1
|
Koumba Mavoungou DS, Bohou Kombila L, Longo Pendy NM, Koumba Moukouama SE, Lekana-Douki SE, Maganga GD, Leroy EM, Aghokeng AF, N’dilimabaka N. Prevalence and Genetic Diversity of Bat Hepatitis B Viruses in Bat Species Living in Gabon. Viruses 2024; 16:1015. [PMID: 39066178 PMCID: PMC11281422 DOI: 10.3390/v16071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection leads to around 800,000 deaths yearly and is considered to be a major public health problem worldwide. However, HBV origins remain poorly understood. Here, we looked for bat HBV (BtHBV) in different bat species in Gabon to investigate the role of these animals as carriers of ancestral hepadnaviruses because these viruses are much more diverse in bats than in other host species. DNA was extracted from 859 bat livers belonging to 11 species collected in caves and villages in the southeast of Gabon and analyzed using PCRs targeting the surface gene. Positive samples were sequenced using the Sanger method. BtHBV DNA was detected in 64 (7.4%) individuals belonging to eight species mainly collected in caves. Thirty-six (36) sequences among the 37 obtained after sequencing were phylogenetically close to the RBHBV strain recently isolated in Gabonese bats, while the remaining sequence was close to a rodent HBV strain isolated in America. The generalized linear mixed model showed that the variable species best explained the occurrence of BtHBV infection in bats. The discovery of a BtHBV strain homologous to a rodent strain in bats raises the possibility that these animals may be carriers of ancestral hepadnaviruses.
Collapse
Affiliation(s)
- Danielle S. Koumba Mavoungou
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
| | - Linda Bohou Kombila
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
| | - Neil M. Longo Pendy
- Unité Ecologie des Systèmes Vectoriels, Département de parasitologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon;
| | - Schedy E. Koumba Moukouama
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
| | - Sonia Etenna Lekana-Douki
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
| | - Gaël D. Maganga
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
- Institut National Supérieur d’Agronomie et de Biotechnologies (INSAB), Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
| | - Eric M. Leroy
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), (Université de Montpellier-IRD 224-CNRS5290), 34394 Montpellier, France; (E.M.L.); (A.F.A.)
| | - Avelin F. Aghokeng
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), (Université de Montpellier-IRD 224-CNRS5290), 34394 Montpellier, France; (E.M.L.); (A.F.A.)
| | - Nadine N’dilimabaka
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
- Département de Biologie, Faculté des Sciences, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 901, Gabon
| |
Collapse
|
2
|
Snow R, Tse M, Hill F, Choi YR, Beatty J, Grioni A. CONCURRENT IRON OVERLOAD AND NEOPLASIA IN LESCHENAULT'S ROUSETTES ( ROUSETTUS LESCHENAULTII): A CASE SERIES. J Zoo Wildl Med 2024; 55:235-247. [PMID: 38453508 DOI: 10.1638/2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 03/09/2024] Open
Abstract
This case series investigates a cluster of deaths in a captive colony of Leschenault's rousettes (Rousettus leschenaultii). Six of seven bats that died between March and September 2021 were diagnosed postmortem with both iron overload (IO) and neoplasia, neither of which have previously been reported in this species. Iron status was assessed via hepatic histopathological grading, hepatic iron concentration, and, in two cases, serum iron concentration. On histopathological grading, all cases had hemochromatosis except one, which had hemosiderosis. Hepatic iron concentrations did not correlate with histopathological grading. Neoplasms in these six bats included hepatocellular carcinoma (HCC; 4), bronchioloalveolar adenocarcinoma (1), pancreatic adenocarcinoma (1), and sarcoma of the spleen and stomach (1). One bat had two neoplasms (HCC and sarcoma of the spleen and stomach). One additional case of HCC in 2018 was identified on retrospective case review. Etiology was investigated to the extent possible in a clinical setting. Nutritional analysis and drinking water testing found oral iron intake within acceptable bounds; however, dietary vitamin C was potentially excessive and may have contributed to IO. Panhepadnavirus PCR testing of liver tissue was negative for all bats. A species-associated susceptibility to IO, as seen in Egyptian fruit bats (Rousettus aegyptiacus), is possible. The high incidence of HCC is suspected to be related to IO; other differentials include viral infection. Causes or contributing factors were not definitively identified for the other neoplasms seen but could include age, inherited risk (given a high level of inbreeding), or an oncogenic virus. Pending further research in this species, it is recommended that keepers of Leschenault's rousettes offer conservative amounts of vitamin C and iron (as for Egyptian fruit bats), submit for postmortem examination any euthanized or found dead, and share records of similar cases.
Collapse
Affiliation(s)
- Renata Snow
- Fauna Conservation Department, Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong SAR, China,
| | - May Tse
- City University Veterinary Diagnostic Laboratory, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Fraser Hill
- City University Veterinary Diagnostic Laboratory, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yan Ru Choi
- Centre for Animal Health and Welfare & Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Julia Beatty
- Centre for Animal Health and Welfare & Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Alessandro Grioni
- Fauna Conservation Department, Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong SAR, China
| |
Collapse
|
3
|
Jones BD, Kaufman EJ, Peel AJ. Viral Co-Infection in Bats: A Systematic Review. Viruses 2023; 15:1860. [PMID: 37766267 PMCID: PMC10535902 DOI: 10.3390/v15091860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Co-infection is an underappreciated phenomenon in contemporary disease ecology despite its ubiquity and importance in nature. Viruses, and other co-infecting agents, can interact in ways that shape host and agent communities, influence infection dynamics, and drive evolutionary selective pressures. Bats are host to many viruses of zoonotic potential and have drawn increasing attention in their role as wildlife reservoirs for human spillover. However, the role of co-infection in driving viral transmission dynamics within bats is unknown. Here, we systematically review peer-reviewed literature reporting viral co-infections in bats. We show that viral co-infection is common in bats but is often only reported as an incidental finding. Biases identified in our study database related to virus and host species were pre-existing in virus studies of bats generally. Studies largely speculated on the role co-infection plays in viral recombination and few investigated potential drivers or impacts of co-infection. Our results demonstrate that current knowledge of co-infection in bats is an ad hoc by-product of viral discovery efforts, and that future targeted co-infection studies will improve our understanding of the role it plays. Adding to the broader context of co-infection studies in other wildlife species, we anticipate our review will inform future co-infection study design and reporting in bats. Consideration of detection strategy, including potential viral targets, and appropriate analysis methodology will provide more robust results and facilitate further investigation of the role of viral co-infection in bat reservoirs.
Collapse
Affiliation(s)
- Brent D. Jones
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | | | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
4
|
Toyé RM, Loureiro CL, Jaspe RC, Zoulim F, Pujol FH, Chemin I. The Hepatitis B Virus Genotypes E to J: The Overlooked Genotypes. Microorganisms 2023; 11:1908. [PMID: 37630468 PMCID: PMC10459053 DOI: 10.3390/microorganisms11081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis B virus (HBV) genotypes E to J are understudied genotypes. Genotype E is found almost exclusively in West Africa. Genotypes F and H are found in America and are rare in other parts of the world. The distribution of genotype G is not completely known. Genotypes I and J are found in Asia and probably result from recombination events with other genotypes. The number of reported sequences for HBV genotypes E to J is small compared to other genotypes, which could impact phylogenetic and pairwise distance analyses. Genotype F is the most divergent of the HBV genotypes and is subdivided into six subgenotypes F1 to F6. Genotype E may be a recent genotype circulating almost exclusively in sub-Saharan Africa. Genotype J is a putative genotype originating from a single Japanese patient. The paucity of data from sub-Saharan Africa and Latin America is due to the under-representation of these regions in clinical and research cohorts. The purpose of this review is to highlight the need for further research on HBV genotypes E to J, which appear to be overlooked genotypes.
