1
|
Fereiro JA, Tomita M, Bendikov T, Bera S, Pecht I, Sheves M, Cahen D, Ishii H. Protein Electronic Energy Transport Levels Derived from High-Sensitivity Near-UV and Constant Final State Yield Photoemission Spectroscopy. SMALL METHODS 2024:e2401204. [PMID: 39659110 DOI: 10.1002/smtd.202401204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Proteins are attractive as functional components in molecular junctions. However, controlling the electronic charge transport via proteins, held between two electrodes, requires information on their frontier orbital energy level alignment relative to the electrodes' Fermi level (EF), which normally requires studies of UV Photoemission Spectroscopy (UPS) with HeI excitation. Such excitation is problematic for proteins, which can denature under standard measuring conditions. Here high-sensitivity soft UV photoemission spectroscopy (HS-UPS) combined with Constant Final State Yield Spectroscopy (CFS-YS) is used to get this information for electrode/protein contacts. Monolayers of the redox protein Azurin, (Az) and its Apo-form on Au substrates, have HOMO onset energies, obtained from CFS-YS, differ by ≈0.2 eV, showing the crucial role of the Cu redox centre in the electron transport process. It is found that combined HS-UPS/CFS-YS measurements agree with the Photoelectron Yield Spectroscopy (PYS), showing potential of the HS-UPS + CFS-YS as a powerful tool to characterize and map the energetics of a protein-electrode interfaces, which will aid optimizing design of devices with targeted electronic properties, as well as for novel applications.
Collapse
Affiliation(s)
- Jerry A Fereiro
- School of Chemistry, Indian Inst. of Science Education & Research, Thiruvananthapuram, Kerala, 695551, India
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Masaki Tomita
- Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Sudipta Bera
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Israel Pecht
- Department of Immunology & Regenerative Biology, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - David Cahen
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001, Israel
| | - Hisao Ishii
- Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
- Center for Frontier Science, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|
2
|
Agbo P. An Expansion of Polarization Control Using Semiconductor-Liquid Junctions. J Phys Chem Lett 2024; 15:1135-1142. [PMID: 38265414 DOI: 10.1021/acs.jpclett.3c03051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
This report examines the concept of independent control over current and applied potential in electrocatalysis, as a means of improving control over product selectivity. Previous work, while permitting separate modulation of current and potentiostat bias, precluded independent control over the current flow and applied cell potential. This study seeks to resolve that limitation by exploiting the Schottky diode behavior inherent to semiconductor-electrolyte interfaces. Light is explored as a prospective second degree of freedom for controlling polarization in a suitably designed, photoelectrochemical (PEC) device, enabling the arbitrary selection of current with respect to an applied cell potential. In contrast to metal electrodes, the property of light-dependent carrier concentrations in semiconductors forms the operative means of controlling charge fluxes at some arbitrary applied potential in PEC devices featuring a semiconductor-liquid junction. This functionality enables exploration of polarization states distinct from those accessible with a dark cell, with implications for improved control over electrochemical reactions.
Collapse
Affiliation(s)
- Peter Agbo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Yi B, Xu Y, Wang X, Wang G, Li S, Xu R, Liu X, Zhou Q. Overview of Injectable Hydrogels for the Treatment of Myocardial Infarction. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2024; 9. [DOI: 10.15212/cvia.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Myocardial infarction (MI) triggers adverse remodeling mechanisms, thus leading to heart failure. Since the application of biomaterial-based scaffolds emerged as a viable approach for providing mechanical support and promoting cell growth, injectable hydrogels have garnered substantial attention in MI treatment because of their minimally invasive administration through injection and diminished risk of infection. To fully understand the interplay between injectable hydrogels and infarcted myocardium repair, this review provides an overview of recent advances in injectable hydrogel-mediated MI therapy, including: I) material designs for repairing the infarcted myocardium, considering the pathophysiological mechanism of MI and design principles for biomaterials in MI treatment; II) the development of injectable functional hydrogels for MI treatment, including conductive, self-healing, drug-loaded, and stimulus-responsive hydrogels; and III) research progress in using injectable hydrogels to restore cardiac function in infarcted myocardium by promoting neovascularization, enhancing cardiomyocyte proliferation, decreasing myocardial fibrosis, and inhibiting excessive inflammation. Overall, this review presents the current state of injectable hydrogel research in MI treatment, offering valuable information to facilitate interdisciplinary knowledge transfer and enable the development of prognostic markers for suitable injectable materials.
