1
|
Abraham Punnoose J, Hayden A, Kam CS, Halvorsen K. A guide to building a low-cost centrifuge force microscope module for single-molecule force experiments. Nat Protoc 2024:10.1038/s41596-024-01102-y. [PMID: 39739107 DOI: 10.1038/s41596-024-01102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2024] [Indexed: 01/02/2025]
Abstract
The ability to apply controlled forces to individual molecules or molecular complexes and observe their behaviors has led to many important discoveries in biology. Instruments capable of probing single-molecule forces typically cost >US$100,000, limiting the use of these techniques. The centrifuge force microscope (CFM) is a low-cost and easy-to-use instrument that enables high-throughput single-molecule studies. By combining the imaging capabilities of a microscope with the force application of a centrifuge, the CFM enables the simultaneous probing of hundreds to thousands of single-molecule interactions using tethered particles. Here we present a comprehensive set of instructions for building a CFM module that fits within a commercial benchtop centrifuge. The CFM module uses a 3D-printed housing, relies on off-the-shelf optical and electrical components, and can be built for less than US$1,000 in about 1 day. We also provide detailed instructions for setting up and running an experiment to measure force-dependent shearing of a short DNA duplex, as well as the software for CFM control and data analysis. The protocol is suitable for users with basic experience in analytical biochemistry and biophysics. The protocol enables the use of CFM-based experiments and may facilitate access to the single-molecule research field.
Collapse
Affiliation(s)
| | - Andrew Hayden
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Chai S Kam
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
2
|
Farrell JD, Dobnikar J, Podgornik R, Curk T. Spool-Nematic Ordering of dsDNA and dsRNA under Confinement. PHYSICAL REVIEW LETTERS 2024; 133:148101. [PMID: 39423415 DOI: 10.1103/physrevlett.133.148101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 08/12/2024] [Indexed: 10/21/2024]
Abstract
The ability of double-stranded DNA or RNA to locally melt and form kinks leads to strong nonlinear elasticity effects that qualitatively affect their packing in confined spaces. Using analytical theory and numerical simulation we show that kink formation entails a mixed spool-nematic ordering of double-stranded DNA or RNA in spherical capsids, consisting of an outer spool domain and an inner, twisted nematic domain. These findings explain the experimentally observed nematic domains in viral capsids and imply that nonlinear elasticity must be considered to predict the configurations and dynamics of double-stranded genomes in viruses, bacterial nucleoids or gene-delivery vehicles. The nonlinear elastic theory suggests that spool-nematic ordering is a general feature of strongly confined kinkable polymers.
Collapse
Affiliation(s)
- James D Farrell
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jure Dobnikar
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Rudolf Podgornik
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | |
Collapse
|
3
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging. Nucleic Acids Res 2023; 51:8060-8069. [PMID: 37449417 PMCID: PMC10450192 DOI: 10.1093/nar/gkad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest that it is connected to the phenomenon of 'clogging' in soft matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
Affiliation(s)
- Mounir Fizari
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Bohmer M, Bhullar AS, Weitao T, Zhang L, Lee JH, Guo P. Revolving hexameric ATPases as asymmetric motors to translocate double-stranded DNA genome along one strand. iScience 2023; 26:106922. [PMID: 37305704 PMCID: PMC10250835 DOI: 10.1016/j.isci.2023.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
DsDNA translocation through nanoscale pores is generally accomplished by ATPase biomotors. The discovery of the revolving dsDNA translocation mechanism, as opposed to rotation, in bacteriophage phi29 elucidated how ATPase motors move dsDNA. Revolution-driven, hexameric dsDNA motors have been reported in herpesvirus, bacterial FtsK, Streptomyces TraB, and T7 phage. This review explores the common relationship between their structure and mechanisms. Commonalities include moving along the 5'→3' strand, inchworm sequential action leading to an asymmetrical structure, channel chirality, channel size, and 3-step channel gating for controlling motion direction. The revolving mechanism and contact with one of the dsDNA strands addresses the historic controversy of dsDNA packaging using nicked, gapped, hybrid, or chemically modified DNA. These controversies surrounding dsDNA packaging activity using modified materials can be answered by whether the modification was introduced into the 3'→5' or 5'→3' strand. Perspectives concerning solutions to the controversy of motor structure and stoichiometry are also discussed.
Collapse
Affiliation(s)
- Margaret Bohmer
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Abhjeet S. Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Weitao
- Center for the Genetics of Host Defense UT Southwestern Medical Center, Dallas, TX, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and non-equilibrium dynamics in viral genome ejection and packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535472. [PMID: 37066220 PMCID: PMC10104077 DOI: 10.1101/2023.04.03.535472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics, and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest it is connected to the phenomenon of "clogging" in soft-matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
|
6
|
Butala M, Dragoš A. Unique relationships between phages and endospore-forming hosts. Trends Microbiol 2022; 31:498-510. [PMID: 36535834 DOI: 10.1016/j.tim.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
As part of their survival strategy under harsh environmental conditions, endospore-forming bacteria can trigger a sporulation developmental program. Although the regulatory cascades that precisely control the transformation of vegetative bacteria into mother cells and resilient spores have been described in detail, less is known about how bacteriophages that prey on endospore-formers exploit sporulation. Herein, we argue that phages infecting these bacteria have evolved several specific molecular mechanisms, not yet known in other bacteria, that manifest from the phage-driven alliance to negative effects on the host. We anticipate that the relationships between phages and endospore-formers outlined here will inspire studies on phage ecology and evolution, and could facilitate important advances in the development of phage therapies against pathogenic spore-formers.
Collapse
Affiliation(s)
- Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G. Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function. Viruses 2022; 14:v14102215. [PMID: 36298770 PMCID: PMC9611059 DOI: 10.3390/v14102215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Collapse
|
8
|
Soh BW, Doyle PS. Equilibrium Conformation of Catenated DNA Networks in Slitlike Confinement. ACS Macro Lett 2021; 10:880-885. [PMID: 35549205 DOI: 10.1021/acsmacrolett.1c00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A kinetoplast is a planar network of catenated DNA rings with topology that resembles that of chain mail armor. In this work, we use single-molecule experiments to probe the conformation of kinetoplasts confined to slits. We find that the in-plane size of kinetoplasts increases with degree of confinement, akin to the slitlike confinement of linear DNA. The change in kinetoplast size with channel height is consistent with the scaling prediction from a Flory-type approach for a 2D polymer. With an increase in extent of confinement, the kinetoplasts appear to unfold and take on more uniform circular shapes, in contrast to the broad range of conformations observed for kinetoplasts in bulk.