Collapse
Affiliation(s)
- Rayana Maryse Toyé
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| | - Carmen Luisa Loureiro
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
| | - Rossana Celeste Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
| | - Fabien Zoulim
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
- Collégium de Lyon, Institut d’Etudes Avancées, Université Lyon 2, 69007 Lyon, France
| | - Isabelle Chemin
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| |
Collapse
|
5
|
Jose-Abrego A, Roman S, Laguna-Meraz S, Rebello-Pinho JR, Justo Arevalo S, Panduro A. Tracing the evolutionary history of hepatitis B virus genotype H endemic to Mexico. Front Microbiol 2023; 14:1180931. [PMID: 37293217 PMCID: PMC10244555 DOI: 10.3389/fmicb.2023.1180931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Hepatitis B virus (HBV) spreads efficiently among all human populations worldwide. HBV is classified into ten genotypes (A to J) with their geographic distribution and clinical features. In Mexico, HBV genotype H is the leading cause of hepatitis B and has been detected in indigenous populations, suggesting that HBV genotype H may be native to Mexico. However, little is known about the evolutionary history of HBV genotype H. Thus, we aimed to determine the age of HBV genotype H in Mexico using molecular dating techniques. Ninety-two HBV sequences of the reverse transcriptase (RT) domain of the polymerase gene (~1,251 bp) were analyzed; 48 were genotype H, 43 were genotype F, and the oldest HBV sequence from America was included as the root. All sequences were aligned, and the most recent common ancestor (TMRCA) time was calculated using the Bayesian Skyline Evolutionary Analysis. Our results estimate a TMRCA for the genotype H in Mexico of 2070.9 (667.5-4489.2) years before the present (YBP). We identified four major diversification events in genotype H, named H1, H2, H3, and H4. The TMRCA of H1 was 1213.0 (253.3-2638.3) YBP, followed by H2 1175.5 (557.5-2424.2) YBP, H3 949.6 (279.3-2105.0) YBP, and H4 1230.5 (336.3, 2756.7) YBP. We estimated that genotype H diverged from its sister genotype F around 8140.8 (1867.5-18012.8) YBP. In conclusion, this study found that genotype H in Mexico has an estimated age of 2070.9 (667.5-4489.2) YBP and has experienced at least four major diversification events since then.
Collapse
Affiliation(s)
- Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Molecular Biology in Medicine Doctorate Program, Guadalajara, Mexico
| | - João Renato Rebello-Pinho
- Department of Gastroenterology, Institute of Tropical Medicine and School of Medicine, LIM07, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Santiago Justo Arevalo
- Faculty of Biological Sciences, Ricardo Palma University, Lima, Peru
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Ellwanger JH, Fearnside PM, Ziliotto M, Valverde-Villegas JM, Veiga ABGDA, Vieira GF, Bach E, Cardoso JC, Müller NFD, Lopes G, Caesar L, Kulmann-Leal B, Kaminski VL, Silveira ES, Spilki FR, Weber MN, Almeida SEDEM, Hora VPDA, Chies JAB. Synthesizing the connections between environmental disturbances and zoonotic spillover. AN ACAD BRAS CIENC 2022; 94:e20211530. [PMID: 36169531 DOI: 10.1590/0001-3765202220211530] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Zoonotic spillover is a phenomenon characterized by the transfer of pathogens between different animal species. Most human emerging infectious diseases originate from non-human animals, and human-related environmental disturbances are the driving forces of the emergence of new human pathogens. Synthesizing the sequence of basic events involved in the emergence of new human pathogens is important for guiding the understanding, identification, and description of key aspects of human activities that can be changed to prevent new outbreaks, epidemics, and pandemics. This review synthesizes the connections between environmental disturbances and increased risk of spillover events based on the One Health perspective. Anthropogenic disturbances in the environment (e.g., deforestation, habitat fragmentation, biodiversity loss, wildlife exploitation) lead to changes in ecological niches, reduction of the dilution effect, increased contact between humans and other animals, changes in the incidence and load of pathogens in animal populations, and alterations in the abiotic factors of landscapes. These phenomena can increase the risk of spillover events and, potentially, facilitate new infectious disease outbreaks. Using Brazil as a study model, this review brings a discussion concerning anthropogenic activities in the Amazon region and their potential impacts on spillover risk and spread of emerging diseases in this region.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Philip Martin Fearnside
- Instituto Nacional de Pesquisas da Amazônia/INPA, Avenida André Araújo, 2936, Aleixo, 69067-375 Manaus, AM, Brazil
| | - Marina Ziliotto
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jacqueline María Valverde-Villegas
- Institut de Génétique Moléculaire de Montpellier/IGMM, Centre National de la Recherche Scientifique/CNRS, Laboratoire coopératif IGMM/ABIVAX, 1919, route de Mende, 34090 Montpellier, Montpellier, France
| | - Ana Beatriz G DA Veiga
- Universidade Federal de Ciências da Saúde de Porto Alegre/UFCSPA, Departamento de Ciências Básicas de Saúde, Rua Sarmento Leite, 245, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Gustavo F Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Laboratório de Saúde Humana in silico, Avenida Victor Barreto, 2288, Centro, 92010-000 Canoas, RS, Brazil
| | - Evelise Bach
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jáder C Cardoso
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Nícolas Felipe D Müller
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Gabriel Lopes
- Fundação Oswaldo Cruz/FIOCRUZ, Casa de Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lílian Caesar
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Indiana University/IU, Department of Biology, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Bruna Kulmann-Leal
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Valéria L Kaminski
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São Paulo/UNIFESP, Instituto de Ciência e Tecnologia/ICT, Laboratório de Imunologia Aplicada, Rua Talim, 330, Vila Nair, 12231-280 São José dos Campos, SP, Brazil
| | - Etiele S Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Fernando R Spilki
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Matheus N Weber
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Sabrina E DE Matos Almeida
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Vanusa P DA Hora
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande/FURG, Faculdade de Medicina, Rua Visconde de Paranaguá, 102, Centro, 96203-900, Rio Grande, RS, Brazil
| | - José Artur B Chies
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Choi YR, Chen MC, Carrai M, Rizzo F, Chai Y, Tse M, Jackson K, Martella V, Steiner J, Pesavento PA, Beatty JA, Barrs VR. Hepadnavirus DNA Is Detected in Canine Blood Samples in Hong Kong but Not in Liver Biopsies of Chronic Hepatitis or Hepatocellular Carcinoma. Viruses 2022; 14:v14071543. [PMID: 35891523 PMCID: PMC9320092 DOI: 10.3390/v14071543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic hepatitis and hepatocellular carcinoma (HCC) caused by the hepadnavirus hepatitis B virus (HBV) are significant causes of human mortality. A hepatitis-B-like virus infecting cats, domestic cat hepadnavirus (DCH), was reported in 2018. DCH DNA is hepatotropic and detectable in feline blood or serum (3.2 to 12.3%). Detection of HBV DNA has been reported in sera from 10% of free-roaming dogs in Brazil, whereas 6.3% of sera from dogs in Italy tested positive for DCH DNA by real-time quantitative PCR (qPCR). If DCH, HBV, or another hepadnavirus is hepatotropic in dogs, a role for such a virus in the etiology of canine idiopathic chronic hepatitis (CH) or HCC warrants investigation. This study investigated whether DCH DNA could be detected via qPCR in blood from dogs in Hong Kong and also whether liver biopsies from dogs with confirmed idiopathic CH or HCC contained hepadnaviral DNA using two panhepadnavirus conventional PCRs (cPCR) and a DCH-specific cPCR. DCH DNA was amplified from 2 of 501 (0.4%) canine whole-blood DNA samples. A second sample taken 6 or 7 months later from each dog tested negative in DCH qPCR. DNA extracted from 101 liver biopsies from dogs in Hong Kong or the USA, diagnosed by board-certified pathologists as idiopathic CH (n = 47) or HCC (n = 54), tested negative for DCH DNA and also tested negative using panhepadnavirus cPCRs. This study confirms that DCH DNA can be detected in canine blood by qPCR, although at a much lower prevalence than that reported previously. We identified no evidence to support a pathogenic role for a hepadnavirus in canine idiopathic CH or HCC.
