1
|
Salavati M, Arabshomali A, Nouranian S, Shariat-Madar Z. Overview of Venous Thromboembolism and Emerging Therapeutic Technologies Based on Nanocarriers-Mediated Drug Delivery Systems. Molecules 2024; 29:4883. [PMID: 39459251 PMCID: PMC11510185 DOI: 10.3390/molecules29204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Venous thromboembolism (VTE) is a serious health condition and represents an important cause of morbidity and, in some cases, mortality due to the lack of effective treatment options. According to the Centers for Disease Control and Prevention, 3 out of 10 people with VTE will have recurrence of a clotting event within ten years, presenting a significant unmet medical need. For some VTE patients, symptoms can last longer and have a higher than average risk of serious complications; in contrast, others may experience complications arising from insufficient therapies. People with VTE are initially treated with anticoagulants to prevent conditions such as stroke and to reduce the recurrence of VTE. However, thrombolytic therapy is used for people with pulmonary embolism (PE) experiencing low blood pressure or in severe cases of DVT. New drugs are under development, with the aim to ensure they are safe and effective, and may provide an additional option for the treatment of VTE. In this review, we summarize all ongoing trials evaluating anticoagulant interventions in VTE listed in clinicaltrials.gov, clarifying their underlying mechanisms and evaluating whether they prevent the progression of DVT to PE and recurrence of thrombosis. Moreover, this review summarizes the available evidence that supports the use of antiplatelet therapy for VTE. Since thrombolytic agents would cause off-target effects, targeted drug delivery platforms are used to develop various therapeutics for thrombotic diseases. We discuss the recent advances achieved with thrombus-targeting nanocarriers as well as the major challenges associated with the use of nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Masoud Salavati
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Arman Arabshomali
- Pharmacy Administration, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
2
|
Bahar AR, Mishra T, Bahar Y, Othman M, Afonso L. Aortic Valve Vegetation due to Nonbacterial Thrombotic Endocarditis in a Patient with Antiphospholipid Antibody Syndrome. CASE (PHILADELPHIA, PA.) 2024; 8:386-389. [PMID: 39221022 PMCID: PMC11364878 DOI: 10.1016/j.case.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
•AV vegetation due to NBTE is a rare complication in patients with APLAS. •TEE is superior to TTE for detecting small lesions/masses on heart valves. •Management of AV vegetation is extremely challenging. •Patients should be closely followed up for potential thromboembolic complications.
Collapse
Affiliation(s)
| | - Tushar Mishra
- Wayne State University, Detroit Medical Center Heart Hospital, Detroit, Michigan
| | - Yasemin Bahar
- Wayne State University School of Medicine, Detroit, Michigan
| | - Mahmoud Othman
- Wayne State University, Detroit Medical Center Heart Hospital, Detroit, Michigan
| | - Luis Afonso
- Wayne State University, Detroit Medical Center Heart Hospital, Detroit, Michigan
| |
Collapse
|
3
|
Minardi S, Sciarra L, Robles AG, Scara A, Sciarra F, De Masi De Luca G, Romano S. Thromboembolic prevention in athletes: management of anticoagulation in sports players affected by atrial fibrillation. Front Pharmacol 2024; 15:1384213. [PMID: 38803430 PMCID: PMC11129016 DOI: 10.3389/fphar.2024.1384213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia that poses a significant risk of stroke and thromboembolic events. Anticoagulation therapy is essential for preventing stroke in patients with AF. An increasing number of people of all ages, including cardiac patients, approach physical activity as both a leisure-time exercise and a competitive sport. Therefore, patients at risk of AF are increasingly allowed to practice sports activities. Management of oral anticoagulant therapy (OAT) in these patients is extremely challenging because of the need to balance the risks and benefits of medications, considering both hemorrhagic (in case of trauma) and ischemic complications when the drugs are avoided. Official recommendations are limited for these patients and forbid sports that increase the risk of trauma and consequent bleeding in most cases. These recommendations are strongly influenced by the "traditional" management of OAT, which mainly involves coumarin derivatives. Non-vitamin K antagonist direct oral anticoagulants (DOACs), with their more favorable pharmacokinetic-pharmacodynamic profile than that of coumarin derivatives, may represent an opportunity to modify the approach to sports activity in patients with AF and indications for OAT. This study aimed to review the use of anticoagulants in athletes with AF, highlight their efficacy and safety, and provide practical considerations regarding their management.
