1
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Shepard DS, Agarwal‐Harding P, Jiamton S, Undurraga EA, Kongsin S. Enrollment of dengue patients in a prospective cohort study in Umphang District, Thailand, during the COVID-19 pandemic: Implications for research and policy. Health Sci Rep 2023; 6:e1657. [PMID: 38028707 PMCID: PMC10630743 DOI: 10.1002/hsr2.1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aims Dengue is endemic in Thailand and imposes a high burden on the health system and society. We conducted a prospective cohort study in Umphang District, Tak Province, Thailand, to investigate the share of dengue cases with long symptoms and their duration. Here we present the results of the enrollment process during the COVID-19 pandemic with implications and challenges for research and policy. Methods In a prospective cohort study conducted in Umphang District, Thailand, we examined the prevalence of persistent symptoms in dengue cases. Clinically diagnosed cases were offered free laboratory testing, We enrolled ambulatory dengue patients regardless of age who were confirmed through a highly sensitive laboratory strategy (positive NS1 and/or IgM), agreed to follow-up visits, and gave informed consent. We used multivariate logistic regressions to assess the probability of clinical dengue being laboratory confirmed. To determine the factors associated with study enrollment, we analyzed the relationship of patient characteristics and month of screening to the likelihood of participation. To identify underrepresented groups, we compared the enrolled cohort to external data sources. Results The 150 clinical cases ranged from 1 to 85 years old. Most clinical cases (78%) were confirmed by a positive laboratory test, but only 19% of those confirmed enrolled in the cohort study. Women, who were half as likely to enroll as men, were underrepresented in the cohort. Conclusions The Thai physicians' clinical diagnoses at this rural district hospital had good agreement with laboratory diagnoses. By identifying underrepresented groups and disparities, future studies can ensure the creation of statistically representative cohorts to maximize their scientific value. This involves recruiting and retaining underrepresented groups in health research, such as women in this study. Promising strategies for meaningful inclusion include multi-site enrollment, offering in-home or virtual services, and providing in-kind benefits like childcare for underrepresented groups.
Collapse
Affiliation(s)
- Donald S. Shepard
- Schneider Institutes for Health PolicyHeller School for Social Policy and Management, Brandeis UniversityWalthamMassachusettsUSA
| | - Priya Agarwal‐Harding
- Schneider Institutes for Health PolicyHeller School for Social Policy and Management, Brandeis UniversityWalthamMassachusettsUSA
| | - Sukhum Jiamton
- Research Centre for Health Economics and Evaluation, Faculty of Public HealthMahidol UniversityBangkokThailand
- Department of Dermatology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Eduardo A. Undurraga
- Escuela de GobiernoPontificia Universidad Católica de ChileSantiagoChile
- Research Center for Integrated Disaster Risk Management (CIGIDEN)SantiagoChile
- CIFAR Azrieli Global Scholars ProgramTorontoOntarioCanada
| | - Sukhontha Kongsin
- Research Centre for Health Economics and Evaluation, Faculty of Public HealthMahidol UniversityBangkokThailand
| |
Collapse
|
3
|
Sharp TM, Anderson KB, Katzelnick LC, Clapham H, Johansson MA, Morrison AC, Harris E, Paz-Bailey G, Waterman SH. Knowledge gaps in the epidemiology of severe dengue impede vaccine evaluation. THE LANCET. INFECTIOUS DISEASES 2022; 22:e42-e51. [PMID: 34265259 PMCID: PMC11379041 DOI: 10.1016/s1473-3099(20)30871-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 10/20/2022]
Abstract
The most severe consequences of dengue virus infection include shock, haemorrhage, and major organ failure; however, the frequency of these manifestations varies, and the relative contribution of pre-existing anti-dengue virus antibodies, virus characteristics, and host factors (including age and comorbidities) are not well understood. Reliable characterisation of the epidemiology of severe dengue first depends on the use of consistent definitions of disease severity. As vaccine trials have shown, severe dengue is a crucial interventional endpoint, yet the infrequency of its occurrence necessitates the inclusion of thousands of study participants to appropriately compare its frequency among participants who have and have not been vaccinated. Hospital admission is frequently used as a proxy for severe dengue; however, lack of specificity and variability in clinical practices limit the reliability of this approach. Although previous infection with a dengue virus is the best characterised risk factor for developing severe dengue, the influence of the timing between dengue virus infections and the sequence of dengue virus infections on disease severity is only beginning to be elucidated. To improve our understanding of the diverse factors that shape the clinical spectrum of disease resulting from dengue virus infection, prospective, community-based and clinic-based immunological, virological, genetic, and clinical studies across a range of ages and geographical regions are needed.