Collapse
Affiliation(s)
- Beatrice W. Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Gendron I, Savard K, Capaldi X, Liu Z, Zeng L, Reisner W, Capaldi L. Time-dependent knotting of agitated chains. Phys Rev E 2021; 103:032501. [PMID: 33862677 DOI: 10.1103/physreve.103.032501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 11/07/2022]
Abstract
Agitated strings serve as macroscale models of spontaneous knotting, providing valuable insight into knotting dynamics at the microscale while allowing explicit analysis of the resulting knot topologies. We present an experimental setup for confined macroscale knot formation via tumbling along with a software interface to process complex knot data. Our setup allows characterization of knotting probability, knot complexity, and knot formation dynamics for knots with as many as 50 crossings. We find that the probability of knotting saturates below 80% within 100 s of the initiation of tumbling and that this saturation probability does not increase for chains above a critical length, an indication of nonequilibrium knot-formation conditions in our experiment. Despite the saturation in knot formation, we show that longer chains, while being more confined, will always tend to form knots of higher complexity since the free end can access a greater number of loops during tumbling.
Collapse
Affiliation(s)
- Ingrid Gendron
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Katherine Savard
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Xavier Capaldi
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Zezhou Liu
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Lili Zeng
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Walter Reisner
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Luc Capaldi
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
10
|
Mo Y, Keller N, delToro D, Ananthaswamy N, Harvey S, Rao VB, Smith DE. Function of a viral genome packaging motor from bacteriophage T4 is insensitive to DNA sequence. Nucleic Acids Res 2020; 48:11602-11614. [PMID: 33119757 PMCID: PMC7672480 DOI: 10.1093/nar/gkaa875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023] Open
Abstract
Many viruses employ ATP-powered motors during assembly to translocate DNA into procapsid shells. Previous reports raise the question if motor function is modulated by substrate DNA sequence: (i) the phage T4 motor exhibits large translocation rate fluctuations and pauses and slips; (ii) evidence suggests that the phage phi29 motor contacts DNA bases during translocation; and (iii) one theoretical model, the 'B-A scrunchworm', predicts that 'A-philic' sequences that transition more easily to A-form would alter motor function. Here, we use single-molecule optical tweezers measurements to compare translocation of phage, plasmid, and synthetic A-philic, GC rich sequences by the T4 motor. We observed no significant differences in motor velocities, even with A-philic sequences predicted to show higher translocation rate at high applied force. We also observed no significant changes in motor pausing and only modest changes in slipping. To more generally test for sequence dependence, we conducted correlation analyses across pairs of packaging events. No significant correlations in packaging rate, pausing or slipping versus sequence position were detected across repeated measurements with several different DNA sequences. These studies suggest that viral genome packaging is insensitive to DNA sequence and fluctuations in packaging motor velocity, pausing and slipping are primarily stochastic temporal events.
Collapse
Affiliation(s)
- Youbin Mo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, District of Columbia, 20064, USA
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, Univ. of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, District of Columbia, 20064, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Haran G, Mazal H. How fast are the motions of tertiary-structure elements in proteins? J Chem Phys 2020; 153:130902. [PMID: 33032421 DOI: 10.1063/5.0024972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein motions occur on multiple time and distance scales. Large-scale motions of protein tertiary-structure elements, i.e., domains, are particularly intriguing as they are essential for the catalytic activity of many enzymes and for the functional cycles of protein machines and motors. Theoretical estimates suggest that domain motions should be very fast, occurring on the nanosecond or microsecond time scales. Indeed, free-energy barriers for domain motions are likely to involve salt bridges, which can break in microseconds. Experimental methods that can directly probe domain motions on fast time scales have appeared only in recent years. This Perspective discusses briefly some of these techniques, including nuclear magnetic resonance and single-molecule fluorescence spectroscopies. We introduce a few recent studies that demonstrate ultrafast domain motions and discuss their potential roles. Particularly surprising is the observation of tertiary-structure element dynamics that are much faster than the functional cycles in some protein machines. These swift motions can be rationalized on a case-by-case basis. For example, fast domain closure in multi-substrate enzymes may be utilized to optimize relative substrate orientation. Whether a large mismatch in time scales of conformational dynamics vs functional cycles is a general design principle in proteins remains to be determined.
Collapse
Affiliation(s)
- Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Rocha S, Hendrix J, Borrenberghs D, Debyser Z, Hofkens J. Imaging the Replication of Single Viruses: Lessons Learned from HIV and Future Challenges To Overcome. ACS NANO 2020; 14:10775-10783. [PMID: 32820634 DOI: 10.1021/acsnano.0c06369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The molecular composition of viral particles indicates that a single virion is capable of initiating an infection. However, the majority of viruses that come into contact with cells fails to infect them. Understanding what makes one viral particle more successful than others requires visualizing the infection process directly in living cells, one virion at a time. In this Perspective, we explain how single-virus imaging using fluorescence microscopy can provide answers to unsolved questions in virology. We discuss fluorescent labeling of virus particles, resolution at the subviral and molecular levels, tracking in living cells, and imaging of interactions between viral and host proteins. We end this Perspective with a set of remaining questions in understanding the life cycle of retroviruses and how imaging a single virus can help researchers address these questions. Although we use examples from the HIV field, these methods are of value for the study of other viruses as well.
Collapse
Affiliation(s)
- Susana Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, B-3001 Heverlee, Flanders, Belgium
| | - Jelle Hendrix
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, B-3001 Heverlee, Flanders, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, B-3590 Diepenbeek, Flanders, Belgium
| | - Doortje Borrenberghs
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, B-3001 Heverlee, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3001 Heverlee, Flanders, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, B-3001 Heverlee, Flanders, Belgium
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
13
|
Mazal H, Haran G. Single-molecule FRET methods to study the dynamics of proteins at work. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:8-17. [PMID: 31989063 PMCID: PMC6984960 DOI: 10.1016/j.cobme.2019.08.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Feynman commented that "Everything that living things do can be understood in terms of the jiggling and wiggling of atoms". Proteins can jiggle and wiggle large structural elements such as domains and subunits as part of their functional cycles. Single-molecule fluorescence resonance energy transfer (smFRET) is an excellent tool to study conformational dynamics and decipher coordinated large-scale motions within proteins. smFRET methods introduced in recent years are geared toward understanding the time scales and amplitudes of function-related motions. This review discusses the methodology for obtaining and analyzing smFRET temporal trajectories that provide direct dynamic information on transitions between conformational states. It also introduces correlation methods that are useful for characterizing intramolecular motions. This arsenal of techniques has been used to study multiple molecular systems, from membrane proteins through molecular chaperones, and we examine some of these studies here. Recent exciting methodological novelties permit revealing very fast, submillisecond dynamics, whose relevance to protein function is yet to be fully grasped.