Collapse
Affiliation(s)
- Simona Minardi
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luigi Sciarra
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Antonio Gianluca Robles
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Cardiology, L. Bonomo Hospital, Andria, Italy
| | - Antonio Scara
- Department of Cardiology, San Carlo di Nancy-GVM, Rome, Italy
| | | | - Gabriele De Masi De Luca
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Cardiology, Card. G. Panico Hospital, Tricase, Italy
| | - Silvio Romano
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
4
|
Li Q, Yakhkind A, Alexandrov AW, Alexandrov AV, Anderson CS, Dowlatshahi D, Frontera JA, Hemphill JC, Ganti L, Kellner C, May C, Morotti A, Parry-Jones A, Sheth KN, Steiner T, Ziai W, Goldstein JN, Mayer SA. Code ICH: A Call to Action. Stroke 2024; 55:494-505. [PMID: 38099439 DOI: 10.1161/strokeaha.123.043033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Intracerebral hemorrhage is the most serious type of stroke, leading to high rates of severe disability and mortality. Hematoma expansion is an independent predictor of poor functional outcome and is a compelling target for intervention. For decades, randomized trials aimed at decreasing hematoma expansion through single interventions have failed to meet their primary outcomes of statistically significant improvement in neurological outcomes. A wide range of evidence suggests that ultra-early bundled care, with multiple simultaneous interventions in the acute phase, offers the best hope of limiting hematoma expansion and improving functional recovery. Patients with intracerebral hemorrhage who fail to receive early aggressive care have worse outcomes, suggesting that an important treatment opportunity exists. This consensus statement puts forth a call to action to establish a protocol for Code ICH, similar to current strategies used for the management of acute ischemic stroke, through which early intervention, bundled care, and time-based metrics have substantially improved neurological outcomes. Based on current evidence, we advocate for the widespread adoption of an early bundle of care for patients with intracerebral hemorrhage focused on time-based metrics for blood pressure control and emergency reversal of anticoagulation, with the goal of optimizing the benefit of these already widely used interventions. We hope Code ICH will endure as a structural platform for continued innovation, standardization of best practices, and ongoing quality improvement for years to come.
Collapse
Affiliation(s)
- Qi Li
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Q.L.)
| | | | | | | | - Craig S Anderson
- The George Institute for Global Heath, University of New South Wales, Sydney, Australia (C.S.A.)
| | - Dar Dowlatshahi
- University of Ottawa and Ottawa Hospital Research Institute, Canada (D.D.)
| | | | | | - Latha Ganti
- University of Central Florida College of Medicine, Orlando (L.G.)
| | | | - Casey May
- The Ohio State University College of Pharmacy, Columbus (C.M.)
| | | | | | - Kevin N Sheth
- Yale University School of Medicine, New Haven, CT (K.N.S.)
| | | | - Wendy Ziai
- John Hopkins University School of Medicine, Baltimore, MD (W.Z.)