Collapse
|
4
|
Espinoza-Araya C, Starbird R, Prasad ES, Renugopalakrishnan V, Mulchandani A, Bruce BD, Villarreal CC. A bacteriorhodopsin-based biohybrid solar cell using carbon-based electrolyte and cathode components. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148985. [PMID: 37236292 DOI: 10.1016/j.bbabio.2023.148985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
There is currently a high demand for energy production worldwide, mainly producing renewable and sustainable energy. Bio-sensitized solar cells (BSCs) are an excellent option in this field due to their optical and photoelectrical properties developed in recent years. One of the biosensitizers that shows promise in simplicity, stability and quantum efficiency is bacteriorhodopsin (bR), a photoactive, retinal-containing membrane protein. In the present work, we have utilized a mutant of bR, D96N, in a photoanode-sensitized TiO2 solar cell, integrating low-cost, carbon-based components, including a cathode composed of PEDOT (poly(3,4-ethylenedioxythiophene) functionalized with multi-walled carbon nanotubes (CNT) and a hydroquinone/benzoquinone (HQ/BQ) redox electrolyte. The photoanode and cathode were characterized morphologically and chemically (SEM, TEM, and Raman). The electrochemical performance of the bR-BSCs was investigated using linear sweep voltammetry (LSV), open circuit potential decay (VOC), and impedance spectroscopic analysis (EIS). The champion device yielded a current density (JSC) of 1.0 mA/cm2, VOC of -669 mV, a fill factor of ~24 %, and a power conversion efficiency (PCE) of 0.16 %. This bR device is one of the first bio-based solar cells utilizing carbon-based alternatives for the photoanode, cathode, and electrolyte. This may decrease the cost and significantly improve the device's sustainability.
Collapse
Affiliation(s)
- Christopher Espinoza-Araya
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Maestría en Ingeniería de Dispositivos Médicos, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Ricardo Starbird
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - E Senthil Prasad
- Council of Scientific & Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | - Venkatesan Renugopalakrishnan
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; MGB Center for COVID Innovation, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Center for Renewable Energy Technology, Northeastern University, Boston, MA 02138, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA; Department of Materials Science and Engineering, University of California Riverside, Riverside, CA 92521, USA; Center for Environmental Research & Technology (CE-CERT), University of California Riverside, Riverside, CA 92507, USA
| | - Barry D Bruce
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, USA; Program in Genome Science and Technology, University of Tennessee at Knoxville, TN 37830, USA.
| | - Claudia C Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica.
| |
Collapse
|
5
|
Singh HK, Nath U, Keot N, Sarma M. Exploring π-π interactions and electron transport in complexes involving a hexacationic host and PAH guest: a promising avenue for molecular devices. Phys Chem Chem Phys 2023; 25:26767-26778. [PMID: 37781849 DOI: 10.1039/d3cp03389a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Single isolated molecules and supramolecular host-guest systems, which consist of π-π stacking interactions, are emerging as promising building blocks for creating molecular electronic devices. In this article, we have investigated the noncovalent π-π interaction and intermolecular electron charge transport involved in a series of host-guest complexes formed between a cage-like host (H6+) and polycyclic aromatic hydrocarbon (PAH) guests (G1-G7) using different quantum chemical approaches. The host (H6+) consists of two triscationic π-electron-deficient trispyridiniumtriazine (TPZ3+) units that are bridged face-to-face by three ethylene-triazole-ethylene. Our theoretical calculations show that the perylene and naphthalene inclusion complexes G7⊂H and G1⊂H have the highest and lowest interaction energies, respectively. In addition, energy decomposition analysis (EDA) indicated that the dispersion interaction term, ΔEdisp, significantly contributes to the host-guest interaction and is correlated with the existence of π-π van der Waals interaction. Using the nonequilibrium Greens function (NEGF) method in combination with density functional theory (DFT), the current-voltage (I-V) curves of the complexes were estimated. The conductance values increased when the guests were embedded inside the host cavity. Notably, the complex G7⊂H has the maximum conductance value. Overall, this study provided the electron transport of the PAH inclusion host-guest complex through π-π interaction and provided a direction for the fabrication of future supramolecular molecular devices.