Collapse
Affiliation(s)
- Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Ortiz D, delToro D, Ordyan M, Pajak J, Sippy J, Catala A, Oh CS, Vu A, Arya G, Feiss M, Smith DE, Catalano CE. Evidence that a catalytic glutamate and an 'Arginine Toggle' act in concert to mediate ATP hydrolysis and mechanochemical coupling in a viral DNA packaging motor. Nucleic Acids Res 2019; 47:1404-1415. [PMID: 30541105 PMCID: PMC6379665 DOI: 10.1093/nar/gky1217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
ASCE ATPases include ring-translocases such as cellular helicases and viral DNA packaging motors (terminases). These motors have conserved Walker A and B motifs that bind Mg2+-ATP and a catalytic carboxylate that activates water for hydrolysis. Here we demonstrate that Glu179 serves as the catalytic carboxylate in bacteriophage λ terminase and probe its mechanistic role. All changes of Glu179 are lethal: non-conservative changes abrogate ATP hydrolysis and DNA translocation, while the conservative E179D change attenuates ATP hydrolysis and alters single molecule translocation dynamics, consistent with a slowed chemical hydrolysis step. Molecular dynamics simulations of several homologous terminases suggest a novel mechanism, supported by experiments, wherein the conserved Walker A arginine ‘toggles’ between interacting with a glutamate residue in the ‘lid’ subdomain and the catalytic glutamate upon ATP binding; this switch helps mediate a transition from an ‘open’ state to a ‘closed’ state that tightly binds nucleotide and DNA, and also positions the catalytic glutamate next to the γ-phosphate to align the hydrolysis transition state. Concomitant reorientation of the lid subdomain may mediate mechanochemical coupling of ATP hydrolysis and DNA translocation. Given the strong conservation of these structural elements in terminase enzymes, this mechanism may be universal for viral packaging motors.
Collapse
Affiliation(s)
- David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexis Catala
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber Vu
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids. Proc Natl Acad Sci U S A 2019; 116:3556-3561. [PMID: 30737287 PMCID: PMC6397560 DOI: 10.1073/pnas.1813204116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Understanding molecular events during virus assembly and genome packaging is important for understanding viral life cycles, and the functioning of other protein–nucleic acid machines. The model system developed for the thermophilic bacteriophage P23-45 offers advantages over other systems. Cryo-EM reconstructions reveal modifications to a canonical capsid protein fold, resulting in capsids that are abnormally large for this virus class. Structural information on the portal protein, through which the genome is packaged, demonstrates that the capsid influences the portal’s conformation. This has implications for understanding how processes inside and outside the capsid can be coordinated. Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus. Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit β-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.
Collapse
|
16
|
Ordyan M, Alam I, Mahalingam M, Rao VB, Smith DE. Nucleotide-dependent DNA gripping and an end-clamp mechanism regulate the bacteriophage T4 viral packaging motor. Nat Commun 2018; 9:5434. [PMID: 30575768 PMCID: PMC6303390 DOI: 10.1038/s41467-018-07834-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/23/2018] [Indexed: 11/24/2022] Open
Abstract
ATP-powered viral packaging motors are among the most powerful biomotors known. Motor subunits arranged in a ring repeatedly grip and translocate the DNA to package viral genomes into capsids. Here, we use single DNA manipulation and rapid solution exchange to quantify how nucleotide binding regulates interactions between the bacteriophage T4 motor and DNA substrate. With no nucleotides, there is virtually no gripping and rapid slipping occurs with only minimal friction resisting. In contrast, binding of an ATP analog engages nearly continuous gripping. Occasional slips occur due to dissociation of the analog from a gripping motor subunit, or force-induced rupture of grip, but multiple other analog-bound subunits exert high friction that limits slipping. ADP induces comparably infrequent gripping and variable friction. Independent of nucleotides, slipping arrests when the end of the DNA is about to exit the capsid. This end-clamp mechanism increases the efficiency of packaging by making it essentially irreversible. Packaging of viral DNA depends on strong molecular motors that are powered by ATP hydrolysis. Here, the authors develop a single-molecule assay to monitor how nucleotide binding regulates motor-DNA interactions and reveal a generic mechanism that prevents exit of the whole DNA from the viral capsid during packaging.
Collapse
Affiliation(s)
- Mariam Ordyan
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0379, La Jolla, CA, 92093-0379, USA
| | - Istiaq Alam
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA.
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0379, La Jolla, CA, 92093-0379, USA.
| |
Collapse
|
17
|
Tomasch J, Wang H, Hall ATK, Patzelt D, Preusse M, Petersen J, Brinkmann H, Bunk B, Bhuju S, Jarek M, Geffers R, Lang AS, Wagner-Döbler I. Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random. Genome Biol Evol 2018; 10:359-369. [PMID: 29325123 PMCID: PMC5786225 DOI: 10.1093/gbe/evy005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world’s oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a “headful” type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Hui Wang
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - April T K Hall
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Diana Patzelt
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Jörn Petersen
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Henner Brinkmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabin Bhuju
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
18
|
Banerjee S, Maurya S, Roy R. Single-molecule fluorescence imaging: Generating insights into molecular interactions in virology. J Biosci 2018; 43:519-540. [PMID: 30002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-molecule fluorescence methods remain a challenging yet information-rich set of techniques that allow one to probe the dynamics, stoichiometry and conformation of biomolecules one molecule at a time. Viruses are small (nanometers) in size, can achieve cellular infections with a small number of virions and their lifecycle is inherently heterogeneous with a large number of structural and functional intermediates. Single-molecule measurements that reveal the complete distribution of properties rather than the average can hence reveal new insights into virus infections and biology that are inaccessible otherwise. This article highlights some of the methods and recent applications of single-molecule fluorescence in the field of virology. Here, we have focused on new findings in virus-cell interaction, virus cell entry and transport, viral membrane fusion, genome release, replication, translation, assembly, genome packaging, egress and interaction with host immune proteins that underline the advantage of single-molecule approach to the question at hand. Finally, we discuss the challenges, outlook and potential areas for improvement and future use of single-molecule fluorescence that could further aid our understanding of viruses.
