1
|
Zehra N, Malik AH, Parui R, Hussain S, Krishnan Iyer P. A Conjugated Polymer-Based Portable Smartphone Platform for Sensitive and Point-Of-Care Detection of Monoamine Neurotransmitter. Chem Asian J 2024; 19:e202400544. [PMID: 38865578 DOI: 10.1002/asia.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The precise and effective detection of neurotransmitters (NTs) is crucial for clinical investigation of neuronal processes, and timely monitoring of NT-related chronic diseases. However, sensitive detection of specific NT with unprecedented selectivity is highly challenging due to similarities in chemical and electronic structures of various interfering neurochemicals. Herein, an anionic conjugated polyelectrolyte Poly[(9,9-bis(4'-sulfonatobutyl)fluorene-co-alt-1,4-phenylene) sodium], PFPS was rationally designed and synthesized for amplified detection and point-of-care (PoC) determination of monoamine neurotransmitter, serotonin (5-Hydroxy tryptamine or 5-HT, also diagnostic biomarker of carcinoid tumor) in human blood plasma. The PFPS displayed a remarkable sensing response with an exceptionally high fluorescence quenching constant of 1.14×105 M-1 and an ultralow detection limit of 0.67 μM or 0.142 ppm, much below the clinical range. Furthermore, a smartphone-enabled portable platform was constructed for real-time onsite detection of 5-HT by quantification of visual fluorescence response of PFPS into RGB values using a color recognizer android application. The smartphone platform could be readily applied for convenient, non-invasive PoC testing of 5-HT levels in complex biological fluids accurately and is expected to revolutionize clinical diagnosis and personalized health care devices.
Collapse
Affiliation(s)
- Nehal Zehra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039., India
- Department of Chemistry, Shia P.G. College, Lucknow, 226020., U.P. India
| | - Akhtar H Malik
- Department of Chemistry, Government Degree College Sopore, Sopore, J & K, 193201, India
| | - Retwik Parui
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039., India
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039., India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039., India
- School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039., India
| |
Collapse
|
2
|
Avcı B, Akpınar Y, Ertaş G, Volkan M. Sialic Acid-Functionalized Gold Nanoparticles for Sensitive and Selective Colorimetric Determination of Serotonin. ACS OMEGA 2024; 9:23832-23842. [PMID: 38854544 PMCID: PMC11154895 DOI: 10.1021/acsomega.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
We present a novel colorimetric method inspired by nature's complex mechanisms, capable of selectively determining serotonin with high sensitivity. This method exploits the inherent binding affinity of serotonin with sialic acid (SA) molecules anchored to gold nanoparticles (SA-AuNPs). Upon serotonin binding, SA-AuNPs aggregate, and a characteristic red shift in the absorbance of SA-AuNPs accompanied by a dramatic color change (red to blue) occurs, readily observable even without instrumentation. The proposed method effectively eliminates interventions from potential interfering species such as dopamine, epinephrine, l-tyrosine, glucosamine, galactose, mannose, and oxalic acid. The absence of a color change with l-tryptophan, a structurally related precursor of serotonin, further confirms the high selectivity of this approach for serotonin detection. The colorimetric method has a wide linear dynamic range (0.05-1.0 μM), low limit of detection (0.02 μM), and fast response time (5 min). The limit of detection of the method is lower than other colorimetric serotonin sensors reported so far. The possible use of the proposed method in biological sample analysis was evaluated by employing a serotonin recovery assay in processed human plasma. The recoveries ranged from 90.5 to 104.2%, showing promising potential for clinical applications.