Collapse
Affiliation(s)
- Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology Guwahati, North-Guwahati, Guwahati-781039, India.
| | - Upasana Nath
- Department of Chemistry, Indian Institute of Technology Guwahati, North-Guwahati, Guwahati-781039, India.
| | - Niharika Keot
- Department of Chemistry, Indian Institute of Technology Guwahati, North-Guwahati, Guwahati-781039, India.
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, North-Guwahati, Guwahati-781039, India.
| |
Collapse
|
6
|
Wang H, Caminati W, Li M, Chen J, Tian X, Grabow JU, Gou Q. n → π* Interaction Enabling Transient Inversion of Chirality. J Phys Chem Lett 2023; 14:8874-8879. [PMID: 37756497 DOI: 10.1021/acs.jpclett.3c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
This study reports the observation and characterization of two isomers of the acrolein dimer by using high-resolution rotational spectroscopy in pulsed jets. The first isomer is stabilized by two hydrogen bonds, adopting a planar configuration, and is energetically favored over the second isomer, which exhibits a dominant n → π* interaction in a nearly orthogonal arrangement. Surprisingly, the n → π* interaction was revealed to enable a concerted tunneling motion of two moieties along the carbonyl group. This motion leads to the inversion of transient chirality associated with the exchange of donor-acceptor roles, as revealed by the spectral feature of quadruplets. Inversion of transient chirality is a fundamental phenomenon in quantum mechanics and commonly observed for only inversional motions of protons. It is the first discovery, to the best of our knowledge, that such heavy moieties can also undergo chirality inversion.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road Shapingba, Chongqing 401331, China
| | - Walther Caminati
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, Bologna I-40126, Italy
| | - Meng Li
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Xiao Tian
- Department of Chemistry School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road Shapingba, Chongqing 401331, China
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Qian Gou
- Department of Chemistry School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road Shapingba, Chongqing 401331, China
| |
Collapse
|
7
|
Cheng L, Li D, Mai BK, Bo Z, Cheng L, Liu P, Yang Y. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 2023; 381:444-451. [PMID: 37499030 PMCID: PMC10444520 DOI: 10.1126/science.adg2420] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Developing synthetically useful enzymatic reactions that are not known in biochemistry and organic chemistry is an important challenge in biocatalysis. Through the synergistic merger of photoredox catalysis and pyridoxal 5'-phosphate (PLP) biocatalysis, we developed a pyridoxal radical biocatalysis approach to prepare valuable noncanonical amino acids, including those bearing a stereochemical dyad or triad, without the need for protecting groups. Using engineered PLP enzymes, either enantiomeric product could be produced in a biocatalyst-controlled fashion. Synergistic photoredox-pyridoxal radical biocatalysis represents a powerful platform with which to discover previously unknown catalytic reactions and to tame radical intermediates for asymmetric catalysis.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Dian Li
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Zhiyu Bo
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Lida Cheng
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering (BMSE) Program, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Dang H, Ma J, Wu X, Yan Y, Zeng T, Liu H, Chen Y. Quinone electron shuttle enhanced ammonium removal performance in anaerobic ammonium oxidation coupled with Fe(III) reduction. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Li J, Shi Y, Cheng T. Electronic coupling and electron transfer in hydrogen-bonded mixed-valence compounds. Phys Chem Chem Phys 2023. [PMID: 37158078 DOI: 10.1039/d3cp01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electron transfer provided by hydrogen bonds represents a unique and highly significant area of research, as it has a crucial role to play in a wide variety of chemical and biological systems. The hydrogen-bonded mixed-valence system, in the form of donor-hydrogen bond-acceptor, provides an ideal platform for exploring thermally-induced electron transfer across this non-covalent unit. Over the past decades, ongoing progress has been made in this field. Here we critically assess some studies on the qualitative and quantitative evaluation of electronic coupling and thermal electron transfer across hydrogen bond interface. Additionally, selected experimental examples are discussed in terms of intervalence charge transfer, with particular attention paid to the proton-coupled and often overlooked proton-uncoupled electron transfer pathway in hydrogen-bonded mixed-valence systems. We further highlight the major limitations of this research area and suggest potential directions for future exploration.