Collapse
Affiliation(s)
- Yan Ru Choi
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China; (Y.R.C.); (M.C.); (V.R.B.)
| | - Min-Chun Chen
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.-C.C.); (J.S.)
| | - Maura Carrai
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China; (Y.R.C.); (M.C.); (V.R.B.)
| | - Francesca Rizzo
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
| | - Yingfei Chai
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
| | - May Tse
- CityU Veterinary Diagnostic Laboratory, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
| | - Ken Jackson
- School of Veterinary Medicine, UC Davis, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA; (K.J.); (P.A.P.)
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Joerg Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.-C.C.); (J.S.)
| | - Patricia A. Pesavento
- School of Veterinary Medicine, UC Davis, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA; (K.J.); (P.A.P.)
| | - Julia A. Beatty
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China; (Y.R.C.); (M.C.); (V.R.B.)
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
- Correspondence:
| | - Vanessa R. Barrs
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China; (Y.R.C.); (M.C.); (V.R.B.)
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
| |
Collapse
|
8
|
de Souza AJS, Malheiros AP, Chagas AACD, Paiva VLGDS, Lauri LS, Scheffer KC, Mori E, Gomes-Gouvêa MS, Pinho JRR, Sá LRMD. Orthohepadnavirus infection in a neotropical bat (Platyrrhinus lineatus). Comp Immunol Microbiol Infect Dis 2021; 79:101713. [PMID: 34634750 DOI: 10.1016/j.cimid.2021.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Hepatitis B virus (HBV) is the prototype of the Orthohepadnavirus genus and represents an important cause of chronic hepatitis, liver cirrhosis, and hepatic cancer in humans worldwide. To verify the occurrence and genetic variability of orthohepadnavirus among neotropical bats, we tested 81 liver samples of New World bats from São Paulo State, Southeastern Brazil, collected during 2012. PCR, sequencing, and phylogenetic analysis of Surface/Polymerase and Core viral genes confirmed the occurrence of the first isolate of bat orthohepadnavirus detected in South America. These results may contribute to subsequent studies of the origin, variability, host species, and evolution of bat orthohepadnaviruses in South America.
Collapse
Affiliation(s)
- Alex Junior Souza de Souza
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Orlando Marques de Paiva, 87, CEP 05508-270 São Paulo, SP, Brazil.
| | | | | | - Vera Lisa Generosa da Silva Paiva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Orlando Marques de Paiva, 87, CEP 05508-270 São Paulo, SP, Brazil
| | - Liura Sanchez Lauri
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Orlando Marques de Paiva, 87, CEP 05508-270 São Paulo, SP, Brazil
| | | | - Enio Mori
- Pasteur Institute, São Paulo, SP, Brazil
| | - Michele Soares Gomes-Gouvêa
- São Paulo Institute of Tropical Medicine (LIM-07) and Department of Gastroenterology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - João Renato Rebello Pinho
- São Paulo Institute of Tropical Medicine (LIM-07) and Department of Gastroenterology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lilian Rose Marques de Sá
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Orlando Marques de Paiva, 87, CEP 05508-270 São Paulo, SP, Brazil
| |
Collapse
|
9
|
Seal S, Dharmarajan G, Khan I. Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm. eLife 2021; 10:e68874. [PMID: 34544548 PMCID: PMC8455132 DOI: 10.7554/elife.68874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind's insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.
Collapse
Affiliation(s)
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of GeorgiaAikenUnited States
| | | |
Collapse
|
10
|
Virome in adult Aedes albopictus captured during different seasons in Guangzhou City, China. Parasit Vectors 2021; 14:415. [PMID: 34407871 PMCID: PMC8371599 DOI: 10.1186/s13071-021-04922-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
Background The mosquito Aedes albopictus is an important vector for many pathogens. Understanding the virome in Ae. albopictus is critical for assessing the risk of disease transmission, implementation of vector control measures, and health system strengthening. Methods In this study, viral metagenomic and PCR methods were used to reveal the virome in adult Ae. albopictus captured in different areas and during different seasons in Guangzhou, China. Results The viral composition of adult Ae. albopictus varied mainly between seasons. Over 50 viral families were found, which were specific to vertebrates, invertebrates, plants, fungi, bacteria, and protozoa. In rural areas, Siphoviridae (6.5%) was the most common viral family harbored by mosquitoes captured during winter and spring, while Luteoviridae (1.1%) was the most common viral family harbored by mosquitoes captured during summer and autumn. Myoviridae (7.0% and 1.3%) was the most common viral family in mosquitoes captured in urban areas during all seasons. Hepatitis B virus (HBV) was detected by PCR in a female mosquito pool. The first near full-length HBV genome from Ae. albopictus was amplified, which showed a high level of similarity with human HBV genotype B sequences. Human parechovirus (HPeV) was detected in male and female mosquito pools, and the sequences were clustered with HPeV 1 and 3 sequences. Conclusions Large numbers of viral species were found in adult Ae. albopictus, including viruses from vertebrates, insects, and plants. The viral composition in Ae. albopictus mainly varied between seasons. Herein, we are the first to report the detection of HPeV and HBV in mosquitoes. This study not only provides valuable information for the control and prevention of mosquito-borne diseases, but it also demonstrates the feasibility of xenosurveillance. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04922-z.
Collapse
|
11
|
Lu G, Pan J, Zhang Y, Sun X, Ou J, Ji J, Yin X, Li S. Hepatitis B virus detected in a golden monkey fatal case, China. INFECTION GENETICS AND EVOLUTION 2021; 94:105032. [PMID: 34384935 DOI: 10.1016/j.meegid.2021.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
Hepatitis B virus (HBV) is distributed worldwide and poses a significant threat to human health. Cross-species transmission of HBV from human to non-human primates could occur, which has been confirmed in three individual events. In this study, HBV DNA was detected in one golden monkey fatal case in China. The following genetic sequencing and analysis demonstrated the virus had a close genetic relationship with HBV genotype C in humans. To our knowledge, this is the first report suggested that HBV is related with a non-human primate fatal case in China.