| | | | | |
Collapse
|
5
|
Kontoghiorghes GJ. Drug Selection and Posology, Optimal Therapies and Risk/Benefit Assessment in Medicine: The Paradigm of Iron-Chelating Drugs. Int J Mol Sci 2023; 24:16749. [PMID: 38069073 PMCID: PMC10706143 DOI: 10.3390/ijms242316749] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The design of clinical protocols and the selection of drugs with appropriate posology are critical parameters for therapeutic outcomes. Optimal therapeutic protocols could ideally be designed in all diseases including for millions of patients affected by excess iron deposition (EID) toxicity based on personalised medicine parameters, as well as many variations and limitations. EID is an adverse prognostic factor for all diseases and especially for millions of chronically red-blood-cell-transfused patients. Differences in iron chelation therapy posology cause disappointing results in neurodegenerative diseases at low doses, but lifesaving outcomes in thalassemia major (TM) when using higher doses. In particular, the transformation of TM from a fatal to a chronic disease has been achieved using effective doses of oral deferiprone (L1), which improved compliance and cleared excess toxic iron from the heart associated with increased mortality in TM. Furthermore, effective L1 and L1/deferoxamine combination posology resulted in the complete elimination of EID and the maintenance of normal iron store levels in TM. The selection of effective chelation protocols has been monitored by MRI T2* diagnosis for EID levels in different organs. Millions of other iron-loaded patients with sickle cell anemia, myelodysplasia and haemopoietic stem cell transplantation, or non-iron-loaded categories with EID in different organs could also benefit from such chelation therapy advances. Drawbacks of chelation therapy include drug toxicity in some patients and also the wide use of suboptimal chelation protocols, resulting in ineffective therapies. Drug metabolic effects, and interactions with other metals, drugs and dietary molecules also affected iron chelation therapy. Drug selection and the identification of effective or optimal dose protocols are essential for positive therapeutic outcomes in the use of chelating drugs in TM and other iron-loaded and non-iron-loaded conditions, as well as general iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
6
|
You Q, Shao X, Wang J, Chen X. Progress on Physical Field-Regulated Micro/Nanomotors for Cardiovascular and Cerebrovascular Disease Treatment. SMALL METHODS 2023; 7:e2300426. [PMID: 37391275 DOI: 10.1002/smtd.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) are two major vasculature-related diseases that seriously affect public health worldwide, which can cause serious death and disability. Lack of targeting effect of the traditional CCVD treatment drugs may damage other tissues and organs, thus more specific methods are needed to solve this dilemma. Micro/nanomotors are new materials that can convert external energy into driving force for autonomous movement, which can not only enhance the penetration depth and retention rates, but also increase the contact areas with the lesion sites (such as thrombus and inflammation sites of blood vessels). Physical field-regulated micro/nanomotors using the physical energy sources with deep tissue penetration and controllable performance, such as magnetic field, light, and ultrasound, etc. are considered as the emerging patient-friendly and effective therapeutic tools to overcome the limitations of conventional CCVD treatments. Recent efforts have suggested that physical field-regulated micro/nanomotors on CCVD treatments could simultaneously provide efficient therapeutic effect and intelligent control. In this review, various physical field-driven micro/nanomotors are mainly introduced and their latest advances for CCVDs are highlighted. Last, the remaining challenges and future perspectives regarding the physical field-regulated micro/nanomotors for CCVD treatments are discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| |
Collapse
|
7
|
de Freitas Saito R, Barion BG, da Rocha TRF, Rolband A, Afonin KA, Chammas R. Anticoagulant Activity of Nucleic Acid Nanoparticles (NANPs) Assessed by Thrombin Generation Dynamics on a Fully Automated System. Methods Mol Biol 2023; 2709:319-332. [PMID: 37572292 PMCID: PMC10482313 DOI: 10.1007/978-1-0716-3417-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Rapidly reversible anticoagulant agents have great clinical potential. Oligonucleotide-based anticoagulant agents are uniquely positioned to fill this clinical niche, as they are able to be deactivated through the introduction of the reverse complement oligo. Once the therapeutic and the antidote oligos meet in solution, they are able to undergo isothermal reassociation to form short, inactive, duplexes that are rapidly secreted via filtration by the kidneys. The formation of the duplexes interrupts the structure of the anticoagulant oligo, allowing normal coagulation to be restored. To effectively assess these new anticoagulants, a variety of methods may be employed. The measurement of thrombin generation (TG) reflects the overall capacity of plasma to produce active thrombin and provides a strong contribution to identifying new anticoagulant drugs, including DNA/RNA thrombin binding aptamer carrying fibers which are used through this chapter as an example. Here we describe the TG assessed by Calibrated Automated Thrombogram (CAT) assay in a fully automated system. This method is based on the detection of TG in plasma samples by measuring fluorescent signals released from a quenched fluorogenic thrombin substrate and the subsequent conversion of these signals in TG curves.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Comprehensive Center for Precision Oncology, Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Bárbara Gomes Barion
- Laboratório de Hemostasia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tania Rubia Flores da Rocha
- Laboratório de Hemostasia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alex Rolband
- University of North Carolina, Charlotte, NC, USA
| | | | - Roger Chammas
- Comprehensive Center for Precision Oncology, Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|