Collapse
Affiliation(s)
- Juanjuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuqing Shi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Tao Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
10
|
Fereiro JA, Bendikov T, Herrmann A, Pecht I, Sheves M, Cahen D. Protein Orientation Defines Rectification of Electronic Current via Solid-State Junction of Entire Photosystem-1 Complex. J Phys Chem Lett 2023; 14:2973-2982. [PMID: 36940422 DOI: 10.1021/acs.jpclett.2c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate that the direction of current rectification via one of nature's most efficient light-harvesting systems, the photosystem 1 complex (PS1), can be controlled by its orientation on Au substrates. Molecular self-assembly of the PS1 complex using four different linkers with distinct functional head groups that interact by electrostatic and hydrogen bonds with different surface parts of the entire protein PS1 complex was used to tailor the PS1 orientation. We observe an orientation-dependent rectification in the current-voltage characteristics for linker/PS1 molecule junctions. Results of an earlier study using a surface two-site PS1 mutant complex having its orientation set by covalent binding to the Au substrate supports our conclusion. Current-voltage-temperature measurements on the linker/PS1 complex indicate off-resonant tunneling as the main electron transport mechanism. Our ultraviolet photoemission spectroscopy results highlight the importance of the protein orientation for the energy level alignment and provide insight into the charge transport mechanism via the PS1 transport chain.
Collapse
Affiliation(s)
- Jerry A Fereiro
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
- School of Chemistry, Indian Inst. of Science Education & Research, Thiruvananthapuram 695551, Kerala, India
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - Andreas Herrmann
- DWI - Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Israel Pecht
- Department of Immunology & Regenerative Biology, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Giese B, Karamash M, Fromm KM. Chances and challenges of long-distance electron transfer for cellular redox reactions. FEBS Lett 2023; 597:166-173. [PMID: 36114008 DOI: 10.1002/1873-3468.14493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/14/2023]
Abstract
Biological redox reactions often use a set-up in which final redox partners are localized in different compartments and electron transfer (ET) among them is mediated by redox-active molecules. In enzymes, these ET processes occur over nm distances, whereas multi-protein filaments bridge μm ranges. Electrons are transported over cm ranges in cable bacteria, which are formed by thousands of cells. In this review, we describe molecular mechanisms that explain how respiration in a compartmentalized set-up ensures redox homeostasis. We highlight mechanistic studies on ET through metal-free peptides and proteins demonstrating that long-distance ET is possible because amino acids Tyr, Trp, Phe, and Met can act as relay stations. This cuts one long ET into several short reaction steps. The chances and challenges of long-distance ET for cellular redox reactions are then discussed.
Collapse
Affiliation(s)
- Bernd Giese
- Department of Chemistry, University of Fribourg, Switzerland
| | - Maksym Karamash
- Department of Chemistry, University of Fribourg, Switzerland
| | | |
Collapse
|
12
|
Shen W, Teo RD, Beratan DN, Warren JJ. Cofactor Dynamics Couples the Protein Surface to the Heme in Cytochrome c, Facilitating Electron Transfer. J Phys Chem B 2022; 126:3522-3529. [PMID: 35507916 PMCID: PMC9867876 DOI: 10.1021/acs.jpcb.2c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electron transport through biomolecules and in biological transport networks is of great importance to bioenergetics and biocatalysis. More generally, it is of crucial importance to understand how the pathways that connect buried metallocofactors to other cofactors, and to protein surfaces, affect the biological chemistry of metalloproteins. In terms of electron transfer (ET), the strongest coupling pathways usually comprise covalent and hydrogen bonded networks, with a limited number of through-space contacts. Herein, we set out to determine the relative roles of hydrogen bonds involved in ET via an established heme-to-surface tunneling pathway in cytochrome (cyt) c (i.e., heme-W59-D60-E61-N62). A series of cyt c variants were produced where a ruthenium tris(diimine) photooxidant was placed at position 62 via covalent modification of the N62C residue. Surprisingly, variants where the H-bonding residues W59 and D60 were replaced (i.e., W59F and D60A) showed no change in ET rate from the ferrous heme to Ru(III). In contrast, changing the composition of an alternative tunneling pathway (i.e., heme-M64-N63-C62) with the M64L substitution shows a factor of 2 decrease in the rate of heme-to-Ru ET. This pathway involves a through-space tunneling step between the heme and M64 residue, and such steps are usually disfavored. To rationalize why the heme-M64-N63-C62 is preferred, molecular dynamics (MD) simulations and Pathways analysis were employed. These simulations show that the change in heme-Ru ET rates is attributed to different conformations with compressed donor-acceptor distances, by ∼2 Å in pathway distance, in the M64-containing protein as compared to the M64L protein. The change in distance is correlated with changes in the electronic coupling that are in accord with the experimentally observed heme-Ru ET rates. Remarkably, the M64L variation at the core of the protein translates to changes in cofactor dynamics at the protein surface. The surface changes identified by MD simulations include dynamic anion-π and dipole-dipole interactions. These interactions influence the strength of tunneling pathways and ET rates by facilitating decreases in through-space tunneling distances in key coupling pathways.