Collapse
Affiliation(s)
- Tyler M Sharp
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA; United States Public Health Service, Silver Springs, MD, USA.
| | - Kathryn B Anderson
- Institute for Global Health and Translational Sciences and Department of Medicine, and Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Virology, Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Biology, University of Florida, Gainesville, FL, USA
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael A Johansson
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Amy C Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Gabriela Paz-Bailey
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Stephen H Waterman
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA; United States Public Health Service, Silver Springs, MD, USA
| |
Collapse
|
4
|
Mapalagamage M, Weiskopf D, Sette A, De Silva AD. Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses 2022; 14:v14020242. [PMID: 35215836 PMCID: PMC8878350 DOI: 10.3390/v14020242] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.
Collapse
Affiliation(s)
- Maheshi Mapalagamage
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00700, Sri Lanka;
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Aruna Dharshan De Silva
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Paraclinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo 10390, Sri Lanka
- Correspondence:
| |
Collapse
|
5
|
Nicolete VC, Rodrigues PT, Johansen IC, Corder RM, Tonini J, Cardoso MA, de Jesus JG, Claro IM, Faria NR, Sabino EC, Castro MC, Ferreira MU. Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated With Increased Coronavirus Disease 2019 (COVID-19) Risk in a Population-Based Cohort Study. Clin Infect Dis 2021; 73:2045-2054. [PMID: 33956939 PMCID: PMC8135953 DOI: 10.1093/cid/ciab410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunity after dengue virus (DENV) infection has been suggested to cross-protect from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mortality. METHODS We tested whether serologically proven prior DENV infection diagnosed in September-October 2019, before the coronavirus disease 2019 (COVID-19) pandemic, reduced the risk of SARS-CoV-2 infection and clinically apparent COVID-19 over the next 13 months in a population-based cohort in Amazonian Brazil. Mixed-effects multiple logistic regression analysis was used to identify predictors of infection and disease, adjusting for potential individual and household-level confounders. Virus genomes from 14 local SARS-CoV-2 isolates were obtained using whole-genome sequencing. RESULTS Anti-DENV immunoglobulin G (IgG) was found in 37.0% of 1285 cohort participants (95% confidence interval [CI]: 34.3% to 39.7%) in 2019, with 10.4 (95% CI: 6.7-15.5) seroconversion events per 100 person-years during the follow-up. In 2020, 35.2% of the participants (95% CI: 32.6% to 37.8%) had anti-SARS-CoV-2 IgG and 57.1% of the 448 SARS-CoV-2 seropositives (95% CI: 52.4% to 61.8%) reported clinical manifestations at the time of infection. Participants aged >60 years were twice more likely to have symptomatic COVID-19 than children under 5 years. Locally circulating SARS-CoV-2 isolates were assigned to the B.1.1.33 lineage. Contrary to the cross-protection hypothesis, prior DENV infection was associated with twice the risk of clinically apparent COVID-19 upon SARS-CoV-2 infection, with P values between .025 and .039 after adjustment for identified confounders. CONCLUSIONS Higher risk of clinically apparent COVID-19 among individuals with prior dengue has important public health implications for communities sequentially exposed to DENV and SARS-CoV-2 epidemics.