Collapse
Affiliation(s)
- Begüm Avcı
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Yeliz Akpınar
- Department of Chemistry, Kirsehir Ahi Evran University, 40100 Kirsehir, Turkey
| | - Gülay Ertaş
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Mürvet Volkan
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
3
|
Pereira RW, Ramabhadran RO. Accurate Computation of Aqueous p Kas of Biologically Relevant Organic Acids: Overcoming the Challenges Posed by Multiple Conformers, Tautomeric Equilibria, and Disparate Functional Groups with the Fully Black-Box p K-Yay Method. J Phys Chem A 2023; 127:9121-9138. [PMID: 37862610 DOI: 10.1021/acs.jpca.3c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The use of static electronic structure calculations to compute solution-phase pKas offers a great advantage in that a macroscopic bulk property could be computed via microscopic computations involving very few molecules. There are various sources of errors in the quantum chemical calculations though. Overcoming these errors to accurately compute pKas of a plethora of acids is an active area of research in physical chemistry pursued by both computational as well as experimental chemists. We recently developed the pK-Yay method in our attempt to accurately compute aqueous pKas of strong and weak acids. The method is fully black-box, computationally inexpensive, and is very easy for even a nonexpert to use. However, the method was thus far tested on very few molecules (only 16 in all). Herein, in order to assess the future applicability of pK-Yay, we study the effect of multiple conformers, the presence of tautomers under equilibrium, and the impact of a wide variety of functional groups (derivatives of acetic acid with substituents at various positions, dicarboxylic acids, aromatic carboxylic acids, amines and amides, phenols and thiols, and fluorine bearing organic acids). Starting with more than 1000 conformers and tautomers, this study establishes that overall errors of ∼ 1.0 pKa units are routinely obtained for a majority of the molecules. Larger errors are noted in cases where multiple charges, intramolecular hydrogen bonding, and several ionizable functional groups are simultaneously present. An important conclusion to emerge from this work is that, the computed pKas are insensitive (difference <0.5) to whether we consider multiple conformers/tautomers or only choose the most stable conformer/tautomer. Further, pK-Yay captures the stereoelectronic effects arising due to differing axial vs equatorial pattern, and is useful to predict the dominant acid-base equilibrium in a system featuring several equilibria. Overall, pK-Yay may be employed in several chemical applications featuring organic molecules and biomonomers.
Collapse
Affiliation(s)
- Roshni W Pereira
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
4
|
Verdejo B, Inclán M, Blasco S, Ballesteros-Garrido R, Savastano M, Bianchi A, García-España E. Selective recognition of neurotransmitters in aqueous solution by hydroxyphenyl aza-scorpiand ligands. Org Biomol Chem 2023. [PMID: 37335019 DOI: 10.1039/d3ob00562c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The synthesis, acid-base behaviour and anion recognition of neurotransmitters (dopamine, tyramine and serotonin) in aqueous solution of different aza-scorpiand ligands functionalized with hydroxyphenyl and phenyl moieties (L1-L3 and L4, respectively) have been studied by potentiometry, NMR, UV-Vis and fluorescence spectroscopy and isothermal titration calorimetry (ITC). The analysis of the potentiometric results shows the selective recognition of serotonin at physiological pH (Keff = 8.64 × 104) by L1. This selectivity has an entropic origin probably coming from a fine pre-organization of the interacting partners. Thus, the complementarity of the receptor and the substrate allows the reciprocal formation of hydrogen bonds, π-π and cation-π interactions, stabilizing the receptors and slowing the rate of oxidative degradation, and satisfactory results are obtained at acidic and neutral pH values. NMR and molecular dynamics studies reveal the rotation blockage in the neurotransmitter side chain once complexed with L1.
Collapse
Affiliation(s)
- Begoña Verdejo
- Instituto de Ciencia Molecular, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Mario Inclán
- Instituto de Ciencia Molecular, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Salvador Blasco
- Instituto de Ciencia Molecular, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Rafael Ballesteros-Garrido
- Departamento de Química Orgánica, Universidad de Valencia, C/Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Matteo Savastano
- Dipartimento di Chimica "Ugo Schiff" Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Antonio Bianchi
- Dipartimento di Chimica "Ugo Schiff" Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Enrique García-España
- Instituto de Ciencia Molecular, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
5
|
Reveguk ZV, Sych TS, Polyanichko AM, Chuiko YV, Buglak AA, Kononov AI. Rapid and selective colorimetric determination of L-DOPA in human serum with silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122810. [PMID: 37182251 DOI: 10.1016/j.saa.2023.122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
L-DOPA, or l-3,4-dihydroxyphenylalanine is an aromatic amino acid, which plays a significant role in human metabolism as a precursor of important neurotransmitters. We develop a fast and simple colorimetric method for the detection of L-DOPA in biological fluids. The method is based on the reduction of silver ions with L-DOPA and the subsequent formation of L-DOPA stabilized silver nanoparticles (Ag NPs). In this novel approach, L-DOPA works as both reducing and stabilizing agent, which provides selectivity and simplifies the procedure. HR-TEM images show very narrow Ag NPs distribution with an average size of 24 nm. Such sensor design is suggested for the first time. We also calculate vertical ionization potential, vertical electron affinity, and Gibbs free energy change of different ionic forms of L-DOPA and amino acids at the M06-2X/def2-TZVP level for the gas phase in comparison with that of silver. A model of silver ions reduction by aromatic amino acids is proposed: the ionic forms with charge -1 are suggested to reduce silver ions. High selectivity against aromatic amino acids, dopamine and serotonin is achieved by tuning pH and involving two L-DOPA forms with charged both hydroxyphenolate and carboxylate groups in the stabilization of uniform-sized Ag NPs. The method is applicable for the determination of L-DOPA in human serum with the 50 nM limit of detection and the linear range up to 5 μM. Ag NPs formation and coloring the solution proceeds in a few minutes. The suggested colorimetric method has potential application in clinical trials.
