1
|
Katal S, Patel P, Lee J, Taubman K, Gholamrezanezhad A. Total Body PET/CT: A Role in Musculoskeletal Diseases. Semin Nucl Med 2025; 55:86-97. [PMID: 38944556 DOI: 10.1053/j.semnuclmed.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/01/2024]
Abstract
Recent advancements in PET technology have culminated in the development of total-body PET (TB-PET) systems, which overcome many limitations of traditional scanners. These TB-PET scanners, while still becoming widely available, represent the forefront of clinical imaging across numerous medical institutions worldwide. Early clinical applications have demonstrated their enhanced image quality, precise lesion quantification, and overall superior performance relative to conventional scanners. The capabilities of TB-PET technology, including extended scan range, ultrahigh sensitivity, exceptional temporal resolution, and dynamic imaging, offer significant potential to tackle unresolved clinical challenges in medical imaging. In this discussion, we aim to explore the emerging applications, opportunities, and future perspectives of TB-PET/CT in musculoskeletal disorders (MSDs). Clinical applications for both oncologic and non-oncologic musculoskeletal diseases are discussed, including inflammatory arthritis, infections, osteoarthritis, osteoporosis, and skeletal muscle disorders. From the ability to visualize small musculoskeletal structures and the entire axial and appendicular skeleton, TB-PET shows significant potential in the diagnosis and management of MSD conditions as it becomes more widely available.
Collapse
Affiliation(s)
- Sanaz Katal
- Department of Medical Imaging, St. Vincent's Hospital, Melbourne, Victoria, Australia; Melborune Theranostic Innovation Centre (MTIC), Melbourne, Victoria, Australia
| | - Parth Patel
- Department of Radiology, University of Central Florida, Orlando, FL
| | - Jonathan Lee
- Department of Radiology, Keck School of Medicine, Los Angeles, CA
| | - Kim Taubman
- Department of Medical Imaging, St. Vincent's Hospital, Melbourne, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
2
|
Rathod N, Jutidamrongphan W, Bosbach WA, Chen Y, Penner JL, Sari H, Zeimpekis K, Montes AL, Moskal P, Stepien E, Shi K, Rominger A, Seifert R. Total Body PET/CT: Clinical Value and Future Aspects of Quantification in Static and Dynamic Imaging. Semin Nucl Med 2025; 55:98-106. [PMID: 39616013 DOI: 10.1053/j.semnuclmed.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Total body (TB) Positron Emission Tomography (PET) / Computed Tomography (CT) scanners have revolutionized nuclear medicine by enabling whole-body imaging in a single bed position.1 This review assesses the physical and clinical value of TB-PET/CT, with a focus on the advancements in both static and dynamic imaging, as well as the evolving quantification techniques. The significantly enhanced sensitivity of TB scanners can reduce radiation exposure and scan time, offering improved patient comfort and making it particularly useful for pediatric imaging and various other scenarios. Shorter scan times also decrease motion artifacts, leading to higher-quality images and better diagnostic accuracy. Dynamic PET imaging with TB scanners extends these advantages by capturing temporal changes in tracer uptake over time, providing real-time insights into both structural and functional assessment, and promoting the ability to monitor disease progression and treatment response. We also present CT-free attenuation correction methods that utilize the increased sensitivity of TB-PET as a potential improvement for dynamic TB-PET protocols. In static imaging, emerging quantification techniques such as dual-tracer PET using TB scanners allow imaging of two biological pathways, simultaneously, for a more comprehensive assessment of disease. In addition, positronium imaging, a novel technique utilizing positronium lifetime measurements, is introduced as a promising aspect for providing structural information alongside functional quantification. Finally, the potential of expanding clinical applications with the increased sensitivity of TB-PET/CT scanners is discussed.