Collapse
Affiliation(s)
- William Shen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| | - Ruijie D. Teo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| |
Collapse
|
13
|
Cellular sentience as the primary source of biological order and evolution. Biosystems 2022; 218:104694. [PMID: 35595194 DOI: 10.1016/j.biosystems.2022.104694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022]
Abstract
All life is cellular, starting some 4 billion years ago with the emergence of the first cells. In order to survive their early evolution in the face of an extremely challenging environment, the very first cells invented cellular sentience and cognition, allowing them to make relevant decisions to survive through creative adaptations in a continuously running evolutionary narrative. We propose that the success of cellular life has crucially depended on a biological version of Maxwell's demons which permits the extraction of relevant sensory information and energy from the cellular environment, allowing cells to sustain anti-entropic actions. These sensor-effector actions allowed for the creative construction of biological order in the form of diverse organic macromolecules, including crucial polymers such as DNA, RNA, and cytoskeleton. Ordered biopolymers store analogue (structures as templates) and digital (nucleotide sequences of DNA and RNA) information that functioned as a form memory to support the development of organisms and their evolution. Crucially, all cells are formed by the division of previous cells, and their plasma membranes are physically and informationally continuous across evolution since the beginning of cellular life. It is argued that life is supported through life-specific principles which support cellular sentience, distinguishing life from non-life. Biological order, together with cellular cognition and sentience, allow the creative evolution of all living organisms as the authentic authors of evolutionary novelty.
Collapse
|
14
|
Gibbs CA, Fedoretz-Maxwell BP, Warren JJ. On the roles of methionine and the importance of its microenvironments in redox metalloproteins. Dalton Trans 2022; 51:4976-4985. [PMID: 35253809 DOI: 10.1039/d1dt04387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amino acid residue methionine (Met) is commonly thought of as a ligand in redox metalloproteins, for example in cytochromes c and in blue copper proteins. However, the roles of Met can go beyond a simple ligand. The thioether functional group of Met allows it to be considered as a hydrophobic residue as well as one that is capable of weak dipolar interactions. In addition, the lone pairs on sulphur allow Met to interact with other groups, inluding the aforementioned metal ions. Because of its properties, Met can play diverse roles in metal coordination, fine tuning of redox reactions, or supporting protein structures. These roles are strongly influenced by the nature of the surrounding medium. Herein, we describe several common interactions between Met and surrounding aromatic amino acids and how they affect the physical properties of both copper and iron metalloproteins. While the importance of interactions between Met and other groups is established in biological systems, less is known about their roles in redox metalloproteins and our view is that this is an area that is ready for greater attention.