Collapse
Affiliation(s)
- Zakhar V Reveguk
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia.
| | - Tomash S Sych
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander M Polyanichko
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Yana V Chuiko
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey A Buglak
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia; Institute of Physics, Kazan Federal University, 420008 Kazan, Russia.
| | - Alexei I Kononov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Ray S, Mondal P. Electronic Substitution Effect on the Ground and Excited State Properties of Indole Chromophore: A Computational Study. Chemphyschem 2023; 24:e202200541. [PMID: 36334020 DOI: 10.1002/cphc.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/15/2022] [Indexed: 11/07/2022]
Abstract
Indole, being the main chromophore of amino acid tryptophan and several other biologically relevant molecules like serotonin, melatonin, has prompted considerable theoretical and experimental interest. The current work focuses on the investigation of substitution effect on the ground and excited electronic states of indole using computational quantum chemistry. Having three close-lying excited electronic states, the vibronic coupling effect becomes extremely important yet challenging for the photophysics and photochemistry of indole. Here, we have evaluated the performance of time-dependent density functional theory against available experimental and ab initio results from the literature. The electronic effects on the excited states of indole and indole derivatives e. g. tryptophan, serotonin and melatonin are reported. A bathochromic shift has been observed in the absorption spectrum for the La state. The absorption wavelength increases in the order of indole<tryptophan <serotonin <melatonin. While the contribution of the in-plane small adjacent groups increases the electron density of the indole ring, the out-of-plane long substituent groups have minor effect. The absorption spectra calculated including the vibronic coupling are in good agreement with experiments. These results can be used to estimate the error in photophysical observables of indole derivatives calculated considering indole as a prototypical system.
Collapse
Affiliation(s)
- Soumyadip Ray
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences and Technologies, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati, 517507, Andhra Pradesh, India
| | - Padmabati Mondal
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences and Technologies, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati, 517507, Andhra Pradesh, India
| |
Collapse
|
7
|
Froehlich CE, He J, Haynes CL. Investigation of Charged Small Molecule-Aptamer Interactions with Surface Plasmon Resonance. Anal Chem 2023; 95:2639-2644. [PMID: 36704862 DOI: 10.1021/acs.analchem.2c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Investigating the interactions between small, charged molecules and aptamers using surface plasmon resonance (SPR) is limited by the inherent low response of small molecules and difficulties with nonspecific electrostatic interactions between the aptamer, analyte, and sensor surface. However, aptamers are increasingly being used in sensors for small molecule detection in critical areas like healthcare and environmental safety. The ability to probe these interactions through simple, direct SPR assays would be greatly beneficial and allow for the development of improved sensors without the need for complicated signal enhancement. However, these assays are nearly nonexistent in the current literature and are instead surpassed by sandwich or competitive binding techniques, which require additional sample preparation and reagents. In this work, we develop a method to characterize the interaction between the charged small molecule serotonin (176 Da) and an aptamer with SPR using streptavidin-biotin capture and a high-ionic-strength buffer. Additionally, other methods, such as serotonin immobilization and thiol-coupling of the aptamer, were investigated for comparison. These techniques give insight into working with small molecules and allow for quickly adapting a binding affinity assay into a direct SPR sensor.
Collapse
|
8
|
Buffer Components Incorporate into the Framework of Polyserotonin Nanoparticles and Films during Synthesis. NANOMATERIALS 2022; 12:nano12122027. [PMID: 35745365 PMCID: PMC9227592 DOI: 10.3390/nano12122027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Polyserotonin nanoparticles (PSeNP) and films are bioinspired nanomaterials that have potential in biomedical applications and surface coatings. As studies on polyserotonin (PSe) nanoparticles and films are still in their infancy, synthetic pathways and material development for this new class of nanomaterial await investigation. Here, we sought to determine how different buffers used during the polymerization of serotonin to form nanoparticles and films impact the physicochemical properties of PSe materials. We show that buffer components are incorporated into the polymer matrix, which is also supported by density functional theory calculations. While we observed no significant differences between the elasticity of nanoparticles synthesized in the different buffers, the nanoscale surface properties of PSe films revealed dissimilarities in surface functional groups influenced by solvent molecules. Overall, the results obtained in this work can be used towards the rational design of PSe nanomaterials with tailored properties and for specific applications.