Collapse
Affiliation(s)
- Sunaina Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | | | | |
Collapse
|
19
|
Zeng C, Hernando-Pérez M, Dragnea B, Ma X, van der Schoot P, Zandi R. Contact Mechanics of a Small Icosahedral Virus. PHYSICAL REVIEW LETTERS 2017; 119:038102. [PMID: 28777631 DOI: 10.1103/physrevlett.119.038102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 06/07/2023]
Abstract
A virus binding to a surface causes stress of the virus cage near the contact area. Here, we investigate the potential role of substrate-induced structural perturbation in the mechanical response of virus particles to adsorption. This is particularly relevant to the broad category of viruses stabilized by weak noncovalent interactions. We utilize atomic force microscopy to measure height distributions of the brome mosaic virus upon adsorption from solution on atomically flat substrates and present a continuum model that captures our observations and provides estimates of elastic properties and of the interfacial energy of the virus, without recourse to indentation.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Xiang Ma
- Department of Chemistry, Idaho State University, Pocatello, Idaho 83209, USA
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California at Riverside, 900 University Avenue, Riverside, California 92521, USA
| |
Collapse
|
20
|
Abstract
The Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein—protein VII. Two other Ad core proteins, V and X/μ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection. It is not known if naked Ad DNA is packaged into the capsid, as with dsDNA bacteriophage and herpesviruses, followed by the encapsidation of viral core proteins, or if a unique packaging mechanism exists with Ad where a DNA-protein complex is simultaneously packaged into the virion. The latter model would require an entirely new molecular mechanism for packaging compared to known viral packaging motors. We characterized a virus with a conditional knockout of core protein VII. Remarkably, virus particles were assembled efficiently in the absence of protein VII. No changes in protein composition were evident with VII−virus particles, including the abundance of core protein V, but changes in the proteolytic processing of some capsid proteins were evident. Virus particles that lack protein VII enter the cell, but incoming virions did not escape efficiently from endosomes. This greatly diminished all subsequent aspects of the infectious cycle. These results reveal that the Ad major core protein VII is not required to condense viral DNA within the capsid, but rather plays an unexpected role during virus maturation and the early stages of infection. These results establish a new paradigm pertaining to the Ad assembly mechanism and reveal a new and important role of protein VII in early stages of infection. The Ad major core protein VII protects the viral genome from recognition by a cellular DNA damage response during the early stages of infection and alters cellular chromatin to block innate signaling mechanisms. The packaging of the Ad genome into the capsid is thought to follow the paradigm of dsDNA bacteriophage where viral DNA is inserted into a preassembled capsid using a packaging motor. How this process occurs if Ad packages a DNA-core protein complex is unknown. We analyzed an Ad mutant that lacks core protein VII and demonstrated that virus assembly and DNA packaging takes place normally, but that the mutant is deficient in the maturation of several capsid proteins and displays a defect in the escape of virions from the endosome. These results have profound implications for the Ad assembly mechanism and for the role of protein VII during infection.
Collapse
|
21
|
Keller N, Berndsen ZT, Jardine PJ, Smith DE. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection. Phys Rev E 2017; 95:052408. [PMID: 28618627 DOI: 10.1103/physreve.95.052408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Indexed: 11/07/2022]
Abstract
We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.
Collapse
Affiliation(s)
- Nicholas Keller
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary T Berndsen
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, 515 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
22
|
Structure of a headful DNA-packaging bacterial virus at 2.9 Å resolution by electron cryo-microscopy. Proc Natl Acad Sci U S A 2017; 114:3601-3606. [PMID: 28320961 DOI: 10.1073/pnas.1615025114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The enormous prevalence of tailed DNA bacteriophages on this planet is enabled by highly efficient self-assembly of hundreds of protein subunits into highly stable capsids. These capsids can stand with an internal pressure as high as ∼50 atmospheres as a result of the phage DNA-packaging process. Here we report the complete atomic model of the headful DNA-packaging bacteriophage Sf6 at 2.9 Å resolution determined by electron cryo-microscopy. The structure reveals the DNA-inflated, tensed state of a robust protein shell assembled via noncovalent interactions. Remarkable global conformational polymorphism of capsid proteins, a network formed by extended N arms, mortise-and-tenon-like intercapsomer joints, and abundant β-sheet-like mainchain:mainchain intermolecular interactions, confers significant strength yet also flexibility required for capsid assembly and DNA packaging. Differential formations of the hexon and penton are mediated by a drastic α-helix-to-β-strand structural transition. The assembly scheme revealed here may be common among tailed DNA phages and herpesviruses.
Collapse
|
23
|
Hanhijärvi KJ, Ziedaite G, Bamford DH, Hæggström E, Poranen MM. Single-molecule measurements of viral ssRNA packaging. RNA (NEW YORK, N.Y.) 2017; 23:119-129. [PMID: 27803153 PMCID: PMC5159644 DOI: 10.1261/rna.057471.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Genome packaging of double-stranded RNA (dsRNA) phages has been widely studied using biochemical and molecular biology methods. We adapted the existing in vitro packaging system of one such phage for single-molecule experimentation. To our knowledge, this is the first attempt to study the details of viral RNA packaging using optical tweezers. Pseudomonas phage φ6 is a dsRNA virus with a tripartite genome. Positive-sense (+) single-stranded RNA (ssRNA) genome precursors are packaged into a preformed procapsid (PC), where negative strands are synthesized. We present single-molecule measurements of the viral ssRNA packaging by the φ6 PC. Our data show that packaging proceeds intermittently in slow and fast phases, which likely reflects differences in the unfolding of the RNA secondary structures of the ssRNA being packaged. Although the mean packaging velocity was relatively low (0.07-0.54 nm/sec), packaging could reach 4.62 nm/sec during the fast packaging phase.
Collapse
Affiliation(s)
| | - Gabija Ziedaite
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Edward Hæggström
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
24
|
de Holanda VH, Gomes MAF. Scaling, crumpled wires, and genome packing in virions. Phys Rev E 2016; 94:062406. [PMID: 28085370 DOI: 10.1103/physreve.94.062406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 11/07/2022]
Abstract
The packing of a genome in virions is a topic of intense current interest in biology and biological physics. The area is dominated by allometric scaling relations that connect, e.g., the length of the encapsulated genome and the size of the corresponding virion capsid. Here we report scaling laws obtained from extensive experiments of packing of a macroscopic wire within rigid three-dimensional spherical and nonspherical cavities that can shed light on the details of the genome packing in virions. We show that these results obtained with crumpled wires are comparable to those from a large compilation of biological data from several classes of virions.