Collapse
Affiliation(s)
- Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Jialiang Pan
- General Station of Forest and Grassland Pest Management, National Forestry and Grassland Administration, Shenyang 110034, Liaoning Province, People's Republic of China
| | - Ying Zhang
- College of animal science and technology, Guangdong polytechnic of science and trade, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Xingrong Sun
- Daqing Branches of Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang Province, People's Republic of China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Jinzhao Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150000, Heilongjiang Province, People's Republic of China..
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, Guangdong Province, People's Republic of China.
| |
Collapse
|
12
|
Locarnini SA, Littlejohn M, Yuen LKW. Origins and Evolution of the Primate Hepatitis B Virus. Front Microbiol 2021; 12:653684. [PMID: 34108947 PMCID: PMC8180572 DOI: 10.3389/fmicb.2021.653684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Recent interest in the origins and subsequent evolution of the hepatitis B virus (HBV) has strengthened with the discovery of ancient HBV sequences in fossilized remains of humans dating back to the Neolithic period around 7,000 years ago. Metagenomic analysis identified a number of African non-human primate HBV sequences in the oldest samples collected, indicating that human HBV may have at some stage, evolved in Africa following zoonotic transmissions from higher primates. Ancestral genotype A and D isolates were also discovered from the Bronze Age, not in Africa but rather Eurasia, implying a more complex evolutionary and migratory history for HBV than previously recognized. Most full-length ancient HBV sequences exhibited features of inter genotypic recombination, confirming the importance of recombination and the mutation rate of the error-prone viral replicase as drivers for successful HBV evolution. A model for the origin and evolution of HBV is proposed, which includes multiple cross-species transmissions and favors subsequent recombination events that result in a pathogen and can successfully transmit and cause persistent infection in the primate host.
Collapse
Affiliation(s)
- Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Cagliani R, Mozzi A, Pontremoli C, Sironi M. Evolution and Origin of Human Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abstract
Preclinical testing of novel therapeutics for chronic hepatitis B (CHB) requires suitable animal models. Equids host homologs of hepatitis C virus (HCV). Because coinfections of hepatitis B virus (HBV) and HCV occur in humans, we screened 2,917 specimens from equids from five continents for HBV. We discovered a distinct HBV species (Equid HBV, EqHBV) in 3.2% of donkeys and zebras by PCR and antibodies against EqHBV in 5.4% of donkeys and zebras. Molecular, histopathological, and biochemical analyses revealed that infection patterns of EqHBV resembled those of HBV in humans, including hepatotropism, moderate liver damage, evolutionary stasis, and potential horizontal virus transmission. Naturally infected donkeys showed chronic infections resembling CHB with high viral loads of up to 2.6 × 109 mean copies per milliliter serum for >6 mo and weak antibody responses. Antibodies against Equid HCV were codetected in 26.5% of donkeys seropositive for EqHBV, corroborating susceptibility to both hepatitis viruses. Deltavirus pseudotypes carrying EqHBV surface proteins were unable to infect human cells via the HBV receptor NTCP (Na+/taurocholate cotransporting polypeptide), suggesting alternative viral entry mechanisms. Both HBV and EqHBV deltavirus pseudotypes infected primary horse hepatocytes in vitro, supporting a broad host range for EqHBV among equids and suggesting that horses might be suitable for EqHBV and HBV infections in vivo. Evolutionary analyses suggested that EqHBV originated in Africa several thousand years ago, commensurate with the domestication of donkeys. In sum, EqHBV naturally infects diverse equids and mimics HBV infection patterns. Equids provide a unique opportunity for preclinical testing of novel therapeutics for CHB and to investigate HBV/HCV interplay upon coinfection.
Collapse
|
15
|
Pujol F, Jaspe RC, Loureiro CL, Chemin I. Hepatitis B virus American genotypes: Pathogenic variants ? Clin Res Hepatol Gastroenterol 2020; 44:825-835. [PMID: 32553521 DOI: 10.1016/j.clinre.2020.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) chronic infection is responsible for almost 900.000 deaths each year, due to cirrhosis or hepatocellular carcinoma (HCC). Ten HBV genotypes have been described (A-J). HBV genotype F and H circulate in America. HBV genotypes have been further classified in subgenotypes. There is a strong correlation between the genetic admixture of the American continent and the frequency of genotypes F or H: a high frequency of these genotypes is found in countries with a population with a higher ratio of Amerindian to African genetic admixture. The frequency of occult HBV infection in Amerindian communities from Latin America seems to be higher than the one found in other HBV-infected groups, but its association with American genotypes is unknown. There is growing evidence that some genotypes might be associated with a faster evolution to HCC. In particular, HBV genotype F has been implicated in a frequent and rapid progression to HCC. However, HBV genotype H has been associated to a less severe progression of disease. This study reviews the diversity and frequency of autochthonous HBV variants in the Americas and evaluates their association to severe progression of disease. Although no significant differences were found in the methylation pattern between different genotypes and subgenotypes of the American types, basal core promoter mutations might be more frequent in some subgenotypes, such as F1b and F2, than in other American subgenotypes or genotype H. F1b and probably F2 may be associated with a severe presentation of liver disease as opposed to a more benign course for subgenotype F4 and genotype H. Thus, preliminary evidence suggests that not all of the American variants are associated with a rapid progression to HCC.
Collapse
Affiliation(s)
- Flor Pujol
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela.
| | - Rossana C Jaspe
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela
| | - Carmen L Loureiro
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela
| | - Isabelle Chemin
- INSERM U1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, centre Léon Bérard, centre de recherche en cancérologie de Lyon, 69000, Lyon, France
| |
Collapse
|
16
|
Neukamm J, Pfrengle S, Molak M, Seitz A, Francken M, Eppenberger P, Avanzi C, Reiter E, Urban C, Welte B, Stockhammer PW, Teßmann B, Herbig A, Harvati K, Nieselt K, Krause J, Schuenemann VJ. 2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biol 2020; 18:108. [PMID: 32859198 PMCID: PMC7456089 DOI: 10.1186/s12915-020-00839-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recent advances in sequencing have facilitated large-scale analyses of the metagenomic composition of different samples, including the environmental microbiome of air, water, and soil, as well as the microbiome of living humans and other animals. Analyses of the microbiome of ancient human samples may provide insights into human health and disease, as well as pathogen evolution, but the field is still in its very early stages and considered highly challenging. RESULTS The metagenomic and pathogen content of Egyptian mummified individuals from different time periods was investigated via genetic analysis of the microbial composition of various tissues. The analysis of the dental calculus' microbiome identified Red Complex bacteria, which are correlated with periodontal diseases. From bone and soft tissue, genomes of two ancient pathogens, a 2200-year-old Mycobacterium leprae strain and a 2000-year-old human hepatitis B virus, were successfully reconstructed. CONCLUSIONS The results show the reliability of metagenomic studies on Egyptian mummified individuals and the potential to use them as a source for the extraction of ancient pathogen DNA.