Collapse
|
9
|
Zhu H, Chu Z, Wang Y, Chen J, Zhang Z, Wu X. Strong Out-of-Plane Vibrations and Ultrasensitive Detection of Dopamine-like Neurotransmitters. J Phys Chem Lett 2022; 13:3325-3331. [PMID: 35394786 DOI: 10.1021/acs.jpclett.2c00737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The detection of monoamine neurotransmitters has become a vital research subject due to their high correlations with nervous system diseases, but insufficient detection precisions have obstructed diagnosis of some related diseases. Here, we focus on four monoamine neurotransmitters, dopamine, norepinephrine, epinephrine, and serotonin, to conduct their rapid and ultrasensitive detection. We find that the low-frequency (<200 cm-1) Raman vibrations of these molecules show some sharp peaks, and their intensities are significantly stronger than those of the high-frequency side. Theoretical calculations identify these peaks to be from strong out-of-plane vibrations of the C-C single bonds at the joint point of the ring-like molecule and its side chain. Using our surface enhanced low-frequency Raman scattering substrates, we show that the detection limit of dopamine as an example can reach 10 nM in artificial cerebrospinal fluid. This work provides a useful way for ultrasensitive and rapid detection of some neurotransmitters.
Collapse
Affiliation(s)
- Haogang Zhu
- National Laboratory of Solid States Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Zhiqiang Chu
- National Laboratory of Solid States Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Yixian Wang
- National Laboratory of Solid States Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Jian Chen
- National Laboratory of Solid States Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
| | - Zhiyong Zhang
- National Laboratory of Solid States Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Xinglong Wu
- National Laboratory of Solid States Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
10
|
Voltammetric kinetic discrimination of two sequential proton-coupled electron transfers in serotonin oxidation: Electrochemical interrogation of a serotonin intermediate. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Chiş V, Vinţeler E. Excitation energies for anionic drugs predicted by PBE0, TPSS and τHCTH density functionals. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Chandra F, Dutta T, Koner AL. Supramolecular Encapsulation of a Neurotransmitter Serotonin by Cucurbit[7]uril. Front Chem 2020; 8:582757. [PMID: 33195072 PMCID: PMC7645158 DOI: 10.3389/fchem.2020.582757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
pH-dependent host-guest complexation of a monoamine neurotransmitter, Serotonin, with cucurbit[7]uril has been thoroughly investigated. The binding phenomena were explored using steady-state and time-resolved fluorescence spectroscopy at different pH values. At lower pH, i.e., protonated Serotonin, the binding affinity with cucurbit[7]uril was significantly higher compared to higher pH. Furthermore, detailed NMR titration experiments depicted the solution structure of the host-guest complex through the complexation induced chemical shift values. A competitive binding assay with cesium ions at pD 2.8 was subsequently performed for the further manifestation of the binding. Finally, the molecular docking studies provided well-documented proof of the 1:1 inclusion complex and the geometry of the complex. We believe that understanding from such studies can be important for pH-controlled delivery of serotonin for biological applications.
Collapse
Affiliation(s)
- Falguni Chandra
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Apurba L Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
13
|
Ko M, Mendecki L, Eagleton AM, Durbin CG, Stolz RM, Meng Z, Mirica KA. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J Am Chem Soc 2020; 142:11717-11733. [PMID: 32155057 DOI: 10.1021/jacs.9b13402] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal-organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaiminotriphenylene (HITP) or O, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM-200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM-200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.
Collapse
Affiliation(s)
- Michael Ko
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aileen M Eagleton
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Claudia G Durbin
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
14
|
Tomaník L, Muchová E, Slavíček P. Solvation energies of ions with ensemble cluster-continuum approach. Phys Chem Chem Phys 2020; 22:22357-22368. [DOI: 10.1039/d0cp02768e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An alternative cluster-continuum approach for the calculation of solvation free energies of ions.
Collapse
Affiliation(s)
- Lukáš Tomaník
- Department of Physical Chemistry
- University of Chemistry and TechnologyTechnická 5
- 16628 Prague 6
- Czech Republic
| | - Eva Muchová
- Department of Physical Chemistry
- University of Chemistry and TechnologyTechnická 5
- 16628 Prague 6
- Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry
- University of Chemistry and TechnologyTechnická 5
- 16628 Prague 6
- Czech Republic
| |
Collapse
|
15
|
Borah MM, Devi TG. Vibrational study and Natural Bond Orbital analysis of serotonin in monomer and dimer states by density functional theory. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Nakatsuka N, Hasani-Sadrabadi MM, Cheung KM, Young TD, Bahlakeh G, Moshaverinia A, Weiss PS, Andrews AM. Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS NANO 2018; 12:4761-4774. [PMID: 29664607 PMCID: PMC6087466 DOI: 10.1021/acsnano.8b01470] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Serotonin-based nanoparticles represent a class of previously unexplored multifunctional nanoplatforms with potential biomedical applications. Serotonin, under basic conditions, self-assembles into monodisperse nanoparticles via autoxidation of serotonin monomers. To demonstrate potential applications of polyserotonin nanoparticles for cancer therapeutics, we show that these particles are biocompatible, exhibit photothermal effects when exposed to near-infrared radiation, and load the chemotherapeutic drug doxorubicin, releasing it contextually and responsively in specific microenvironments. Quantum mechanical and molecular dynamics simulations were performed to interrogate the interactions between surface-adsorbed drug molecules and polyserotonin nanoparticles. To investigate the potential of polyserotonin nanoparticles for in vivo targeting, we explored their nano-bio interfaces by conducting protein corona experiments. Polyserotonin nanoparticles had reduced surface-protein interactions under biological conditions compared to polydopamine nanoparticles, a similar polymer material widely investigated for related applications. These findings suggest that serotonin-based nanoparticles have advantages as drug-delivery platforms for synergistic chemo- and photothermal therapy associated with limited nonspecific interactions.