Collapse
Affiliation(s)
- Narendra Rathod
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Warissara Jutidamrongphan
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Wolfram Andreas Bosbach
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jan Luca Penner
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Alejandro López Montes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Pawel Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland and Centre for Theranostics, Jagiellonian University, Krakow, Poland
| | - Ewa Stepien
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland and Centre for Theranostics, Jagiellonian University, Krakow, Poland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
3
|
Suliman S, Maison DP, Henrich TJ. The promise and reality of new immune profiling technologies. Nat Immunol 2024; 25:1765-1769. [PMID: 39242838 DOI: 10.1038/s41590-024-01948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Affiliation(s)
- Sara Suliman
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - David P Maison
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Vasquez JJ, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambhir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadk3295. [PMID: 38959327 PMCID: PMC11337933 DOI: 10.1126/scitranslmed.adk3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Dylan Ryder
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Robert Flavell
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Yingbing Wang
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Jelena Levi
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Sadie E. Munter
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Kofi A. Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Maya Aslam
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Walter Koch
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Gyula Szabo
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Uttam Shrestha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Joshua J. Vasquez
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Matthew S. Durstenfeld
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Nitasha Kumar
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Aruna Gambhir
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Henry F. VanBrocklin
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| |
Collapse
|
5
|
Cross GB, O’ Doherty J, Chang CC, Kelleher AD, Paton NI. Does PET-CT Have a Role in the Evaluation of Tuberculosis Treatment in Phase 2 Clinical Trials? J Infect Dis 2024; 229:1229-1238. [PMID: 37788578 PMCID: PMC11011169 DOI: 10.1093/infdis/jiad425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Accepted: 10/01/2023] [Indexed: 10/05/2023] Open
Abstract
Positron emission tomography-computed tomography (PET-CT) has the potential to revolutionize research in infectious diseases, as it has done with cancer. There is growing interest in it as a biomarker in the setting of early-phase tuberculosis clinical trials, particularly given the limitations of current biomarkers as adequate predictors of sterilizing cure for tuberculosis. PET-CT is a real-time tool that provides a 3-dimensional view of the spatial distribution of tuberculosis within the lung parenchyma and the nature of lesions with uptake (ie, whether nodular, consolidative, or cavitary). Its ability to provide functional data on changes in metabolism, drug penetration, and immune control of tuberculous lesions has the potential to facilitate drug development and regimen selection for advancement to phase 3 trials in tuberculosis. In this narrative review, we discuss the role that PET-CT may have in evaluating responses to drug therapy in active tuberculosis treatment and the challenges in taking PET-CT forward as predictive biomarker of relapse-free cure in the setting of phase 2 clinical trials.
Collapse
Affiliation(s)
- Gail B Cross
- Immunovirology and Pathogenesis Program, The Kirby Institute, UNSW, Sydney
- Burnet Institute, Victoria, Australia
| | - Jim O’ Doherty
- Siemens Medical Solutions, Malvern, PA
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Radiography & Diagnostic Imaging, University College Dublin, Dublin, Ireland
| | - Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, The Kirby Institute, UNSW, Sydney
- St Vincent's Hospital, Sydney, Australia
| | - Nicholas I Paton
- Infectious Disease Translational Research Programme, National University of Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Wu Y, Sun X, Zhang B, Zhang S, Wang X, Sun Z, Liu R, Zhang M, Hu K. Marriage of radiotracers and total-body PET/CT rapid imaging system: current status and clinical advances. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:195-207. [PMID: 38023815 PMCID: PMC10656629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 12/01/2023]
Abstract
Radiotracers and medical imaging equipment are the two main keys to molecular imaging. While radiotracers are of great interest to research and industry, medical imaging equipment technology is blossoming everywhere. Total-body PET/CT (TB-PET/CT) has emerged in response to this trend and is rapidly gaining traction in the fields of clinical oncology, cardiovascular medicine, inflammatory/infectious diseases, and pediatric diseases. In addition, the use of a growing number of radiopharmaceuticals in TB-PET/CT systems has shown promising results. Notably, the distinctive features of TB-PET/CT, such as its ultra-long axial field of view (194 cm), ultra-high sensitivity, and capability for low-dose tracer imaging, have enabled enhanced imaging quality while reducing the radiation dose. The envisioned whole-body dynamic imaging, delayed imaging, personalized disease management, and ultrafast acquisition for motion correction, among others, are achieved. This review highlights two key factors affecting molecular imaging, describing the rapid imaging effects of radiotracers allowed at low doses on TB-PET/CT and the improvements offered compared to conventional PET/CT.