Collapse
Affiliation(s)
- V H de Holanda
- Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - M A F Gomes
- Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
25
|
Keller N, Grimes S, Jardine PJ, Smith DE. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging. NATURE PHYSICS 2016; 12:757-761. [PMID: 27540410 PMCID: PMC4982518 DOI: 10.1038/nphys3740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/23/2016] [Indexed: 05/26/2023]
Abstract
In many viruses molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells1, 2. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions3. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems4-8. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles5 we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.9, 10.
Collapse
Affiliation(s)
- Nicholas Keller
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455
| | - Paul J. Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455
| | - Douglas E. Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379
| |
Collapse
|
26
|
delToro D, Ortiz D, Ordyan M, Sippy J, Oh CS, Keller N, Feiss M, Catalano CE, Smith DE. Walker-A Motif Acts to Coordinate ATP Hydrolysis with Motor Output in Viral DNA Packaging. J Mol Biol 2016; 428:2709-29. [PMID: 27139643 PMCID: PMC4905814 DOI: 10.1016/j.jmb.2016.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/15/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function. We identify 55 point mutations that reduce virus yield to below detectable levels in a highly sensitive genetic complementation assay and 33 that cause varying reductions in yield. Most changes in the predicted conserved residues K76, R79, G81, and S83 produce no detectable yield. Biochemical analyses show that R79A and S83A mutant proteins fold, assemble, and display genome maturation activity similar to wild-type (WT) but exhibit little ATPase or DNA packaging activity. Kinetic DNA cleavage and ATPase measurements implicate R79 in motor ring assembly on DNA, supporting recent structural models that locate the P-loop at the interface between motor subunits. Single-molecule measurements detect no translocation for K76A and K76R, while G81A and S83A exhibit strong impairments, consistent with their predicted roles in ATP binding. We identify eight residue changes spanning A78-K84 that yield impaired translocation phenotypes and show that Walker-A residues play important roles in determining motor velocity, pausing, and processivity. The efficiency of initiation of packaging correlates strongly with motor velocity. Frequent pausing and slipping caused by changes A78V and R79K suggest that these residues are important for ATP alignment and coupling of ATP binding to DNA gripping. Our findings support recent structural models implicating the P-loop arginine in ATP hydrolysis and mechanochemical coupling.
Collapse
Affiliation(s)
- Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Roy M, Grazioli G, Andricioaei I. Rate turnover in mechano-catalytic coupling: A model and its microscopic origin. J Chem Phys 2016; 143:045105. [PMID: 26233168 DOI: 10.1063/1.4926664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A novel aspect in the area of mechano-chemistry concerns the effect of external forces on enzyme activity, i.e., the existence of mechano-catalytic coupling. Recent experiments on enzyme-catalyzed disulphide bond reduction in proteins under the effect of a force applied on the termini of the protein substrate reveal an unexpected biphasic force dependence for the bond cleavage rate. Here, using atomistic molecular dynamics simulations combined with Smoluchowski theory, we propose a model for this behavior. For a broad range of forces and systems, the model reproduces the experimentally observed rates by solving a reaction-diffusion equation for a "protein coordinate" diffusing in a force-dependent effective potential. The atomistic simulations are used to compute, from first principles, the parameters of the model via a quasiharmonic analysis. Additionally, the simulations are also used to provide details about the microscopic degrees of freedom that are important for the underlying mechano-catalysis.
Collapse
Affiliation(s)
- Mahua Roy
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Gianmarc Grazioli
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
28
|
Frutos MD, Leforestier A, Degrouard J, Zambrano N, Wien F, Boulanger P, Brasilès S, Renouard M, Durand D, Livolant F. Can Changes in Temperature or Ionic Conditions Modify the DNA Organization in the Full Bacteriophage Capsid? J Phys Chem B 2016; 120:5975-86. [PMID: 27152667 DOI: 10.1021/acs.jpcb.6b01783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We compared four bacteriophage species, T5, λ, T7, and Φ29, to explore the possibilities of DNA reorganization in the capsid where the chain is highly concentrated and confined. First, we did not detect any change in DNA organization as a function of temperature between 20 to 40 °C. Second, the presence of spermine (4+) induces a significant enlargement of the typical size of the hexagonal domains in all phages. We interpret these changes as a reorganization of DNA by slight movements of defects in the structure, triggered by a partial screening of repulsive interactions. We did not detect any signal characteristic of a long-range chiral organization of the encapsidated DNA in the presence and in the absence of spermine.
Collapse
Affiliation(s)
- Marta de Frutos
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Amélie Leforestier
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Jéril Degrouard
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Nebraska Zambrano
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Frank Wien
- Synchrotron SOLEIL, DISCO, L'Orme des Merisiers , 91190 St Aubin, France
| | - Pascale Boulanger
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay , 91198 Gif sur Yvette Cedex, France
| | - Sandrine Brasilès
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay , 91198 Gif sur Yvette Cedex, France
| | - Madalena Renouard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay , 91198 Gif sur Yvette Cedex, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay , 91198 Gif sur Yvette Cedex, France
| | - Françoise Livolant
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| |
Collapse
|
29
|
Berndsen ZT, Keller N, Smith DE. Continuous allosteric regulation of a viral packaging motor by a sensor that detects the density and conformation of packaged DNA. Biophys J 2015; 108:315-24. [PMID: 25606680 DOI: 10.1016/j.bpj.2014.11.3469] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 11/24/2014] [Indexed: 11/28/2022] Open
Abstract
We report evidence for an unconventional type of allosteric regulation of a biomotor. We show that the genome-packaging motor of phage ϕ29 is regulated by a sensor that detects the density and conformation of the DNA packaged inside the viral capsid, and slows the motor by a mechanism distinct from the effect of a direct load force on the motor. Specifically, we show that motor-ATP interactions are regulated by a signal that is propagated allosterically from inside the viral shell to the motor mounted on the outside. This signal continuously regulates the motor speed and pausing in response to changes in either density or conformation of the packaged DNA, and slows the motor before the buildup of large forces resisting DNA confinement. Analysis of motor slipping reveals that the force resisting packaging remains low (<1 pN) until ∼ 70% and then rises sharply to ∼ 23 pN at high filling, which is a several-fold lower value than was previously estimated under the assumption that force alone slows the motor. These findings are consistent with recent studies of the stepping kinetics of the motor. The allosteric regulatory mechanism we report allows double-stranded DNA viruses to achieve rapid, high-density packing of their genomes by limiting the buildup of nonequilibrium load forces on the motor.