Collapse
Affiliation(s)
- Nako Nakatsuka
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Mohammad Mahdi Hasani-Sadrabadi
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kevin M. Cheung
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Thomas D. Young
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Ghasem Bahlakeh
- Department of Engineering and Technology, Golestan University, Aliabad Katool, Iran
| | - Alireza Moshaverinia
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Anne M. Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Semel Institute for Neuroscience & Human Behavior and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
17
|
Hernández-Olivares MA, Ibarra-Escutia A, Mendoza-Sarmiento G, Rojas-Hernández A, Galano A. Elucidation of the complex deprotonation routes of Changrolin, the antihypertensives LQM-303 and LQM-303b, and their derivatives. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Omidyan R, Amanollahi Z, Azimi G. Protonated serotonin: Geometry, electronic structures and photophysical properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 182:8-16. [PMID: 28388475 DOI: 10.1016/j.saa.2017.03.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1←S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.
Collapse
Affiliation(s)
- Reza Omidyan
- Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran.
| | - Zohreh Amanollahi
- Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Gholamhassan Azimi
- Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran
| |
Collapse
|
19
|
Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array. Biosens Bioelectron 2017; 93:241-249. [DOI: 10.1016/j.bios.2016.08.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022]
|
20
|
Jha O, Yadav TK, Yadav RA. Comparative structural and vibrational study of the four lowest energy conformers of serotonin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:307-317. [PMID: 27673499 DOI: 10.1016/j.saa.2016.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
A computational investigation of all possible lowest energy conformers of serotonin was carried out at the B3LYP/6-311++G** level. Out of the 14 possible lowest energy conformers, the first 4 conformers were investigated thoroughly for the optimized geometries, fundamental frequencies, the potential energy distributions, APT and natural charges, natural bond orbital (NBO) analysis, MEP, Contour map, total density array, HOMO, LUMO energies. The second third and fourth conformers are energetically at higher temperatures of 78, 94 and 312K respectively with respect to the first one. Bond angles and bond lengths do not show significant variations while the dihedral angles vary significantly in going from one conformer to the other. Some of the vibrational modes of the indole moiety are conformation dependent to some extent whereas most of the normal modes of vibration of amino-ethyl side chain vary significantly in going from one conformer to conformer. The MEP for the four conformers suggested that the sites of the maximum positive and negative ESP change on changing the conformation. The charges at some atomic sites also change significantly from conformer to conformer.
Collapse
Affiliation(s)
- Omkant Jha
- Laser and Spectroscopy Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - T K Yadav
- Laser and Spectroscopy Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - R A Yadav
- Laser and Spectroscopy Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
21
|
Dinesh B, Veeramani V, Chen SM, Saraswathi R. In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Rychkov DA, Hunter S, Kovalskii VY, Lomzov AA, Pulham CR, Boldyreva EV. Towards an understanding of crystallization from solution. DFT studies of multi-component serotonin crystals. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Gündeğer E, Selçuki C, Okutucu B. Modeling prepolymerization step of a serotonin imprinted polymer. J Mol Model 2016; 22:148. [PMID: 27262576 DOI: 10.1007/s00894-016-3018-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/26/2016] [Indexed: 01/19/2023]
Abstract
Studies on generating artificial macromolecular receptors by molecular imprinting of synthetic polymers significantly emerged in the literature during last decades. The non-covalent approach, one of the three methods used in MIP synthesis, is more flexible for the choice of functional monomers, possible target molecules, and use of the imprinted materials. This study aims to investigate a serotonin imprinted polymer prepared by non-covalent approach using molecular modeling. The calculations were carried out by using density functional theory at ωB97XD/6-31++G(d,p) level and the polarizable continuum model was used for solvent calculations. Computational results showed that DMSO plays an important role in the MIP formation as it seems to control the size and the shape of the cavity. DMSO performs these tasks through hydrogen bonding and dispersive interactions. Although experimental IR could not verify the specific interaction modes because of broadband structure, computational IR results showed these modes clearly indicating the interactions leading to MIP formation. This model is specific to the studied serotonin-acrylamide-DMSO system but further studies may reveal a general computational protocol for other MIP systems.