Collapse
Affiliation(s)
- Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Alexander Seitz
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Michael Francken
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.,Paleoanthropology, Dept. of Geosciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Partick Eppenberger
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Christian Urban
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Beatrix Welte
- Institute of Pre- and Protohistory and Medieval Archaeology, Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Philipp W Stockhammer
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University Munich, 80799, Munich, Germany.,Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Barbara Teßmann
- Berlin Society of Anthropology, Ethnology and Prehistory, 10117, Berlin, Germany.,Museum of Prehistory and Early History, SMPK Berlin, 10117, Berlin, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Katerina Harvati
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.,Paleoanthropology, Dept. of Geosciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.,DFG Centre for Advanced Studies Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany. .,Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany. .,Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany. .,Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.
| |
Collapse
|
17
|
Godoy BA, Pinho JRR, Fagundes NJR. Hepatitis B Virus: Alternative phylogenetic hypotheses and its impact on molecular evolution inferences. Virus Res 2019; 276:197776. [PMID: 31722242 DOI: 10.1016/j.virusres.2019.197776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/22/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
Characterizing molecular evolution patterns of the Hepatitis B Virus (HBV) is important for a better understanding of the natural history of this infection. However, several molecular evolution estimates are conditioned on tree topology. There is no consensus about the phylogenetic relationships of HBV genotypes, and different studies often find alternative topologies. While most studies consider HBV genotypes F and H as sister to all other human genotypes, a recent study suggested an alternative HBV phylogeny that indicates an accelerated substitution rate for HBV-F/H partially driven by positive selection. In this study, we evaluate the impact of alternative HBV topologies on inferences of HBV phylogeny, rate acceleration, and positive selection on the HBV-F/H branch. Our results indicate that under certain methodological approaches alternative HBV topologies are equally likely. Considering phylogenetic uncertainty, there is no evidence that HBV-F/H had an accelerated substitution rate, even though inferences of positive selection are robust to alternative background topologies. Our results further suggest that, under reasonable assumptions, HBV-F/H most likely represents the sister lineage to all other human/ape HBV genotypes. Understanding the full range of likely topologies will be crucial for elaborating, testing, and refining hypothesis about the evolutionary HBV origins in our species.
Collapse
Affiliation(s)
- Bibiane A Godoy
- Postgraduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João Renato R Pinho
- São Paulo Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Nelson J R Fagundes
- Postgraduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Cagliani R, Forni D, Sironi M. Mode and tempo of human hepatitis virus evolution. Comput Struct Biotechnol J 2019; 17:1384-1395. [PMID: 31768229 PMCID: PMC6872792 DOI: 10.1016/j.csbj.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023] Open
Abstract
Human viral hepatitis, a major cause of morbidity and mortality worldwide, is caused by highly diverse viruses with different genetic, ecological, and pathogenetic features. Technological advances that allow throughput sequencing of viral genomes, as well as the development of computational tools to analyze such genome data, have largely expanded our knowledge on the host range and evolutionary history of human hepatitis viruses. Thus, with the exclusion of hepatitis D virus, close or distant relatives of these human pathogens were identified in a number of domestic and wild mammals. Also, sequences of human viral strains isolated from different geographic locations and over different time-spans have allowed the application of phylogeographic and molecular dating approaches to large viral phylogenies. In this review, we summarize the most recent insights into our understanding of the evolutionary events and ecological contexts that determined the origin and spread of human hepatitis viruses.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
19
|
Fujiwara K, Matsuura K, Matsunami K, Iio E, Nagura Y, Nojiri S, Kataoka H. Novel Genetic Rearrangements Termed "Structural Variation Polymorphisms" Contribute to the Genetic Diversity of Orthohepadnaviruses. Viruses 2019; 11:v11090871. [PMID: 31533314 PMCID: PMC6783994 DOI: 10.3390/v11090871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022] Open
Abstract
The genetic diversity of orthohepadnaviruses is not yet fully understood. This study was conducted to investigate the role of structural variations (SVs) in their diversity. Genetic sequences of orthohepadnaviruses were retrieved from databases. The positions of sequence gaps were investigated, since they were found to be related to SVs, and they were further used to search for SVs. Then, a combination of pair-wise and multiple alignment analyses was performed to analyze the genomic structure. Unique patterns of SVs were observed; genetic sequences at certain genomic positions could be separated into multiple patterns, such as no SV, SV pattern 1, SV pattern 2, and SV pattern 3, which were observed as polymorphic changes. We provisionally referred to these genetic changes as SV polymorphisms. Our data showed that higher frequency of sequence gaps and lower genetic identity were observed in the pre-S1-S2 region of various types of HBVs. Detailed examination of the genetic structure in the pre-S region by a combination of pair-wise and multiple alignment analyses showed that the genetic diversity of orthohepadnaviruses in the pre-S1 region could have been also induced by SV polymorphisms. Our data showed that novel genetic rearrangements provisionally termed SV polymorphisms were observed in various orthohepadnaviruses.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Kayoko Matsunami
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Etsuko Iio
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Yoshihito Nagura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Shunsuke Nojiri
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| |
Collapse
|
20
|
Highly diversified shrew hepatitis B viruses corroborate ancient origins and divergent infection patterns of mammalian hepadnaviruses. Proc Natl Acad Sci U S A 2019; 116:17007-17012. [PMID: 31371507 DOI: 10.1073/pnas.1908072116] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shrews, insectivorous small mammals, pertain to an ancient mammalian order. We screened 693 European and African shrews for hepatitis B virus (HBV) homologs to elucidate the enigmatic genealogy of HBV. Shrews host HBVs at low prevalence (2.5%) across a broad geographic and host range. The phylogenetically divergent shrew HBVs comprise separate species termed crowned shrew HBV (CSHBV) and musk shrew HBV (MSHBV), each containing distinct genotypes. Recombination events across host orders, evolutionary reconstructions, and antigenic divergence of shrew HBVs corroborated ancient origins of mammalian HBVs dating back about 80 million years. Resurrected CSHBV replicated in human hepatoma cells, but human- and tupaia-derived primary hepatocytes were resistant to hepatitis D viruses pseudotyped with CSHBV surface proteins. Functional characterization of the shrew sodium taurocholate cotransporting polypeptide (Ntcp), CSHBV/MSHBV surface peptide binding patterns, and infection experiments revealed lack of Ntcp-mediated entry of shrew HBV. Contrastingly, HBV entry was enabled by the shrew Ntcp. Shrew HBVs universally showed mutations in their genomic preCore domains impeding hepatitis B e antigen (HBeAg) production and resembling those observed in HBeAg-negative human HBV. Deep sequencing and in situ hybridization suggest that HBeAg-negative shrew HBVs cause intense hepatotropic monoinfections and low within-host genomic heterogeneity. Geographical clustering and low MSHBV/CSHBV-specific seroprevalence suggest focal transmission and high virulence of shrew HBVs. HBeAg negativity is thus an ancient HBV infection pattern, whereas Ntcp usage for entry is not evolutionarily conserved. Shrew infection models relying on CSHBV/MSHBV revertants and human HBV will allow comparative assessments of HBeAg-mediated HBV pathogenesis, entry, and species barriers.
Collapse
|
21
|
He WQ, Chen XJ, Wen YQ, Li YZ, He H, Chen Q. Detection of Hepatitis B Virus-Like Nucleotide Sequences in Liver Samples from Murine Rodents and Asian House Shrews. Vector Borne Zoonotic Dis 2019; 19:781-783. [PMID: 31216240 DOI: 10.1089/vbz.2018.2424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In recent years, hepatitis B virus (HBV) has been detected in some species of animals. In this study, we found HBV-like nucleotide sequences in murine rodents and Asian house shrews (Suncus murinus) collected in China. A total of 801 animals were trapped. We found that 0.48% (3/624) of the murine rodents and 1.69% (3/177) of Asian house shrews were positive for HBV-like DNA. Detection of HBV-like DNA in brown rats (Rattus norvegicus), rice-field rat (Rattus losea), and Asian house shrews indicated that these species of animals might be hosts for HBV. However, none of the HBV-like DNA-positive animals was additionally positive for anti-HBV antibodies or hepatitis B surface antigen. A 585 bp nucleic acid sequence, mapping to a hepadnavirus, was extracted from rice-field rat, and bores strong resemblance to human HBV genotype B sequences. Further research is required to investigate the hepadnaviruses within the murine rodent and Asian house shrew populations to uncover the origin and zoonotic potential of HBV.
