regulator Ycf28, nonribosomal peptide synthetases, and several ATP-binding cassette transport proteins. Given that colony formation and phycotoxin production and release are enhanced by contaminant concentrations smaller than the toxicological threshold and are widely occurring in the environment, the effect of contaminants on harmful algal blooms is more prevalent than previously thought. Climate change and nutrient enrichment, known mechanisms underpinning algal blooms, are thus joined by low-level pollutants as another causal mechanism.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, People's Republic of China
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People's Republic of China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, São Paulo, São Paulo 13418-900, Brazil
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Hasanin MS, Hashem AH, Abu Hashish HM, Abdelraof M. A novel pressed coal from citrus and cooking oil wastes using fungi. BIORESOUR BIOPROCESS 2022; 9:95. [PMID: 38647781 PMCID: PMC10992033 DOI: 10.1186/s40643-022-00582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Nowadays renewable energy with low prices is a global target that has taken the attention to compare alternatives energy sources with fossil fuels. Therefore, this study was established to find suitable and sustainable alternative low-cost fuels source. Cooking oil waste (COW) was mixed with non-pretreated citrus tree fibers (CTF) (0.5 mL to 1 g ratio) and pressed to formulate coal (CTF/COW). Otherwise, this mixture was subjected to in situ fungal pretreated using Aspergillus flavus isolate to simplify the mixture composition and pressed to offer in a usable form with enhancing their heating value for the first time. CTF/COW was characterized using attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM) and thermal analysis (TGA) before and after treatment. The fungal isolate was observed with enzyme productivity and activity of CMCase, avicelase, xylanase, mannanase, α-glucosidase, β-glucosidase, lignin peroxidase and lipase according to enzyme assays and the chemical compositions of CTF before and after fungal treatment, where the best PH for enzymes extraction was between 5 and 7. The fungal enzymes increased the heating value by about two and half folds in comparison with non-pretreated coal. Moreover, the calorific value of tCTF/COW was 43,422 kJ/kg, which was higher than CTF recorded 18,214 kJ/kg and COW recorded 39,823 kJ/kg. Our result suggests that fungal treatment of the mixture of citrus trees and cooking oil waste presents as a promising low-cost and eco-friendly coal.
Collapse
Affiliation(s)
- Mohamed S Hasanin
- Cellulose & Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Hassan M Abu Hashish
- Mechanical Engineering Department, Engineering Research Division, National Research Centre, Giza, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
15
|
Agathokleous E, Barceló D, Rinklebe J, Sonne C, Calabrese EJ, Koike T. Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153116. [PMID: 35063521 DOI: 10.1016/j.scitotenv.2022.153116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Increasing amounts of silver iodide (AgI) in the environment are expected because of the recent massive expansion of weather modification programs. Concurrently, pharmaceuticals, microplastics, hydrocarbons, and pesticides in terrestrial ecosystems continue contaminating forests and agroforests. Our review supports that AgI induces hormesis, a biphasic dose response characterized by often beneficial low-dose responses and toxic high-dose effects, which adds to the evidence for pharmaceuticals, microplastics, hydrocarbons, and pesticides induced hormesis in numerous species. Doses smaller than the no-observed-adverse-effect-level (NOAEL) positively affect defense physiology, growth, biomass, yields, survival, lifespan, and reproduction. They also lead to negative or undesirable outcomes, including stimulation of pathogenic microbes, pest insects, and weeds with enhanced resistance to drugs and potential negative multi- or trans-generational effects. Such sub-NOAEL effects perplex terrestrial ecosystems managements and may compromise combating outbreaks of disease vectors that can threaten not only forest and agroforestry health but also sensitive human subpopulations living in remote forested areas.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
16
|
Abstract
Hormesis drives biological modifications from cells to higher levels of biological organization and emerges as a general basic principle of biology, integrating evolution, ecology, medicine, physiology, toxicology, and public health.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Agathokleous E, Calabrese EJ. Editorial Overview: Hormesis and Dose-Response. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|