Collapse
Affiliation(s)
- Ersin Gündeğer
- Graduate School of Natural and Applied Science, Biotechnology Program, Ege University, 35100, Bornova, Izmir, Turkey
| | - Cenk Selçuki
- Faculty of Science, Biochemistry Department, Ege University, 35100, Bornova, Izmir, Turkey
| | - Burcu Okutucu
- Faculty of Science, Biochemistry Department, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
24
|
Ramon-Marquez T, Medina-Castillo AL, Fernandez-Gutierrez A, Fernandez-Sanchez JF. A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence. Biosens Bioelectron 2016; 82:217-23. [PMID: 27085954 DOI: 10.1016/j.bios.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
This paper describes a novel biosensor which combines the use of nanotechnology (non-woven nanofibre mat) with Solid Surface-Room Temperature Phosphorescence (SS-RTP) measurement for the determination of serotonin in human serum. The developed biosensor is simple and can be directly applied in serum; only requires a simple clean-up protocol. Therefore it is the first time that serotonin is analysed directly in serum with a non-enzymatic technique. This new approach is based on the covalent immobilization of serotonin directly from serum on a functional nanofibre material (Tiss®-Link) with a preactivated surface for direct covalent immobilization of primary and secondary amines, and the subsequent measurement of serotonin phosphorescent emission from the solid surface. The phosphorescent detection allows avoiding the interference from any fluorescence emission or scattering light from any molecule present in the serum sample which can be also immobilised on the nanofibre material. The determination of serotonin with this SS-RTP sensor overcomes some limitations, such as large interference from the matrix and high cost and complexity of many of the methods widely used for serotonin analysis. The potential applicability of the sensor in the clinical diagnosis was demonstrated by analysing serum samples from seven healthy volunteers. The method was validated with an external reference laboratory, obtaining a correlation coefficient of 0.997 which indicates excellent correlation between the two methods.
Collapse
Affiliation(s)
- Teresa Ramon-Marquez
- Department of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio L Medina-Castillo
- NanoMyP®, Nanomateriales y Polimeros S.L., Spin-Off Company of the UGR, BIC Building, Avd. Innovacion 1, E-18016 Granada, Spain.
| | | | - Jorge F Fernandez-Sanchez
- Department of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
25
|
Lau WKW, Cui LY, Chan SCH, Ip MSM, Mak JCW. The presence of serotonin in cigarette smoke – a possible mechanistic link to 5-HT-induced airway inflammation. Free Radic Res 2016; 50:495-502. [DOI: 10.3109/10715762.2016.1145355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Sensitive Monitoring of Amygdalin and 5-Hydroxytryptamine in Food Supplements Using HILIC OH5 Chromatography. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0362-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Rychkov D, Boldyreva EV, Tumanov NA. A new structure of a serotonin salt: comparison and conformational analysis of all known serotonin complexes. Acta Crystallogr C 2013; 69:1055-61. [PMID: 24005521 DOI: 10.1107/s0108270113019823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/17/2013] [Indexed: 11/10/2022] Open
Abstract
Four serotonin salt structures (serotonin adipate, C10H13N2O(+)·C6H9O4(-), is a previously unknown structure) were analysed to understand the influence of the anion on serotonin conformation. Hydrogen bonding alone favours a flat conformation, whereas additional stacking interactions between ions may possibly account for the nonplanar conformation. Since molecular conformation, stability and biological activity are interrelated, one can consider influencing the chemical and biological properties of serotonin by selecting an appropriate counter-ion for salt formation.
Collapse
Affiliation(s)
- Denis Rychkov
- REC-008, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation.