Collapse
Affiliation(s)
- Wen-Qiao He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xue-Jiao Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu-Qi Wen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yong-Zhi Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huan He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
A Novel Orthohepadnavirus Identified in a Dead Maxwell's Duiker ( Philantomba maxwellii) in Taï National Park, Côte d'Ivoire. Viruses 2019; 11:v11030279. [PMID: 30893858 PMCID: PMC6466360 DOI: 10.3390/v11030279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 12/16/2022] Open
Abstract
New technologies enable viral discovery in a diversity of hosts, providing insights into viral evolution. We used one such approach, the virome capture sequencing for vertebrate viruses (VirCapSeq-VERT) platform, on 21 samples originating from six dead Maxwell’s duikers (Philantomba maxwellii) from Taï National Park, Côte d’Ivoire. We detected the presence of an orthohepadnavirus in one animal and characterized its 3128 bp genome. The highest viral copy numbers were detected in the spleen, followed by the lung, blood, and liver, with the lowest copy numbers in the kidney and heart; the virus was not detected in the jejunum. Viral copy numbers in the blood were in the range known from humans with active chronic infections leading to liver histolytic damage, suggesting this virus could be pathogenic in duikers, though many orthohepadnaviruses appear to be apathogenic in other hosts, precluding a formal test of this hypothesis. The virus was not detected in 29 other dead duiker samples from the Côte d’Ivoire and Central African Republic, suggesting either a spillover event or a low prevalence in these populations. Phylogenetic analysis placed the virus as a divergent member of the mammalian clade of orthohepadnaviruses, though its relationship to other orthohepadnaviruses remains uncertain. This represents the first orthohepadnavirus described in an artiodactyl. We have tentatively named this new member of the genus Orthohepadnavirus (family Hepadnaviridae), Taï Forest hepadnavirus. Further studies are needed to determine whether it, or some close relatives, are present in a broader range of artiodactyls, including livestock.
Collapse
|
23
|
Nie FY, Tian JH, Lin XD, Yu B, Xing JG, Cao JH, Holmes EC, Ma RZ, Zhang YZ. Discovery of a highly divergent hepadnavirus in shrews from China. Virology 2019; 531:162-170. [PMID: 30884426 PMCID: PMC7172195 DOI: 10.1016/j.virol.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Limited sampling means that relatively little is known about the diversity and evolutionary history of mammalian members of the Hepadnaviridae (genus Orthohepadnavirus). An important case in point are shrews, the fourth largest group of mammals, but for which there is limited knowledge on the role they play in viral evolution and emergence. Here, we report the discovery of a novel shrew hepadnavirus. The newly discovered virus, denoted shrew hepatitis B virus (SHBV), is divergent to be considered a new species of Orthohepadnavirus. Phylogenetic analysis revealed that these viruses were usually most closely related to TBHBV (tent-making bat hepatitis B virus), known to be able to infect human hepatocytes, and had a similar genome structure, although SHBV fell in a more basal position in the surface protein phylogeny. In sum, these data suggest that shrews are natural hosts for hepadnaviruses and may have played an important role in their long-term evolution. A highly divergent hepadnavirus was identified in shrews in China. The shrew virus represents a novel species of mammalian orthohepadnaviruses. The shrew virus grouped with TBHBV in some genes, previously shown to be able to infect human hepatocytes. Cross-species virus transmission occurred among the three shrew species.
Collapse
Affiliation(s)
- Fang-Yuan Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory for Infectious Disease Prevention and Control; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang Province, China
| | - Bin Yu
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Jian-Guang Xing
- Wencheng Center for Disease Control and Prevention, Wencheng, Zhejiang Province, China
| | - Jian-Hai Cao
- Longwan Center for Disease Control and Prevention, Longwan District, Wenzhou, Zhejiang Province, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Hiller T, Rasche A, Brändel SD, König A, Jeworowski L, Teague O'Mara M, Cottontail V, Page RA, Glebe D, Drexler JF, Tschapka M. Host Biology and Anthropogenic Factors Affect Hepadnavirus Infection in a Neotropical Bat. ECOHEALTH 2019; 16:82-94. [PMID: 30564998 PMCID: PMC7088011 DOI: 10.1007/s10393-018-1387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/07/2023]
Abstract
The tent-making bat hepatitis B virus (TBHBV) is a hepadnavirus closely related to human hepatitis B virus. The ecology of TBHBV is unclear. We show that it is widespread and highly diversified in Peters' tent-making bats (Uroderma bilobatum) within Panama, while local prevalence varied significantly between sample sites, ranging from 0 to 14.3%. Females showed significantly higher prevalence than males, and pregnant females were more often acutely infected than non-reproductive ones. The distribution of TBHBV in bats was significantly affected by forest cover, with higher infection rates in areas with lower forest cover. Our data indicate that loss of natural habitat may lead to positive feedback on the biotic factors driving infection possibility. These results underline the necessity of multidisciplinary studies for a better understanding of mechanisms in pathogen-host relationships and for predictions in disease ecology.
Collapse
Affiliation(s)
- Thomas Hiller
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama.
| | - Andrea Rasche
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Alexander König
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Lara Jeworowski
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - M Teague O'Mara
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Veronika Cottontail
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jan Felix Drexler
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
25
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
26
|
Evolution of Hepatitis B Virus Receptor NTCP Reveals Differential Pathogenicities and Species Specificities of Hepadnaviruses in Primates, Rodents, and Bats. J Virol 2019; 93:JVI.01738-18. [PMID: 30541833 DOI: 10.1128/jvi.01738-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis B virus (HBV) is a global health problem, affecting more than 250 million people worldwide. HBV-like viruses, named orthohepadnaviruses, also naturally infect nonhuman primates, rodents, and bats, but their pathogenicity and evolutionary history are unclear. Here, we determined the evolutionary history of the HBV receptors NTCP and GPC5 over millions of years of primate, rodent, and bat evolution. We use this as a proxy to understand the pathogenicity of orthohepadnaviruses in mammalian hosts and to determine the implications for species specificity. We found that NTCP, but not GPC5, has evolved under positive selection in primates (27 species), rodents (18 species), and bats (21 species) although at distinct residues. Notably, the positively selected codons map to the HBV-binding sites in primate NTCP, suggesting past genetic "arms races" with pathogenic orthohepadnaviruses. In rodents, the positively selected codons fall outside and within the presumed HBV-binding sites, which may contribute to the restricted circulation of rodent orthohepadnaviruses. In contrast, the presumed HBV-binding motifs in bat NTCP are conserved, and none of the positively selected codons map to this region. This suggests that orthohepadnaviruses may bind to different surfaces in bat NTCP. Alternatively, the patterns may reflect adaptive changes associated with metabolism rather than pathogens. Overall, our findings further point to NTCP as a naturally occurring genetic barrier for cross-species transmissions in primates, which may contribute to the narrow host range of HBV. In contrast, this constraint seems less important in bats, which may correspond to greater orthohepadnavirus circulation and diversity.IMPORTANCE Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. Mammalian HBV-like viruses are also found in nonhuman primates, rodents, and bats. As for most viruses, HBV requires a successful interaction with a host receptor for replication. Cellular receptors are thus key determinants of host susceptibility as well as specificity. One hallmark of pathogenic virus-host relationships is the reciprocal evolution of host receptor and viral envelope proteins, as a result of their antagonistic interaction over time. The dynamics of these so-called "evolutionary arms races" can leave signatures of adaptive selection, which in turn reveal the evolutionary history of the virus-host interaction as well as viral pathogenicity and the genetic determinants of species specificity. Here, we show how HBV-like viruses have shaped the evolutionary history of their mammalian host receptor, as a result of their ancient pathogenicity, and decipher the genetic determinants of cross-species transmissions.