Collapse
Affiliation(s)
- Vanessa C Nicolete
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor C Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo M Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Tonini
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marly A Cardoso
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Jaqueline G de Jesus
- Institute of Tropical Medicine and Department of Infectious and Parasitic Diseases, Medical School, University of São Paulo, São Paulo, Brazil
| | - Ingra M Claro
- Institute of Tropical Medicine and Department of Infectious and Parasitic Diseases, Medical School, University of São Paulo, São Paulo, Brazil
| | - Nuno R Faria
- Institute of Tropical Medicine and Department of Infectious and Parasitic Diseases, Medical School, University of São Paulo, São Paulo, Brazil.,Department of Infectious Disease Epidemiology, Imperial College London, ,London, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Ester C Sabino
- Institute of Tropical Medicine and Department of Infectious and Parasitic Diseases, Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Acklin JA, Cattle JD, Moss AS, Brown JA, Foster GA, Krysztof D, Stramer SL, Lim JK. Evaluating the Safety of West Nile Virus Immunity During Congenital Zika Virus Infection in Mice. Front Immunol 2021; 12:686411. [PMID: 34220838 PMCID: PMC8250419 DOI: 10.3389/fimmu.2021.686411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon that occurs when cross-reactive antibodies generated from a previous flaviviral infection increase the pathogenesis of a related virus. Zika virus (ZIKV) is the most recent flavivirus introduced to the Western Hemisphere and has become a significant public health threat due to the unanticipated impact on the developing fetus. West Nile virus (WNV) is the primary flavivirus that circulates in North America, and we and others have shown that antibodies against WNV are cross-reactive to ZIKV. Thus, there is concern that WNV immunity could increase the risk of severe ZIKV infection, particularly during pregnancy. In this study, we examined the extent to which WNV antibodies could impact ZIKV pathogenesis in a murine pregnancy model. To test this, we passively transferred WNV antibodies into pregnant Stat2-/- mice on E6.5 prior to infection with ZIKV. Evaluation of pregnant dams showed weight loss following ZIKV infection; however, no differences in maternal weights or viral loads in the maternal brain, spleen, or spinal cord were observed in the presence of WNV antibodies. Resorption rates, and other fetal parameters, including fetal and placental size, were similarly unaffected. Further, the presence of WNV antibodies did not significantly alter the viral load or the inflammatory response in the placenta or the fetus in response to ZIKV. Our data suggest that pre-existing WNV immunity may not significantly impact the pathogenesis of ZIKV infection during pregnancy. Our findings are promising for the safety of implementing WNV vaccines in the continental US.
Collapse
Affiliation(s)
- Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Javier D Cattle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Arianna S Moss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julia A Brown
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Foster
- Scientific Affairs, American Red Cross, Gaithersburg, MD, United States
| | - David Krysztof
- Scientific Affairs, American Red Cross, Gaithersburg, MD, United States
| | - Susan L Stramer
- Scientific Affairs, American Red Cross, Gaithersburg, MD, United States
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Singh T, Otero CE, Li K, Valencia SM, Nelson AN, Permar SR. Vaccines for Perinatal and Congenital Infections-How Close Are We? Front Pediatr 2020; 8:569. [PMID: 33384972 PMCID: PMC7769834 DOI: 10.3389/fped.2020.00569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Congenital and perinatal infections are transmitted from mother to infant during pregnancy across the placenta or during delivery. These infections not only cause pregnancy complications and still birth, but also result in an array of pediatric morbidities caused by physical deformities, neurodevelopmental delays, and impaired vision, mobility and hearing. Due to the burden of these conditions, congenital and perinatal infections may result in lifelong disability and profoundly impact an individual's ability to live to their fullest capacity. While there are vaccines to prevent congenital and perinatal rubella, varicella, and hepatitis B infections, many more are currently in development at various stages of progress. The spectrum of our efforts to understand and address these infections includes observational studies of natural history of disease, epidemiological evaluation of risk factors, immunogen design, preclinical research of protective immunity in animal models, and evaluation of promising candidates in vaccine trials. In this review we summarize this progress in vaccine development research for Cytomegalovirus, Group B Streptococcus, Herpes simplex virus, Human Immunodeficiency Virus, Toxoplasma, Syphilis, and Zika virus congenital and perinatal infections. We then synthesize this evidence to examine how close we are to developing a vaccine for these infections, and highlight areas where research is still needed.