| | | | | |
Collapse
|
28
|
NIU XIQIAN, HUANG ZHENGGUO, MA LINGLING, SHEN TINGTING, GUO LINGFEI. Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0445-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Theoretical calculation of pKa values of the Nortryptiline and Amitryptiline drugs in aqueous and non-aqueous solvents. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Ghosh BC, Mukherjee AK. Investigation of ionization equilibria of L-aspartic and L-glutamic acids in water at a microscopic level by DFT method. Mol Phys 2013. [DOI: 10.1080/00268976.2012.746750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Peters GH, Wang C, Cruys-Bagger N, Velardez GF, Madsen JJ, Westh P. Binding of serotonin to lipid membranes. J Am Chem Soc 2013; 135:2164-71. [PMID: 23311719 DOI: 10.1021/ja306681d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a prevalent neurotransmitter throughout the animal kingdom. It exerts its effect through the specific binding to the serotonin receptor, but recent research has suggested that neural transmission may also be affected by its nonspecific interactions with the lipid matrix of the synaptic membrane. However, membrane-5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ~1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil-water partitioning coefficient well below unity. It follows that membrane affinity must rely on specific interactions, and the MD simulations identified the salt-bridge between the primary amine of 5-HT and the lipid phosphate group as the most important interaction. This interaction anchored cationic 5-HT in the membrane interface with the aromatic ring system pointing inward and a prevailing residence between the phosphate and the carbonyl groups of the lipid. The unprotonated form of 5-HT shows the opposite orientation, with the primary amine pointing toward the membrane core. Partitioning of 5-HT was found to decrease lipid chain order. These distinctive interactions of 5-HT and model membranes could be related to nonspecific effects of this neurotransmitter.
Collapse
Affiliation(s)
- Günther H Peters
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
32
|
Sutton CCR, Franks GV, da Silva G. First principles pKa calculations on carboxylic acids using the SMD solvation model: effect of thermodynamic cycle, model chemistry, and explicit solvent molecules. J Phys Chem B 2012; 116:11999-2006. [PMID: 22920269 DOI: 10.1021/jp305876r] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aqueous pK(a) values are calculated from first principles for a set of carboxylic acids using the SMD solvation model with various model chemistries, thermodynamic cycles, and treatments of explicit solvation. In all, 108 unique theoretical protocols are examined. The direct (D) and water proton exchange (PX) cycles are trialled along with a new approach, termed the semidirect (SD) cycle. The SD thermodynamic cycle offers some improvements over the D and PX schemes, as it bypasses the gas-phase heterolytic bond dissociation calculation required in the conventional D approach while also avoiding an aqueous OH(-) calculation required by the PX method when using water as the reference acid. With all three cycles, the recommended model chemistry employs M05-2X/cc-pVTZ Gibbs energies of solvation with a single discrete water molecule and a high-level composite method for the gas-phase reaction energies. With the SD cycle, these calculations result in a mean unsigned error of less than 1 pK(a) units, with respective mean signed error and maximum unsigned error of less than 0.5 and 2 pK(a) units. Similar results are obtained with the D and PX cycles, and further improvement is required in both the gas and aqueous phase ab initio energy calculations before we can truly discriminate between the thermodynamic cycles investigated here.
Collapse
Affiliation(s)
- Catherine C R Sutton
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
33
|
Sumon KZ, Henni A, East ALL. Predicting pKa of Amines for CO2 Capture: Computer versus Pencil-and-Paper. Ind Eng Chem Res 2012. [DOI: 10.1021/ie301033p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazi Z. Sumon
- Faculty
of Engineering and Applied Sciences, and ‡Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan
S4S 0A2, Canada
| | - Amr Henni
- Faculty
of Engineering and Applied Sciences, and ‡Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan
S4S 0A2, Canada
| | - Allan L. L. East
- Faculty
of Engineering and Applied Sciences, and ‡Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan
S4S 0A2, Canada
| |
Collapse
|
34
|
Zhang S. A reliable and efficient first principles-based method for predicting pKavalues. 4. organic bases. J Comput Chem 2012; 33:2469-82. [DOI: 10.1002/jcc.23068] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 11/12/2022]
|
35
|
Zapata-Torres G, Fierro A, Miranda-Rojas S, Guajardo C, Saez-Briones P, Salgado JC, Celis-Barros C. Influence of Protonation on Substrate and Inhibitor Interactions at the Active Site of Human Monoamine Oxidase-A. J Chem Inf Model 2012; 52:1213-21. [DOI: 10.1021/ci300081w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gerald Zapata-Torres
- Molecular Graphics Suite, Department
of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical
Sciences, University of Chile, Santiago,
Chile
| | - Angelica Fierro
- Department of Organic
Chemistry,
Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Miranda-Rojas
- Molecular Graphics Suite, Department
of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical
Sciences, University of Chile, Santiago,
Chile
| | - Carlos Guajardo
- Department of Organic
Chemistry,
Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio Saez-Briones
- School of Medicine, Faculty of
Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - J. Cristian Salgado
- Laboratory
of Process Modeling
and Distributed Computing, Department of Chemical Engineering and
Biotechnology, University of Chile, Santiago,
Chile
| | - Cristian Celis-Barros
- Molecular Graphics Suite, Department
of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical
Sciences, University of Chile, Santiago,
Chile
| |
Collapse
|
36
|
Zhang S. A reliable and efficient first principles-based method for predicting pKa values. III. Adding explicit water molecules: Can the theoretical slope be reproduced and pKa values predicted more accurately? J Comput Chem 2011; 33:517-26. [DOI: 10.1002/jcc.22886] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/28/2011] [Accepted: 10/23/2011] [Indexed: 11/10/2022]
|
37
|
Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos. Anal Chim Acta 2011; 695:89-95. [PMID: 21601035 DOI: 10.1016/j.aca.2011.03.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/25/2011] [Accepted: 03/29/2011] [Indexed: 11/21/2022]
Abstract
We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/μM, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n=6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.