Collapse
|
27
|
Bennett AJ, Bushmaker T, Cameron K, Ondzie A, Niama FR, Parra HJ, Mombouli JV, Olson SH, Munster VJ, Goldberg TL. Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology 2018; 528:64-72. [PMID: 30576861 DOI: 10.1016/j.virol.2018.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Bats host diverse viruses due to their unique ecology, behavior, and immunology. However, the role of other organisms with which bats interact in nature is understudied as a contributor to bat viral diversity. We discovered five viruses in the blood of fruit bats (Hypsignathus monstrosus) from the Republic of Congo. Of these five viruses, four have phylogenetic and genomic features suggesting an arthropod origin (a dicistrovirus, a nodavirus, and two tombus-like viruses), while the fifth (a hepadnavirus) is clearly of mammalian origin. We also report the parallel discovery of related tombus-like viruses in fig wasps and primitive crane flies from bat habitats, as well as high infection rates of bats with haemosporidian parasites (Hepatocystis sp.). These findings suggest transmission between arthropods and bats, perhaps through ingestion or hyperparasitism (viral infection of bat parasites). Some "bat-associated" viruses may be epidemiologically linked to bats through their ecological associations with invertebrates.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Kenneth Cameron
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Alain Ondzie
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Fabien R Niama
- Laboratoire National de Santé Publique, Brazzaville, Republic of Congo
| | | | | | - Sarah H Olson
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Vincent J Munster
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
28
|
Sander AL, Corman VM, Lukashev AN, Drexler JF. Evolutionary Origins of Enteric Hepatitis Viruses. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031690. [PMID: 29610146 DOI: 10.1101/cshperspect.a031690] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enterically transmitted hepatitis A (HAV) and hepatitis E viruses (HEV) are the leading causes of acute viral hepatitis in humans. Despite the discovery of HAV and HEV 40-50 years ago, their evolutionary origins remain unclear. Recent discoveries of numerous nonprimate hepatoviruses and hepeviruses allow revisiting the evolutionary history of these viruses. In this review, we provide detailed phylogenomic analyses of primate and nonprimate hepatoviruses and hepeviruses. We identify conserved and divergent genomic properties and corroborate historical interspecies transmissions by phylogenetic comparisons and recombination analyses. We discuss the likely non-recent origins of human HAV and HEV precursors carried by mammals other than primates, and detail current zoonotic HEV infections. The novel nonprimate hepatoviruses and hepeviruses offer exciting new possibilities for future research focusing on host range and the unique biological properties of HAV and HEV.
Collapse
Affiliation(s)
- Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| | - Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations, 142782 Moscow, Russia
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| |
Collapse
|
29
|
A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses. J Hepatol 2018; 68:1114-1122. [PMID: 29428874 DOI: 10.1016/j.jhep.2018.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 01/19/2018] [Accepted: 01/27/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS All known hepatitis B virus (HBV) genotypes occur in humans and hominoid Old World non-human primates (NHPs). The divergent woolly monkey HBV (WMHBV) forms another orthohepadnavirus species. The evolutionary origins of HBV are unclear. METHODS We analysed sera from 124 Brazilian monkeys collected during 2012-2016 for hepadnaviruses using molecular and serological tools, and conducted evolutionary analyses. RESULTS We identified a novel orthohepadnavirus species in capuchin monkeys (capuchin monkey hepatitis B virus [CMHBV]). We found CMHBV-specific antibodies in five animals and high CMHBV concentrations in one animal. Non-inflammatory, probably chronic infection was consistent with an intact preCore domain, low genetic variability, core deletions in deep sequencing, and no elevated liver enzymes. Cross-reactivity of antisera against surface antigens suggested antigenic relatedness of HBV, CMHBV, and WMHBV. Infection-determining CMHBV surface peptides bound to the human HBV receptor (human sodium taurocholate co-transporting polypeptide), but preferentially interacted with the capuchin monkey receptor homologue. CMHBV and WMHBV pseudotypes infected human hepatoma cells via the human sodium taurocholate co-transporting polypeptide, and were poorly neutralised by HBV vaccine-derived antibodies, suggesting that cross-species infections may be possible. Ancestral state reconstructions and sequence distance comparisons associated HBV with humans, whereas primate hepadnaviruses as a whole were projected to NHP ancestors. Co-phylogenetic analyses yielded evidence for co-speciation of hepadnaviruses and New World NHP. Bayesian hypothesis testing yielded strong support for an association of the HBV stem lineage with hominoid ancestors. Neither CMHBV nor WMHBV was likely the ancestor of the divergent human HBV genotypes F/H found in American natives. CONCLUSIONS Our data suggest ancestral co-speciation of hepadnaviruses and NHP, and an Old World origin of the divergent HBV genotypes F/H. The identification of a novel primate hepadnavirus offers new perspectives for urgently needed animal models of chronic hepatitis B. LAY SUMMARY The origins of HBV are unclear. The new orthohepadnavirus species from Brazilian capuchin monkeys resembled HBV in elicited infection patterns and could infect human liver cells using the same receptor as HBV. Evolutionary analyses suggested that primate HBV-related viruses might have emerged in African ancestors of New World monkeys millions of years ago. HBV was associated with hominoid primates, including humans and apes, suggesting evolutionary origins of HBV before the formation of modern humans. HBV genotypes found in American natives were divergent from those found in American monkeys, and likely introduced along prehistoric human migration. Our results elucidate the evolutionary origins and dispersal of primate HBV, identify a new orthohepadnavirus reservoir, and enable new perspectives for animal models of hepatitis B.
Collapse
|
30
|
Yang L, Wu J, Hu T, Qin S, Deng B, Liu J, Zhang F, He B, Tu C. Genetic diversity of bat orthohepadnaviruses in China and a proposed new nomenclature. INFECTION GENETICS AND EVOLUTION 2018; 63:135-143. [PMID: 29842981 PMCID: PMC7173211 DOI: 10.1016/j.meegid.2018.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023]
Abstract
The orthohepadnaviruses, which include the major human pathogen hepatitis B virus, exist in a wide range of hosts. Since 2013, a large group of orthohepadnaviruses has been identified in bats worldwide and classified as 4 species within the genus Orthohepadnavirus. To further investigate orthohepadnaviruses in the Chinese bat population, 554 archived bat samples from 20 colonies covering 3 southern provinces were screened with results showing that 9 (1.6%) were positive. A systematic phylogenetic analysis has indicated the need for a new nomenclature for bat hepatitis B virus-like viruses: BtHBV, with the addition of 3 new species, one being divided into 6 genotypes. Viruses identified here shared 9.0–19.2% full genome divergence and classified into 3 different genotypes. This study illustrates the genetic diversity of orthohepadnaviruses in the Chinese bat population, and emphasizes need for further investigation of their public health significance. Three new orthohepadnaviral lineages were identified in Chinese bats. A new nomenclature was proposed for bat hepatitis B virus-like viruses. This study indicates genetic diversity of orthohepadnaviruses in Chinese bats.