Collapse
Affiliation(s)
- Curtis A Gibbs
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | | | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
15
|
Yu H, Li J, Li S, Liu Y, Jackson NE, Moore JS, Schroeder CM. Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. J Am Chem Soc 2022; 144:3162-3173. [PMID: 35148096 DOI: 10.1021/jacs.1c12741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intermolecular charge transport through π-conjugated molecules plays an essential role in biochemical redox processes and energy storage applications. In this work, we observe highly efficient intermolecular charge transport upon dimerization of pyridinium molecules in the cavity of a synthetic host (cucurbit[8]uril, CB[8]). Stable, homoternary complexes are formed between pyridinium molecules and CB[8] with high binding affinity, resulting in an offset stacked geometry of two pyridiniums inside the host cavity. The charge transport properties of free and dimerized pyridiniums are characterized using a scanning tunneling microscope-break junction (STM-BJ) technique. Our results show that π-stacked pyridinium dimers exhibit comparable molecular conductance to isolated, single pyridinium molecules, despite a longer transport pathway and a switch from intra- to intermolecular charge transport. Control experiments using a CB[8] homologue (cucurbit[7]uril, CB[7]) show that the synthetic host primarily serves to facilitate dimer formation and plays a minimal role on molecular conductance. Molecular modeling using density functional theory (DFT) reveals that pyridinium molecules are planarized upon dimerization inside the host cavity, which facilitates charge transport. In addition, the π-stacked pyridinium dimers possess large intermolecular LUMO-LUMO couplings, leading to enhanced intermolecular charge transport. Overall, this work demonstrates that supramolecular assembly can be used to control intermolecular charge transport in π-stacked molecules.
Collapse
Affiliation(s)
| | - Jialing Li
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | | | | | | | - Jeffrey S Moore
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Charles M Schroeder
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Madrid-Úsuga D, Ortiz A, Reina JH. Photophysical Properties of BODIPY Derivatives for the Implementation of Organic Solar Cells: A Computational Approach. ACS OMEGA 2022; 7:3963-3977. [PMID: 35155892 PMCID: PMC8829925 DOI: 10.1021/acsomega.1c04598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Solar cells based on organic compounds are a proven emergent alternative to conventional electrical energy generation. Here, we provide a computational study of power conversion efficiency optimization of boron dipyrromethene (BODIPY) derivatives by means of their associated open-circuit voltage, short-circuit density, and fill factor. In doing so, we compute for the derivatives' geometrical structures, energy levels of frontier molecular orbitals, absorption spectra, light collection efficiencies, and exciton binding energies via density functional theory (DFT) and time-dependent (TD)-DFT calculations. We fully characterize four D-π-A (BODIPY) molecular systems of high efficiency and improved J sc that are well suited for integration into bulk heterojunction (BHJ) organic solar cells as electron-donor materials in the active layer. Our results are twofold: we found that molecular complexes with a structural isoxazoline ring exhibit a higher power conversion efficiency (PCE), a useful result for improving the BHJ current, and, on the other hand, by considering the molecular systems as electron-acceptor materials, with P3HT as the electron donor in the active layer, we found a high PCE compound favorability with a pyrrolidine ring in its structure, in contrast to the molecular systems built with an isoxazoline ring. The theoretical characterization of the electronic properties of the BODIPY derivatives provided here, computed with a combination of ab initio methods and quantum models, can be readily applied to other sets of molecular complexes to hierarchize optimal power conversion efficiency.
Collapse
Affiliation(s)
- Duvalier Madrid-Úsuga
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Quantum
Technologies, Information and Complexity Group—QuanTIC, Departamento
de Física, Universidad del Valle, 760032 Cali, Colombia
| | - Alejandro Ortiz
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Heterocyclic
Compounds Research Group—GICH, Departamento de Química, Universidad del Valle, 760032 Cali, Colombia
| | - John H. Reina
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Quantum
Technologies, Information and Complexity Group—QuanTIC, Departamento
de Física, Universidad del Valle, 760032 Cali, Colombia
| |
Collapse
|
17
|