Collapse
|
38
|
The neurotransmitter serotonin interrupts α-synuclein amyloid maturation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:553-61. [PMID: 21376144 PMCID: PMC3092864 DOI: 10.1016/j.bbapap.2011.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 11/21/2022]
Abstract
Indolic derivatives can affect fibril growth of amyloid forming proteins. The neurotransmitter serotonin (5-HT) is of particular interest, as it is an endogenous molecule with a possible link to neuropsychiatric symptoms of Parkinson disease. A key pathomolecular mechanism of Parkinson disease is the misfolding and aggregation of the intrinsically unstructured protein α-synuclein. We performed a biophysical study to investigate an influence between these two molecules. In an isolated in vitro system, 5-HT interfered with α-synuclein amyloid fiber maturation, resulting in the formation of partially structured, SDS-resistant intermediate aggregates. The C-terminal region of α-synuclein was essential for this interaction, which was driven mainly by electrostatic forces. 5-HT did not bind directly to monomeric α-synuclein molecules and we propose a model where 5-HT interacts with early intermediates of α-synuclein amyloidogenesis, which disfavors their further conversion into amyloid fibrils.
Collapse
|
39
|
Atta NF, Galal A, Abu-Attia FM, Azab SM. Simultaneous determination of paracetamol and neurotransmitters in biological fluids using a carbon paste sensor modified with gold nanoparticles. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11795e] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Lee TB, McKee ML. Dependence of pKa on solute cavity for diprotic and triprotic acids. Phys Chem Chem Phys 2011; 13:10258-69. [DOI: 10.1039/c1cp20161a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Sameera WMC, McKenzie CJ, McGrady JE. On the mechanism of water oxidation by a bimetallic manganese catalyst: A density functional study. Dalton Trans 2011; 40:3859-70. [DOI: 10.1039/c0dt01362e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
|
43
|
In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part II: the body in a Hilbertian space. Drug Discov Today 2009; 14:406-12. [DOI: 10.1016/j.drudis.2009.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Theoretical calculation of pKas of phosphoric (V) acid in the polarisable continuum and cluster-continuum models. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.11.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Isomers of various species of 1-hydroxy-2-pyridinone-6-carboxylic acid, their proton dissociation and complexes with Cr(III) and Zn(II). J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Sramko M, Smiesko M, Remko M. Accurate Aqueous Proton Dissociation Constants Calculations for Selected Angiotensin-Converting Enzyme Inhibitors. J Biomol Struct Dyn 2008; 25:599-608. [DOI: 10.1080/07391102.2008.10507206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Morgenthaler M, Schweizer E, Hoffmann-Röder A, Benini F, Martin RE, Jaeschke G, Wagner B, Fischer H, Bendels S, Zimmerli D, Schneider J, Diederich F, Kansy M, Müller K. Predicting and Tuning Physicochemical Properties in Lead Optimization: Amine Basicities. ChemMedChem 2007; 2:1100-15. [PMID: 17530727 DOI: 10.1002/cmdc.200700059] [Citation(s) in RCA: 384] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review describes simple and useful concepts for predicting and tuning the pK(a) values of basic amine centers, a crucial step in the optimization of physical and ADME properties of many lead structures in drug-discovery research. The article starts with a case study of tricyclic thrombin inhibitors featuring a tertiary amine center with pK(a) values that can be tuned over a wide range, from the usual value of around 10 to below 2 by (remote) neighboring functionalities commonly encountered in medicinal chemistry. Next, the changes in pK(a) of acyclic and cyclic amines upon substitution by fluorine, oxygen, nitrogen, and sulfur functionalities, as well as carbonyl and carboxyl derivatives are systematically analyzed, leading to the derivation of simple rules for pK(a) prediction. Electronic and stereoelectronic effects in cyclic amines are discussed, and the emerging computational methods for pK(a) predictions are briefly surveyed. The rules for tuning amine basicities should not only be of interest in drug-discovery research, but also to the development of new crop-protection agents, new amine ligands for organometallic complexes, and in particular, to the growing field of amine-based organocatalysis.
Collapse
Affiliation(s)
- Martin Morgenthaler
- Laboratorium für Organische Chemie, ETH Zürich, HCI, Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|