Collapse
Affiliation(s)
- Tulika Singh
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Claire E. Otero
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Katherine Li
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sarah M. Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Ashley N. Nelson
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sallie R. Permar
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
C. B. Coelho I, Haguinet F, B. Colares JK, C. B. Coelho Z, M. C. Araújo F, Dias Schwarcz W, Duarte AC, Borges B, Minguet C, Guignard A. Dengue Infection in Children in Fortaleza, Brazil: A 3-Year School-Based Prospective Cohort Study. Am J Trop Med Hyg 2020; 103:100-111. [PMID: 32342838 PMCID: PMC7356456 DOI: 10.4269/ajtmh.19-0521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/25/2020] [Indexed: 01/17/2023] Open
Abstract
Dengue is endemic in Brazil. The dengue surveillance system's reliance on passive reporting may underestimate disease incidence and cannot detect asymptomatic/pauci-symptomatic cases. In this 3-year prospective cohort study (NCT01391819) in 5- to 13-year-old children from nine schools in Fortaleza (N = 2,117), we assessed dengue virus (DENV) infection seroprevalence by IgG indirect ELISA at yearly visits and disease incidence through active and enhanced passive surveillance. Real-time quantitative polymerase chain reaction (RT-qPCR) and DENV IgM/IgG capture ELISA were used for diagnosis. We further characterized confirmed and probable cases with a plaque reduction neutralization test. At enrollment, 54.1% (95% CI: 46.6, 61.4) of children were DENV IgG positive. The annual incidence of laboratory-confirmed symptomatic dengue cases was 11.0 (95% CI: 7.3, 14.7), 18.1 (10.4, 25.7), and 10.2 (0.7, 19.7), and of laboratory-confirmed or probable dengue cases with neutralizing antibody profile evocative of dengue exposure was 13.2 (6.6, 19.9), 18.7 (5.3, 32.2), and 8.4 (2.4, 19.2) per 1,000 child-years in 2012, 2013, and 2014, respectively. By RT-qPCR, we identified 14 DENV-4 cases in 2012-2013 and seven DENV-1 cases in 2014. During the course of the study, 32.8% of dengue-naive children experienced a primary infection. Primary inapparent dengue infection was detected in 20.3% (95% CI: 13.6, 29.1) of dengue-naive children in 2012, 8.7% (6.9, 10.9) in 2013, and 5.1% (4.4, 6.0) in 2014. Our results confirmed the high dengue endemicity in Fortaleza, with active and enhanced passive surveillance detecting three to five times more cases than the National System of Disease Notification.
Collapse
Affiliation(s)
| | | | - Jeová Keny B. Colares
- Secretaria de Saúde do Estado do Ceará, Hospital São José de Doenças Infecciosas, Fortaleza, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Universidade de Fortaleza, Fortaleza, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pollett S, Fauver JR, Berry IM, Melendrez M, Morrison A, Gillis LD, Johansson MA, Jarman RG, Grubaugh ND. Genomic Epidemiology as a Public Health Tool to Combat Mosquito-Borne Virus Outbreaks. J Infect Dis 2020; 221:S308-S318. [PMID: 31711190 PMCID: PMC11095994 DOI: 10.1093/infdis/jiz302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing technologies, exponential increases in the availability of virus genomic data, and ongoing advances in phylogenomic methods have made genomic epidemiology an increasingly powerful tool for public health response to a range of mosquito-borne virus outbreaks. In this review, we offer a brief primer on the scope and methods of phylogenomic analyses that can answer key epidemiological questions during mosquito-borne virus public health emergencies. We then focus on case examples of outbreaks, including those caused by dengue, Zika, yellow fever, West Nile, and chikungunya viruses, to demonstrate the utility of genomic epidemiology to support the prevention and control of mosquito-borne virus threats. We extend these case studies with operational perspectives on how to best incorporate genomic epidemiology into structured surveillance and response programs for mosquito-borne virus control. Many tools for genomic epidemiology already exist, but so do technical and nontechnical challenges to advancing their use. Frameworks to support the rapid sharing of multidimensional data and increased cross-sector partnerships, networks, and collaborations can support advancement on all scales, from research and development to implementation by public health agencies.