Collapse
Affiliation(s)
- Ling'en Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Fujian A&F University, College of Animal Science, Fuzhou, Fujian Province, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Tingsong Hu
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Shaomin Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Bo Deng
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Jinfeng Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Fuqiang Zhang
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China.
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Fujian A&F University, College of Animal Science, Fuzhou, Fujian Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
31
|
Krause-Kyora B, Susat J, Key FM, Kühnert D, Bosse E, Immel A, Rinne C, Kornell SC, Yepes D, Franzenburg S, Heyne HO, Meier T, Lösch S, Meller H, Friederich S, Nicklisch N, Alt KW, Schreiber S, Tholey A, Herbig A, Nebel A, Krause J. Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. eLife 2018; 7:36666. [PMID: 29745896 PMCID: PMC6008052 DOI: 10.7554/elife.36666] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, yet its origin and evolutionary history are still unclear and controversial. Here, we report the analysis of three ancient HBV genomes recovered from human skeletons found at three different archaeological sites in Germany. We reconstructed two Neolithic and one medieval HBV genome by de novo assembly from shotgun DNA sequencing data. Additionally, we observed HBV-specific peptides using paleo-proteomics. Our results demonstrated that HBV has circulated in the European population for at least 7000 years. The Neolithic HBV genomes show a high genomic similarity to each other. In a phylogenetic network, they do not group with any human-associated HBV genome and are most closely related to those infecting African non-human primates. The ancient viruses appear to represent distinct lineages that have no close relatives today and possibly went extinct. Our results reveal the great potential of ancient DNA from human skeletons in order to study the long-time evolution of blood borne viruses.
Collapse
Affiliation(s)
- Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Felix M Key
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Denise Kühnert
- Max Planck Institute for the Science of Human History, Jena, Germany.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Esther Bosse
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.,Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Alexander Immel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Christoph Rinne
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | | | - Diego Yepes
- Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Henrike O Heyne
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, United States.,Program in Medical and Population Genetics, Broad Institute of MIT & Harvard, Cambridge, United States
| | - Thomas Meier
- Institute for Pre- and Protohistory and Near Eastern Archaeology, Heidelberg University, Heidelberg, Germany.,Heidelberg Center for the Environment, Heidelberg University, Heidelberg, Germany
| | - Sandra Lösch
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt, State Museum of Prehistory, Halle, Germany
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt, State Museum of Prehistory, Halle, Germany
| | - Nicole Nicklisch
- State Office for Heritage Management and Archaeology Saxony-Anhalt, State Museum of Prehistory, Halle, Germany.,Danube Private University, Krems, Austria
| | - Kurt W Alt
- State Office for Heritage Management and Archaeology Saxony-Anhalt, State Museum of Prehistory, Halle, Germany.,Danube Private University, Krems, Austria.,Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland.,Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.,Clinic for Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
32
|
Extensive diversity and evolution of hepadnaviruses in bats in China. Virology 2017; 514:88-97. [PMID: 29153861 PMCID: PMC7172093 DOI: 10.1016/j.virol.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
To better understand the evolution of hepadnaviruses, we sampled bats from Guizhou, Henan and Zhejiang provinces, China, and rodents from Zhejiang province. Genetically diverse hepadnaviruses were identified in a broad range of bat species, with an overall prevalence of 13.3%. In contrast, no rodent hepadnaviruses were identified. The newly discovered bat hepadnaviruses fell into two distinct phylogenetic groups. The viruses within the first group exhibited high diversity, with some closely related to viruses previously identified in Yunnan province. Strikingly, the newly discovered viruses sampled from Jiyuan city in the second phylogenetic group were most closely related to those found in bats from West Africa, suggestive of a long-term association between bats and hepadnaviruses. A co-phylogenetic analysis revealed frequent cross-species transmission among bats from different species, genera, and families. Overall, these data suggest that there are likely few barriers to the cross-species transmission of bat hepadnaviruses. Diverse hepadnaviruses are identified in a broad range of bat species in China. Some of them were closely related to those previously identified in China. The viruses from Jiyuan were most closely related to Gabon bat hepadnaviruses. Newly discovered viruses did not clustered by bat species or geographic location. Frequent cross-species transmission among different bat species was observed.
Collapse
|
33
|
Wang B, Yang XL, Li W, Zhu Y, Ge XY, Zhang LB, Zhang YZ, Bock CT, Shi ZL. Detection and genome characterization of four novel bat hepadnaviruses and a hepevirus in China. Virol J 2017; 14:40. [PMID: 28222808 PMCID: PMC5320732 DOI: 10.1186/s12985-017-0706-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/04/2017] [Indexed: 01/28/2023] Open
Abstract
Background In recent years, novel hepadnaviruses, hepeviruses, hepatoviruses, and hepaciviruses have been discovered in various species of bat around the world, indicating that bats may act as natural reservoirs for these hepatitis viruses. In order to further assess the distribution of hepatitis viruses in bat populations in China, we tested the presence of these hepatitis viruses in our archived bat liver samples that originated from several bat species and various geographical regions in China. Methods A total of 78 bat liver samples (involving two families, five genera, and 17 species of bat) were examined using nested or heminested reverse transcription PCR (RT-PCR) with degenerate primers. Full-length genomic sequences of two virus strains were sequenced followed by phylogenetic analyses. Results Four samples were positive for hepadnavirus, only one was positive for hepevirus, and none of the samples were positive for hepatovirus or hepacivirus. The hepadnaviruses were discovered in the horseshoe bats, Rhinolophus sinicus and Rhinolophus affinis, and the hepevirus was found in the whiskered bat Myotis davidii. The full-length genomic sequences were determined for one of the two hepadnaviruses identified in R. sinicus (designated BtHBVRs3364) and the hepevirus (designated BtHEVMd2350). A sequence identity analysis indicated that BtHBVRs3364 had the highest degree of identity with a previously reported hepadnavirus from the roundleaf bat, Hipposideros pomona, from China, and BtHEVMd2350 had the highest degree of identity with a hepevirus found in the serotine bat, Eptesicus serotinus, from Germany, but it exhibited high levels of divergence at both the nucleotide and the amino acid levels. Conclusions This is the first study to report that the Chinese horseshoe bat and the Chinese whiskered bat have been found to carry novel hepadnaviruses and a novel hepevirus, respectively. The discovery of BtHBVRs3364 further supports the significance of host switches evolution while opposing the co-evolutionary theory associated with hepadnaviruses. According to the latest criterion of the International Committee on Taxonomy of Viruses (ICTV), we hypothesize that BtHEVMd2350 represents an independent genotype within the species Orthohepevirus D of the family Hepeviridae.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen Li
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xing-Yi Ge
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Li-Biao Zhang
- Guangdong Institute of Applied Biological Resource, Guangzhou, 510260, China
| | - Yun-Zhi Zhang
- Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Claus-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|