Gray HB, Winkler JR. Functional and protective hole hopping in metalloenzymes. Chem Sci 2021; 12:13988-14003. [PMID: 34760183 PMCID: PMC8565380 DOI: 10.1039/d1sc04286f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
Electrons can tunnel through proteins in microseconds with a modest release of free energy over distances in the 15 to 20 Å range. To span greater distances, or to move faster, multiple charge transfers (hops) are required. When one of the reactants is a strong oxidant, it is convenient to consider the movement of a positively charged "hole" in a direction opposite to that of the electron. Hole hopping along chains of tryptophan (Trp) and tyrosine (Tyr) residues is a critical function in several metalloenzymes that generate high-potential intermediates by reactions with O2 or H2O2, or by activation with visible light. Examination of the protein structural database revealed that Tyr/Trp chains are common protein structural elements, particularly among enzymes that react with O2 and H2O2. In many cases these chains may serve a protective role in metalloenzymes by deactivating high-potential reactive intermediates formed in uncoupled catalytic turnover.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| |
Collapse
|
18
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Andersen CL, Lacerda EG, Christensen JB, Sauer SPA, Hammerich O. Prediction of the standard potentials for one-electron oxidation of N, N, N', N' tetrasubstituted p-phenylenediamines by calculation. Phys Chem Chem Phys 2021; 23:20340-20351. [PMID: 34486635 DOI: 10.1039/d1cp02315b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The formal potentials for the reversible one-electron oxidation of N,N,N',N' tetrasubstituted p-phenylenediamines in acetonitrile have been applied as a test set for benchmarking computational methods for a series of compounds with only small structural differences. The aim of the study is to propose a simple method for calculating the standard oxidation potentials, and therefore, the protocol is progressively developed by adding more terms in the energy expression. In addition, the effect of including implicit solvation models (IEFPCM, CPCM, and SMD), larger basis sets, and correlation methods are investigated. The oxidation potentials calculated using the G3MP2B3 approach with IEFPCM resulted in the best fit (R2 = 0.9624), but the slope of the correlation line, 0.74, is far from the optimal value, 1.00. B3LYP/6-311++G(d,p) and TPSSh/6-311++G(2d,p) yielded only slightly less consistent data (R2 = 0.9388 and R2 = 0.9425), but with much better slopes, 1.00 and 0.94, respectively. We conclude that it is important to investigate the basis set size and treatment of electron correlation when calculating oxidation potentials for N,N,N',N' tetrasubstituted p-phenylenediamines.
Collapse
Affiliation(s)
- Cecilie L Andersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | - Evanildo G Lacerda
- Instituto de Física da Universidade de São Paulo, Rua do Matão 1371, 05508-090 São Paulo, SP, Brazil
| | - Jørn B Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | - Ole Hammerich
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
20
|
Mezzina Freitas LP, Feliciano GT. Atomic and Electronic Structure of Pilus from Geobacter sulfurreducens through QM/MM Calculations: Evidence for Hole Transfer in Aromatic Residues. J Phys Chem B 2021; 125:8305-8312. [PMID: 34292748 DOI: 10.1021/acs.jpcb.1c01185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-range electron transport has been widely and experimentally reported in Geobacter sulfurreducens pilus protein. However, a better understanding of the still undefined molecular arrangement can bring to light the role of key residues in this phenomenon. We propose a theoretical investigation of the electronic structure of aromatic residue groups in the protein through a classical molecular dynamics (MD) simulation, followed by a quantum mechanics/molecular mechanics (QM/MM) electronic study of different frames sampled from MD trajectories, an electrostatic potential and electron density analysis, an analysis of the density of states, and an investigation of hole formation through Dyson orbital calculations. We observe a highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap in the ranges of 1.4-2.3 eV and 2.9-3.3 eV and a less intense dipole moment along the aromatic residues in the presence of water in comparison to the system in vacuum. HOMO and LUMO electron densities highlight the occupation of one tyrosine residue in every representation for HOMO and a delocalization along two to three rings for LUMO. The results show how the electronic structure of the aromatic residues is sensitive to the ring arrangement and the surrounding environment. In our study, we observe that slight rearrangements in the fiber geometry can create temporary conditions for hole transfer.