Collapse
Affiliation(s)
- S. Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland
- Marie Bashir Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - J. R. Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | - L. D. Gillis
- Bureau of Public Health Laboratories–Miami, Florida Department of Health
| | - M. A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - R. G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - N. D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
10
|
Pérez-Guzmán EX, Pantoja P, Serrano-Collazo C, Hassert MA, Ortiz-Rosa A, Rodríguez IV, Giavedoni L, Hodara V, Parodi L, Cruz L, Arana T, White LJ, Martínez MI, Weiskopf D, Brien JD, de Silva A, Pinto AK, Sariol CA. Time elapsed between Zika and dengue virus infections affects antibody and T cell responses. Nat Commun 2019; 10:4316. [PMID: 31541110 PMCID: PMC6754404 DOI: 10.1038/s41467-019-12295-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are co-endemic in many parts of the world, but the impact of ZIKV infection on subsequent DENV infection is not well understood. Here we show in rhesus macaques that the time elapsed after ZIKV infection affects the immune response to DENV infection. We show that previous ZIKV exposure increases the magnitude of the antibody and T cell responses against DENV. The time interval between ZIKV and subsequent DENV infection further affects the immune response. A mid-convalescent period of 10 months after ZIKV infection results in higher and more durable antibody and T cell responses to DENV infection than a short period of 2 months. In contrast, previous ZIKV infection does not affect DENV viremia or pro-inflammatory status. Collectively, we find no evidence of a detrimental effect of ZIKV immunity in a subsequent DENV infection. This supports the implementation of ZIKV vaccines that could also boost immunity against future DENV epidemics.
Collapse
Affiliation(s)
- Erick X Pérez-Guzmán
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Takeda Vaccines Inc, Cambridge, MA, USA
| | - Petraleigh Pantoja
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Crisanta Serrano-Collazo
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Mariah A Hassert
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Alexandra Ortiz-Rosa
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, USA
| | - Idia V Rodríguez
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Luis Giavedoni
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Vida Hodara
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Laura Parodi
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lorna Cruz
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Teresa Arana
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Laura J White
- Departments of Microbiology & Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Melween I Martínez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - James D Brien
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Aravinda de Silva
- Departments of Microbiology & Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Amelia K Pinto
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Carlos A Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA.
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA.
- Department of Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, 00936, PR, USA.
| |
Collapse
|
11
|
Pre-vaccination screening strategies for the use of the CYD-TDV dengue vaccine: A meeting report. Vaccine 2019; 37:5137-5146. [PMID: 31377079 DOI: 10.1016/j.vaccine.2019.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022]
Abstract
The first licensed dengue vaccine, CYD-TDV (Dengvaxia) is efficacious in seropositive individuals, but increases the risk for severe dengue in seronegative persons about two years after administration of the first dose. For countries considering the introduction of Dengvaxia, WHO recommends a pre-vaccination screening strategy whereby only persons with evidence of a past dengue infection would be vaccinated. Policy-makers need to consider the risk-benefit of vaccination strategies based on such screening tests, the optimal age to introduce the vaccine, communication and implementation strategies. To address these questions, the Global Dengue and Aedes-transmitted diseases Consortium (GDAC) organized a 3-day workshop in January 2019 with country representatives from Asia and Latin America. The meeting discussions highlighted many challenges in introducing Dengvaxia, in terms of screening test characteristics, costs of such tests combined with a 3-dose schedule, logistics, achieving high coverage rates, vaccine confidence and communication; more challenges than for any other vaccine introduction programme. A screening test would require a high specificity to minimize individual risk, and at the same time high sensitivity to maximize individual and population benefit. The underlying seroprevalence dependent positive predictive value is the best indicator for an acceptable safety profile of a pre-vaccination screening strategy. The working groups discussed many possible implementation strategies. Addressing the bottlenecks in school-based vaccine introduction for Dengvaxia will also benefit other vaccines such as HPV and booster doses for tetanus and pertussis. Levels of public trust are highly variable and context specific, and understanding of population perceptions and concerns is essential to tailor interventions, monitor and mitigate risks.