Collapse
Affiliation(s)
- Yuxuan Wu
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Xiaona Sun
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Boyang Zhang
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
| | - Ruping Liu
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
| | - Mingrong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| |
Collapse
|
7
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to 2 Years Following COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.27.23293177. [PMID: 37577714 PMCID: PMC10418298 DOI: 10.1101/2023.07.27.23293177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role. We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection. We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms. We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Dylan Ryder
- Division of Experimental Medicine, University of California San Francisco
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Yingbing Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California San Francisco
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco
| | - Kofi A. Asare
- Division of Experimental Medicine, University of California San Francisco
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Wally Koch
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Gyula Szabo
- Department of Pathology, University of California San Francisco
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Uttam Shrestha
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | | | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Nitasha Kumar
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | - Ma Somsouk
- Division of Gastroenterology, University of California San Francisco
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | | | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco
| |
Collapse
|
8
|
Triumbari EKA, Rufini V, Mingels C, Rominger A, Alavi A, Fanfani F, Badawi RD, Nardo L. Long Axial Field-of-View PET/CT Could Answer Unmet Needs in Gynecological Cancers. Cancers (Basel) 2023; 15:2407. [PMID: 37173874 PMCID: PMC10177015 DOI: 10.3390/cancers15092407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Gynecological malignancies currently affect about 3.5 million women all over the world. Imaging of uterine, cervical, vaginal, ovarian, and vulvar cancer still presents several unmet needs when using conventional modalities such as ultrasound, computed tomography (CT), magnetic resonance, and standard positron emission tomography (PET)/CT. Some of the current diagnostic limitations are represented by differential diagnosis between inflammatory and cancerous findings, detection of peritoneal carcinomatosis and metastases <1 cm, detection of cancer-associated vascular complications, effective assessment of post-therapy changes, as well as bone metabolism and osteoporosis assessment. As a result of recent advances in PET/CT instrumentation, new systems now offer a long-axial field-of-view (LAFOV) to image between 106 cm and 194 cm (i.e., total-body PET) of the patient's body simultaneously and feature higher physical sensitivity and spatial resolution compared to standard PET/CT systems. LAFOV PET could overcome the forementioned limitations of conventional imaging and provide valuable global disease assessment, allowing for improved patient-tailored care. This article provides a comprehensive overview of these and other potential applications of LAFOV PET/CT imaging for patients with gynecological malignancies.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, G-STeP Radiopharmacy Research Core Facility, Department of Radiology, Radiotherapy and Haematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Department of Radiology, Radiotherapy and Haematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
- Section of Nuclear Medicine, Department of Radiological Sciences, Radiotherapy and Haematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Fanfani
- Woman, Child and Public Health Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Section of Obstetrics and Gynaecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Ramsey D. Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95819, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA 95819, USA
| |
Collapse
|
9
|
Lau CY, Adan MA, Earhart J, Seamon C, Nguyen T, Savramis A, Adams L, Zipparo ME, Madeen E, Huik K, Grossman Z, Chimukangara B, Wulan WN, Millo C, Nath A, Smith BR, Ortega-Villa AM, Proschan M, Wood BJ, Hammoud DA, Maldarelli F. Imaging and biopsy of HIV-infected individuals undergoing analytic treatment interruption. Front Med (Lausanne) 2022; 9:979756. [PMID: 36072945 PMCID: PMC9441850 DOI: 10.3389/fmed.2022.979756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background HIV persistence during antiretroviral therapy (ART) is the principal obstacle to cure. Lymphoid tissue is a compartment for HIV, but mechanisms of persistence during ART and viral rebound when ART is interrupted are inadequately understood. Metabolic activity in lymphoid tissue of patients on long-term ART is relatively low, and increases when ART is stopped. Increases in metabolic activity can be detected by 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and may represent sites of HIV replication or immune activation in response to HIV replication. Methods FDG-PET imaging will be used to identify areas of high and low metabolic uptake in lymphoid tissue of individuals undergoing long-term ART. Baseline tissue samples will be collected. Participants will then be randomized 1:1 to continue or interrupt ART via analytic treatment interruption (ATI). Image-guided biopsy will be repeated 10 days after ATI initiation. After ART restart criteria are met, image-guided biopsy will be repeated once viral suppression is re-achieved. Participants who continued ART will have a second FDG-PET and biopsies 12–16 weeks after the first. Genetic characteristics of HIV populations in areas of high and low FDG uptake will be assesed. Optional assessments of non-lymphoid anatomic compartments may be performed to evaluate HIV populations in distinct anatomic compartments. Anticipated results We anticipate that PET standardized uptake values (SUV) will correlate with HIV viral RNA in biopsies of those regions and that lymph nodes with high SUV will have more viral RNA than those with low SUV within a patient. Individuals who undergo ATI are expected to have diverse viral populations upon viral rebound in lymphoid tissue. HIV populations in tissues may initially be phylogenetically diverse after ATI, with emergence of dominant viral species (clone) over time in plasma. Dominant viral species may represent the same HIV population seen before ATI. Discussion This study will allow us to explore utility of PET for identification of HIV infected cells and determine whether high FDG uptake respresents areas of HIV replication, immune activation or both. We will also characterize HIV infected cell populations in different anatomic locations. The protocol will represent a platform to investigate persistence and agents that may target HIV populations. Study protocol registration Identifier: NCT05419024.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Chuen-Yen Lau