Collapse
Affiliation(s)
- Zachary T Berndsen
- Department of Physics, University of California, San Diego, La Jolla, California; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, California
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, California.
| |
Collapse
|
30
|
Jin Y, Knobler CM, Gelbart WM. Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022708. [PMID: 26382433 DOI: 10.1103/physreve.92.022708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 06/05/2023]
Abstract
While several in vitro experiments on viral genome release have specifically studied the effects of external osmotic pressure and of the presence of polyvalent cations on the ejection of DNA from bacteriophages, few have systematically investigated how the extent of ejection is controlled by a combination of these effects. In this work we quantify the effect of osmotic pressure on the extent of DNA ejection from bacteriophage lambda as a function of polyvalent cation concentration (in particular, the tetravalent polyamine spermine). We find that the pressure required to completely inhibit ejection decreases from 38 to 17 atm as the spermine concentration is increased from 0 to 1.5 mM. Further, incubation of the phage particles in spermine concentrations as low as 0.15 mM--the threshold for DNA condensation in bulk solution-is sufficient to significantly limit the extent of ejection in the absence of osmolyte; for spermine concentrations below this threshold, the ejection is complete. In accord with recent investigations on the packaging of DNA in the presence of a condensing agent, we observe that the self-attraction induced by the polyvalent cation affects the ordering of the genome, causing it to get stuck in a broad range of nonequilibrated structures.
Collapse
Affiliation(s)
- Yan Jin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute (MBI), University of California, Los Angeles, California 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| |
Collapse
|
31
|
|
32
|
Serwer P, Wright ET, Chang JT, Liu X. Enhancing and initiating phage-based therapies. BACTERIOPHAGE 2014; 4:e961869. [PMID: 26713220 PMCID: PMC4588221 DOI: 10.4161/21597073.2014.961869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023]
Abstract
Drug development has typically been a primary foundation of strategy for systematic, long-range management of pathogenic cells. However, drug development is limited in speed and flexibility when response is needed to changes in pathogenic cells, especially changes that produce drug-resistance. The high replication speed and high diversity of phages are potentially useful for increasing both response speed and response flexibility when changes occur in either drug resistance or other aspects of pathogenic cells. We present strategy, with some empirical details, for (1) using modern molecular biology and biophysics to access these advantages during the phage therapy of bacterial infections, and (2) initiating use of phage capsid-based drug delivery vehicles (DDVs) with procedures that potentially overcome both drug resistance and other present limitations in the use of DDVs for the therapy of neoplasms. The discussion of phage therapy includes (a) historical considerations, (b) changes that appear to be needed in clinical tests if use of phage therapy is to be expanded, (c) recent work on novel phages and its potential use for expanding the capabilities of phage therapy and (d) an outline for a strategy that encompasses both theory and practice for expanding the applications of phage therapy. The discussion of DDVs starts by reviewing current work on DDVs, including work on both liposomal and viral DDVs. The discussion concludes with some details of the potential use of permeability constrained phage capsids as DDVs.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | - Elena T Wright
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | - Juan T Chang
- Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA
| | - Xiangan Liu
- Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA
| |
Collapse
|
33
|
Abstract
The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | | |
Collapse
|
34
|
Migliori AD, Smith DE, Arya G. Molecular interactions and residues involved in force generation in the T4 viral DNA packaging motor. J Mol Biol 2014; 426:4002-4017. [PMID: 25311860 DOI: 10.1016/j.jmb.2014.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/21/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
Many viruses utilize molecular motors to package their genomes into preformed capsids. A striking feature of these motors is their ability to generate large forces to drive DNA translocation against entropic, electrostatic, and bending forces resisting DNA confinement. A model based on recently resolved structures of the bacteriophage T4 motor protein gp17 suggests that this motor generates large forces by undergoing a conformational change from an extended to a compact state. This transition is proposed to be driven by electrostatic interactions between complementarily charged residues across the interface between the N- and C-terminal domains of gp17. Here we use atomistic molecular dynamics simulations to investigate in detail the molecular interactions and residues involved in such a compaction transition of gp17. We find that although electrostatic interactions between charged residues contribute significantly to the overall free energy change of compaction, interactions mediated by the uncharged residues are equally if not more important. We identify five charged residues and six uncharged residues at the interface that play a dominant role in the compaction transition and also reveal salt bridging, van der Waals, and solvent hydrogen-bonding interactions mediated by these residues in stabilizing the compact form of gp17. The formation of a salt bridge between Glu309 and Arg494 is found to be particularly crucial, consistent with experiments showing complete abrogation in packaging upon Glu309Lys mutation. The computed contributions of several other residues are also found to correlate well with single-molecule measurements of impairments in DNA translocation activity caused by site-directed mutations.
Collapse
Affiliation(s)
- Amy D Migliori
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Douglas E Smith
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Gaurav Arya
- Department of NanoEngineering, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Reply to the comment by S. Harvey on "entropy, energy, and bending of DNA in viral capsids". Biophys J 2014; 106:493-6. [PMID: 24461025 DOI: 10.1016/j.bpj.2013.11.4497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 11/20/2022] Open
Abstract
The comment by Stephen Harvey in this issue of the Biophysical Journal concludes with two statements regarding my recent letter about DNA packaging into viral capsids. Harvey agrees with my interpretation of the origin of the large confinement entropy predicted by the molecular-dynamics simulations of his group, and its sensitive dependence on the molecular parameters of their wormlike chain model of double-stranded DNA. On the other hand, he doubts my assertion that the confinement entropy is already included in the interstrand repulsion free energy derived from osmotic stress measurements, which constitutes the major contribution to the packaging free energy used in recent continuum theories of this process. Harvey suggests instead that the confinement entropy should be added to this free energy as a separate term (using, for instance, the method described in my letter). I will argue that this addition is redundant, and, in a brief discussion of continuum theories, will also discuss his comments as relates to the work of other researchers.
Collapse
|
36
|
Revisiting the genome packaging in viruses with lessons from the "Giants". Virology 2014; 466-467:15-26. [PMID: 24998349 DOI: 10.1016/j.virol.2014.06.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Genome encapsidation is an essential step in the life cycle of viruses. Viruses either use some of the most powerful ATP-dependent motors to compel the genetic material into the preformed capsid or make use of the positively charged proteins to bind and condense the negatively charged genome in an energy-independent manner. While the former is a hallmark of large DNA viruses, the latter is commonly seen in small DNA and RNA viruses. Discoveries of many complex giant viruses such as mimivirus, megavirus, pandoravirus, etc., belonging to the nucleo-cytoplasmic large DNA virus (NCLDV) superfamily have changed the perception of genome packaging in viruses. From what little we have understood so far, it seems that the genome packaging mechanism in NCLDVs has nothing in common with other well-characterized viral packaging systems such as the portal-terminase system or the energy-independent system. Recent findings suggest that in giant viruses, the genome segregation and packaging processes are more intricately coupled than those of other viral systems. Interestingly, giant viral packaging systems also seem to possess features that are analogous to bacterial and archaeal chromosome segregation. Although there is a lot of diversity in terms of host range, type of genome, and genome size among viruses, they all seem to use three major types of independent innovations to accomplish genome encapsidation. Here, we have made an attempt to comprehensively review all the known viral genome packaging systems, including the one that is operative in giant viruses, by proposing a simple and expanded classification system that divides the viral packaging systems into three large groups (types I-III) on the basis of the mechanism employed and the relatedness of the major packaging proteins. Known variants within each group have been further classified into subgroups to reflect their unique adaptations.