Collapse
|
12
|
Collins MH. Serologic Tools and Strategies to Support Intervention Trials to Combat Zika Virus Infection and Disease. Trop Med Infect Dis 2019; 4:E68. [PMID: 31010134 PMCID: PMC6632022 DOI: 10.3390/tropicalmed4020068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
Zika virus is an emerging mosquito-borne flavivirus that recently caused a large epidemic in Latin America characterized by novel disease phenotypes, including Guillain-Barré syndrome, sexual transmission, and congenital anomalies, such as microcephaly. This epidemic, which was declared an international public health emergency by the World Health Organization, has highlighted shortcomings in our current understanding of, and preparation for, emerging infectious diseases in general, as well as challenges that are specific to Zika virus infection. Vaccine development for Zika virus has been a high priority of the public health response, and several candidates have shown promise in pre-clinical and early phase clinical trials. The optimal selection and implementation of imperfect serologic assays are among the crucial issues that must be addressed in order to advance Zika vaccine development. Here, I review key considerations for how best to incorporate into Zika vaccine trials the existing serologic tools, as well as those on the horizon. Beyond that, this discussion is relevant to other intervention strategies to combat Zika and likely other emerging infectious diseases.
Collapse
Affiliation(s)
- Matthew H Collins
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA 30030, USA.
| |
Collapse
|
13
|
Gordon A, Gresh L, Ojeda S, Katzelnick LC, Sanchez N, Mercado JC, Chowell G, Lopez B, Elizondo D, Coloma J, Burger-Calderon R, Kuan G, Balmaseda A, Harris E. Prior dengue virus infection and risk of Zika: A pediatric cohort in Nicaragua. PLoS Med 2019; 16:e1002726. [PMID: 30668565 PMCID: PMC6342296 DOI: 10.1371/journal.pmed.1002726] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) emerged in northeast Brazil in 2015 and spread rapidly across the Americas, in populations that have been largely exposed to dengue virus (DENV). The impact of prior DENV infection on ZIKV infection outcome remains unclear. To study this potential impact, we analyzed the large 2016 Zika epidemic in Managua, Nicaragua, in a pediatric cohort with well-characterized DENV infection histories. METHODS AND FINDINGS Symptomatic ZIKV infections (Zika cases) were identified by real-time reverse transcription PCR and serology in a community-based cohort study that follows approximately 3,700 children aged 2-14 years old. Annual blood samples were used to identify clinically inapparent ZIKV infections using a novel, well-characterized serological assay. Multivariable Poisson regression was used to examine the relation between prior DENV infection and incidence of symptomatic and inapparent ZIKV infection. The generalized-growth method was used to estimate the effective reproduction number. From January 1, 2016, to February 28, 2017, 560 symptomatic ZIKV infections and 1,356 total ZIKV infections (symptomatic and inapparent) were identified, for an overall incidence of 14.0 symptomatic infections (95% CI: 12.9, 15.2) and 36.5 total infections (95% CI: 34.7, 38.6) per 100 person-years. Effective reproduction number estimates ranged from 3.3 to 3.4, depending on the ascending wave period. Incidence of symptomatic and total ZIKV infections was higher in females and older children. Analysis of the effect of prior DENV infection was performed on 3,027 participants with documented DENV infection histories, of which 743 (24.5%) had experienced at least 1 prior DENV infection during cohort follow-up. Prior DENV infection was inversely associated with risk of symptomatic ZIKV infection in the total cohort population (incidence rate ratio [IRR]: 0.63; 95% CI: 0.48, 0.81; p < 0.005) and with risk of symptomatic presentation given ZIKV infection (IRR: 0.62; 95% CI: 0.44, 0.86) when adjusted for age, sex, and recent DENV infection (1-2 years before ZIKV infection). Recent DENV infection was significantly associated with decreased risk of symptomatic ZIKV infection when adjusted for age and sex, but not when adjusted for prior DENV infection. Prior or recent DENV infection did not affect the rate of total ZIKV infections. Our findings are limited to a pediatric population and constrained by the epidemiology of the site. CONCLUSIONS These findings support that prior DENV infection may protect individuals from symptomatic Zika. More research is needed to address the possible immunological mechanism(s) of cross-protection between ZIKV and DENV and whether DENV immunity also modulates other ZIKV infection outcomes such as neurological or congenital syndromes.
Collapse
Affiliation(s)
- Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Leah C. Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Juan Carlos Mercado
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Gerardo Chowell
- Georgia State University, Atlanta, Georgia, United States of America
| | - Brenda Lopez
- Sustainable Sciences Institute, Managua, Nicaragua
| | | | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Raquel Burger-Calderon
- Sustainable Sciences Institute, Managua, Nicaragua
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Guillermina Kuan
- Health Center Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|