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jessica Earhart
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cassie Seamon
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thuy Nguyen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Ariana Savramis
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lindsey Adams
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Mary-Elizabeth Zipparo
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Erin Madeen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Kristi Huik
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Zehava Grossman
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Benjamin Chimukangara
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wahyu Nawang Wulan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Corina Millo
- PET Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Avindra Nath
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bryan R. Smith
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ana M. Ortega-Villa
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michael Proschan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bradford J. Wood
- Interventional Radiology, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dima A. Hammoud
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| |
Collapse
|
10
|
Ng Q, Triumbari EKA, Omidvari N, Cherry SR, Badawi RD, Nardo L. Total-body PET/CT - First Clinical Experiences and Future Perspectives. Semin Nucl Med 2022; 52:330-339. [PMID: 35272853 PMCID: PMC9439875 DOI: 10.1053/j.semnuclmed.2022.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/26/2023]
Abstract
Total-body PET has come a long way from its first conception to today, with both total-body and long axial field of view (> 1m) scanners now being commercially available world-wide. The conspicuous signal collection efficiency gain, coupled with high spatial resolution, allows for higher sensitivity and improved lesion detection, enhancing several clinical applications not readily available on current conventional PET/CT scanners. This technology can provide (a) reduction in acquisition times with preservation of diagnostic quality images, benefitting specific clinical situations (i.e. pediatric patients) and the use of several existing radiotracers that present transient uptake over time and where small differences in acquisition time can greatly impact interpretation of images; (b) reduction in administered activity with minimal impact on image noise, thus reducing effective dose to the patient, improving staff safety, and helping with logistical concerns for short-lived radionuclides or long-lived radionuclides with poor dosimetry profiles that have had limited use on conventional PET scanners until now; (c) delayed scanning, that has shown to increase the detection of even small and previously occult malignant lesions by improved clearance in regions of significant background activity and by reduced visibility of coexisting inflammatory processes; (d) improvement in image quality, as a consequence of higher spatial resolution and sensitivity of total-body scanners, implying better appreciation of small structures and clinical implications with downstream prognostic consequences for patients; (e) simultaneous total-body dynamic imaging, that allows the measurement of full spatiotemporal distribution of radiotracers, kinetic modeling, and creation of multiparametric images, providing physiologic and biologically relevant data of the entire body at the same time. On the other hand, the higher physical and clinical sensitivity of total-body scanners bring along some limitations and challenges. The strong impact on clinical sensitivity potentially increases the number of false positive findings if the radiologist does not recalibrate interpretation considering the new technique. Delayed scanning causes logistical issues and introduces new interpretation questions for radiologists. Data storage capacity, longer processing and reconstruction time issues are other limitations, but they may be overcome in the near future by advancements in reconstruction algorithms and computing hardware.
Collapse
Affiliation(s)
- Quinn Ng
- Department of Radiology, UC Davis, Sacramento, CA, USA
| | - Elizabeth Katherine Anna Triumbari
- Department of Radiology, UC Davis, Sacramento, CA, USA,Section of Nuclear Medicine, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Negar Omidvari
- Department of Biomedical Engineering California Davis, CA, USA
| | - Simon R. Cherry
- Department of Radiology, UC Davis, Sacramento, CA, USA,Department of Biomedical Engineering California Davis, CA, USA
| | - Ramsey D. Badawi
- Department of Radiology, UC Davis, Sacramento, CA, USA,Department of Biomedical Engineering California Davis, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, UC Davis, Sacramento, CA, USA
| |
Collapse
|
11
|
Katal S, Eibschutz LS, Saboury B, Gholamrezanezhad A, Alavi A. Advantages and Applications of Total-Body PET Scanning. Diagnostics (Basel) 2022; 12:diagnostics12020426. [PMID: 35204517 PMCID: PMC8871405 DOI: 10.3390/diagnostics12020426] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have focused on the development of total-body PET scanning in a variety of fields such as clinical oncology, cardiology, personalized medicine, drug development and toxicology, and inflammatory/infectious disease. Given its ultrahigh detection sensitivity, enhanced temporal resolution, and long scan range (1940 mm), total-body PET scanning can not only image faster than traditional techniques with less administered radioactivity but also perform total-body dynamic acquisition at a longer delayed time point. These unique characteristics create several opportunities to improve image quality and can provide a deeper understanding regarding disease detection, diagnosis, staging/restaging, response to treatment, and prognostication. By reviewing the advantages of total-body PET scanning and discussing the potential clinical applications for this innovative technology, we can address specific issues encountered in routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Sanaz Katal
- Independent Researcher, Melbourne 3000, Australia;
| | - Liesl S. Eibschutz
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
12
|
Total-body PET. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|