Collapse
|
37
|
Keller N, delToro D, Grimes S, Jardine PJ, Smith DE. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29. PHYSICAL REVIEW LETTERS 2014; 112:248101. [PMID: 24996111 PMCID: PMC5001848 DOI: 10.1103/physrevlett.112.248101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 05/12/2023]
Abstract
We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.
Collapse
Affiliation(s)
- Nicholas Keller
- Department of Physics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, 515 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, 515 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| |
Collapse
|
38
|
Migliori AD, Keller N, Alam TI, Mahalingam M, Rao VB, Arya G, Smith DE. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor. Nat Commun 2014; 5:4173. [PMID: 24937091 PMCID: PMC4157569 DOI: 10.1038/ncomms5173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/20/2014] [Indexed: 11/09/2022] Open
Abstract
How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Amy D. Migliori
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379
| | - Tanfis I. Alam
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064
| | - Venigalla B. Rao
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379
| |
Collapse
|
39
|
Nonequilibrium dynamics and ultraslow relaxation of confined DNA during viral packaging. Proc Natl Acad Sci U S A 2014; 111:8345-50. [PMID: 24912187 DOI: 10.1073/pnas.1405109111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many viruses use molecular motors that generate large forces to package DNA to near-crystalline densities inside preformed viral proheads. Besides being a key step in viral assembly, this process is of interest as a model for understanding the physics of charged polymers under tight 3D confinement. A large number of theoretical studies have modeled DNA packaging, and the nature of the molecular dynamics and the forces resisting the tight confinement is a subject of wide debate. Here, we directly measure the packaging of single DNA molecules in bacteriophage phi29 with optical tweezers. Using a new technique in which we stall the motor and restart it after increasing waiting periods, we show that the DNA undergoes nonequilibrium conformational dynamics during packaging. We show that the relaxation time of the confined DNA is >10 min, which is longer than the time to package the viral genome and 60,000 times longer than that of the unconfined DNA in solution. Thus, the confined DNA molecule becomes kinetically constrained on the timescale of packaging, exhibiting glassy dynamics, which slows the motor, causes significant heterogeneity in packaging rates of individual viruses, and explains the frequent pausing observed in DNA translocation. These results support several recent hypotheses proposed based on polymer dynamics simulations and show that packaging cannot be fully understood by quasistatic thermodynamic models.
Collapse
|
40
|
Borrenberghs D, Thys W, Rocha S, Demeulemeester J, Weydert C, Dedecker P, Hofkens J, Debyser Z, Hendrix J. HIV virions as nanoscopic test tubes for probing oligomerization of the integrase enzyme. ACS NANO 2014; 8:3531-45. [PMID: 24654558 PMCID: PMC4004294 DOI: 10.1021/nn406615v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Employing viruses as nanoscopic lipid-enveloped test tubes allows the miniaturization of protein-protein interaction (PPI) assays while preserving the physiological environment necessary for particular biological processes. Applied to the study of the human immunodeficiency virus type 1 (HIV-1), viral biology and pathology can also be investigated in novel ways, both in vitro as well as in infected cells. In this work we report on an experimental strategy that makes use of engineered HIV-1 viral particles, to allow for probing PPIs of the HIV-1 integrase (IN) inside viruses with single-molecule Förster resonance energy transfer (FRET) using fluorescent proteins (FP). We show that infectious fluorescently labeled viruses can be obtained and that the quantity of labels can be accurately measured and controlled inside individual viral particles. We demonstrate, with proper control experiments, the formation of IN oligomers in single viral particles and inside viral complexes in infected cells. Finally, we show a clear effect on IN oligomerization of small molecule inhibitors of interactions of IN with its natural human cofactor LEDGF/p75, corroborating that IN oligomer enhancing drugs are active already at the level of the virus and strongly suggesting the presence of a dynamic, enhanceable equilibrium between the IN dimer and tetramer in viral particles. Although applied to the HIV-1 IN enzyme, our methodology for utilizing HIV virions as nanoscopic test tubes for probing PPIs is generic, i.e., other PPIs targeted into the HIV-1, or PPIs targeted into other viruses, can potentially be studied with a similar strategy.
Collapse
Affiliation(s)
- Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
| | - Wannes Thys
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Flanders, Belgium
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
| | - Jonas Demeulemeester
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Flanders, Belgium
| | - Caroline Weydert
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Flanders, Belgium
| | - Peter Dedecker
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Flanders, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
- Address correspondence to
| |
Collapse
|
41
|
May ER. Recent Developments in Molecular Simulation Approaches to Study Spherical Virus Capsids. MOLECULAR SIMULATION 2014; 40:878-888. [PMID: 25197162 DOI: 10.1080/08927022.2014.907899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Viruses are a particularly challenging systems to study via molecular simulation methods. Virus capsids typically consist of over 100 subunit proteins and reach dimensions of over 100 nm; solvated viruses capsid systems can be over 1 million atoms in size. In this review, I will present recent developments which have attempted to overcome the significant computational expense to perform simulations which can inform experimental studies, make useful predictions about biological phenomena and calculate material properties relevant to nanotechnology design efforts.
Collapse
Affiliation(s)
- Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA 06269
| |
Collapse
|
42
|
delToro D, Smith DE. Accurate measurement of force and displacement with optical tweezers using DNA molecules as metrology standards. APPLIED PHYSICS LETTERS 2014; 104:143701. [PMID: 25316922 PMCID: PMC4169375 DOI: 10.1063/1.4871005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/30/2014] [Indexed: 05/16/2023]
Abstract
Optical tweezers facilitate measurement of piconewton-level forces and nanometer-level displacements and have broad applications in biophysics and soft matter physics research. We have shown previously that DNA molecules can be used as metrology standards to define such measurements. Force-extension measurements on two DNA molecules of different lengths can be used to determine four necessary measurement parameters. Here, we show that the accuracy of determining these parameters can be improved by more than 7-fold by incorporating measurements of the DNA overstretching transition and using a multi-step data analysis procedure. This method results in very robust and precise fitting of DNA force-extension measurements to the worm-like chain model. We verify the accuracy through independent measurements of DNA stretching, DNA unzipping, and microsphere contact forces.
Collapse
Affiliation(s)
- Damian delToro
- Department of Physics, University of California , San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Douglas E Smith
- Department of Physics, University of California , San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
43
|
Serwer P, Wright ET, Liu Z, Jiang W. Length quantization of DNA partially expelled from heads of a bacteriophage T3 mutant. Virology 2014; 456-457:157-70. [PMID: 24889235 DOI: 10.1016/j.virol.2014.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 02/20/2014] [Accepted: 03/14/2014] [Indexed: 11/30/2022]
Abstract
DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7-12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | - Elena T Wright
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Zheng Liu
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
44
|
DE FRUTOS M, LEFORESTIER A, LIVOLANT F. RELATIONSHIP BETWEEN THE GENOME PACKING IN THE BACTERIOPHAGE CAPSID AND THE KINETICS OF DNA EJECTION. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013500069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a general survey of experimental and theoretical observations of DNA structure and in vitro ejection kinetics for different bacteriophage species. In some species, like T5, the ejection may present pauses and arrests that have not been detected in others species like Lambda. We propose hypotheses to explain such differences and we discuss how the experimental conditions may be important for their detection. Our work highlights the role of DNA organization inside the bacteriophage capsid on the stochastic and out of equilibrium nature of the ejection process.
Collapse
Affiliation(s)
- M. DE FRUTOS
- Institut de Biologie et Biochimie Moléculaire et Cellulaire, UMR CNRS 8619, Bât 430, Université Paris Sud, 91405 Orsay cedex, France
| | - A. LEFORESTIER
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, Bât 510, Orsay 91405, France
| | - F. LIVOLANT
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, Bât 510, Orsay 91405, France
| |
Collapse
|
45
|
Fokine A, Rossmann MG. Molecular architecture of tailed double-stranded DNA phages. BACTERIOPHAGE 2014; 4:e28281. [PMID: 24616838 DOI: 10.4161/bact.28281] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 01/21/2023]
Abstract
The tailed double-stranded DNA bacteriophages, or Caudovirales, constitute ~96% of all the known phages. Although these phages come in a great variety of sizes and morphology, their virions are mainly constructed of similar molecular building blocks via similar assembly pathways. Here we review the structure of tailed double-stranded DNA bacteriophages at a molecular level, emphasizing the structural similarity and common evolutionary origin of proteins that constitute these virions.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| | - Michael G Rossmann
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| |
Collapse
|
46
|
Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL. Optical tweezers analysis of DNA-protein complexes. Chem Rev 2014; 114:3087-119. [PMID: 24443844 DOI: 10.1021/cr4003006] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University Amsterdam , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Nguyen TT. Strongly correlated electrostatics of viral genome packaging. J Biol Phys 2013; 39:247-65. [PMID: 23860872 DOI: 10.1007/s10867-013-9301-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/16/2013] [Indexed: 11/25/2022] Open
Abstract
The problem of viral packaging (condensation) and ejection from viral capsid in the presence of multivalent counterions is considered. Experiments show divalent counterions strongly influence the amount of DNA ejected from bacteriophage. In this paper, the strong electrostatic interactions between DNA molecules in the presence of multivalent counterions is investigated. It is shown that experiment results agree reasonably well with the phenomenon of DNA reentrant condensation. This phenomenon is known to cause DNA condensation in the presence of tri- or tetra-valent counterions. For divalent counterions, the viral capsid confinement strongly suppresses DNA configurational entropy, therefore the correlation between divalent counterions is strongly enhanced causing similar effect. Computational studies also agree well with theoretical calculations.
Collapse
Affiliation(s)
- Toan T Nguyen
- Nano and Energy Center, Vietnam National University-Hanoi, 144 Xuan Thuy, Cau Giay Street, Hanoi, Vietnam.
| |
Collapse
|
48
|
A Two-State Cooperative Expansion Converts the Procapsid Shell of Bacteriophage T5 into a Highly Stable Capsid Isomorphous to the Final Virion Head. J Mol Biol 2013; 425:1999-2014. [DOI: 10.1016/j.jmb.2013.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/20/2013] [Accepted: 03/03/2013] [Indexed: 11/19/2022]
|
49
|
Ben-Shaul A. Entropy, energy, and bending of DNA in viral capsids. Biophys J 2013; 104:L15-7. [PMID: 23708371 PMCID: PMC3660642 DOI: 10.1016/j.bpj.2013.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022] Open
Abstract
Inspired by novel single-molecule and bulk solution measurements, the physics underlying the forces and pressures involved in DNA packaging into bacteriophage capsids became the focus of numerous recent theoretical models. These fall into two general categories: Continuum-elastic theories (CT), and simulation studies-mostly of the molecular dynamics (MD) genre. Both types of models account for the dependence of the force, and hence the packaging free energy (ΔF), on the loaded DNA length, but differ markedly in interpreting their origin. While DNA confinement entropy is a dominant contribution to ΔF in the MD simulations, in the CT theories this role is fulfilled by interstrand repulsion, and there is no explicit entropy term. The goal of this letter is to resolve this apparent contradiction, elucidate the origin of the entropic term in the MD simulations, and point out its tacit presence in the CT treatments.
Collapse
Affiliation(s)
- Avinoam Ben-Shaul
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
50
|
Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage. Proc Natl Acad Sci U S A 2013; 110:8075-80. [PMID: 23630261 DOI: 10.1073/pnas.1301133110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many DNA viruses use powerful molecular motors to cleave concatemeric viral DNA into genome-length units and package them into preformed procapsid powered by ATP hydrolysis. Here we report the structures of the DNA-packaging motor gp2 of bacteriophage Sf6, which reveal a unique clade of RecA-like ATPase domain and an RNase H-like nuclease domain tethered by a regulatory linker domain, exhibiting a strikingly distinct domain arrangement. The gp2 structures complexed with nucleotides reveal, at the atomic detail, the catalytic center embraced by the ATPase domain and the linker domain. The gp2 nuclease activity is modulated by the ATPase domain and is stimulated by ATP. An extended DNA-binding surface is formed by the linker domain and the nuclease domain. These results suggest a unique mechanism for translation of chemical reaction into physical motion of DNA and provide insights into coordination of DNA translocation and cleavage in a viral DNA-packaging motor, which may be achieved via linker-domain-mediated interdomain communication driven by ATP hydrolysis.
Collapse
|