Collapse
Affiliation(s)
- Luis Paulo Mezzina Freitas
- Institute of Chemistry, Department of Engineering, Physics and Mathematics, São Paulo State University, Prof. Francisco Degni 55, 14800-060 Araraquara, Brazil
| | - Gustavo Troiano Feliciano
- Institute of Chemistry, Department of Engineering, Physics and Mathematics, São Paulo State University, Prof. Francisco Degni 55, 14800-060 Araraquara, Brazil
| |
Collapse
|
21
|
Patwardhan A, Sarangi R, Ginovska B, Raugei S, Ragsdale SW. Nickel-Sulfonate Mode of Substrate Binding for Forward and Reverse Reactions of Methyl-SCoM Reductase Suggest a Radical Mechanism Involving Long-Range Electron Transfer. J Am Chem Soc 2021; 143:5481-5496. [PMID: 33761259 DOI: 10.1021/jacs.1c01086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Methyl-coenzyme M reductase (MCR) catalyzes both the synthesis and the anaerobic oxidation of methane (AOM). Its catalytic site contains Ni at the core of cofactor F430. The Ni ion, in its low-valent Ni(I) state, lights the fuse leading to homolysis of the C-S bond of methyl-coenzyme M (methyl-SCoM) to generate a methyl radical, which abstracts a hydrogen atom from coenzyme B (HSCoB) to generate methane and the mixed disulfide CoMSSCoB. Direct reversal of this reaction activates methane to initiate anaerobic methane oxidation. On the basis of the crystal structures, which reveal a Ni-thiol interaction between Ni(II)-MCR and inhibitor CoMSH, a Ni(I)-thioether complex with substrate methyl-SCoM has been transposed to canonical MCR mechanisms. Similarly, a Ni(I)-disulfide with CoMSSCoB is proposed for the reverse reaction. However, this Ni(I)-sulfur interaction poses a conundrum for the proposed hydrogen-atom abstraction reaction because the >6 Å distance between the thiol group of SCoB and the thiol of SCoM observed in the structures appears to be too long for such a reaction. The spectroscopic, kinetic, structural, and computational studies described here establish that both methyl-SCoM and CoMSSCoB bind to the active Ni(I) state of MCR through their sulfonate groups, forming a hexacoordinate Ni(I)-N/O complex, not Ni(I)-S. These studies rule out direct Ni(I)-sulfur interactions in both substrate-bound states. As a solution to the mechanistic conundrum, we propose that both the forward and the reverse MCR reactions emanate through long-range electron transfer from the Ni(I)-sulfonate complexes with methyl-SCoM and CoMSSCoB, respectively.
Collapse
Affiliation(s)
- Anjali Patwardhan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48103, United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48103, United States
| |
Collapse
|
22
|
Benin B, McCall KM, Wörle M, Borgeaud D, Vonderach T, Sakhatskyi K, Yakunin S, Günther D, Kovalenko MV. Lone-Pair-Induced Structural Ordering in the Mixed-Valent 0D Metal-Halides Rb 23Bi III x Sb III 7-x Sb V 2Cl 54 (0 ≤ x ≤ 7). CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:2408-2419. [PMID: 33867666 PMCID: PMC8043103 DOI: 10.1021/acs.chemmater.0c04491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/28/2021] [Indexed: 05/29/2023]
Abstract
Mixed-valent metal-halides containing ns2 lone pairs may exhibit intense visible absorption, while zero-dimensional (0D) ns2-based metal-chlorides are generally colorless but have demonstrated promising optoelectronic properties suitable for thermometry and radiation detection. Here, we report solvothermally synthesized mixed-valent 0D metal-halides Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 ≤ x ≤ 7). Rb23SbIII 7SbV 2Cl54 crystallizes in an orthorhombic space group (Cmcm) with a unique, layered 0D structure driven by the arrangement of the 5s2 lone pairs of the SbIIICl6 octahedra. This red material is likely the true structure of a previously reported monoclinic "Rb2.67SbCl6" phase, the structure of which was not determined. Partially or fully substituting SbIII with isoelectronic BiIII yields the series Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 < x ≤ 7), which exhibits a similar layered 0D structure but with additional disorder that yields a trigonal crystal system with an enantiomorphic space group (R32). Second harmonic generation of 532 nm light from a 1064 nm laser using Rb23BiIII 7SbV 2Cl54 powder confirms the noncentrosymmetry of this space group. As with the prototypical mixed-valent pnictogen halides, the visible absorption bands of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family are the result of intervalent SbIII-SbV and mixed-valent BiIII-SbV charge transfer bands (CTB), with a blueshift of the absorption edge as BiIII substitution increases. No PL is observed from this family of semiconductors, but a crystal of Rb23BiIII 7SbV 2Cl54 exhibits a high resistivity of 1.0 × 1010 Ω·cm and X-ray photoconductivity with a promising μτ product of 8.0 × 10-5 cm2 s-1 V-1. The unique 0D layered structures of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family highlight the versatility of the ns2 lone pair in semiconducting metal-halides, pointing the way toward new functional 0D metal-halide compounds.
Collapse
Affiliation(s)
- Bogdan
M. Benin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Kyle M. McCall
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Michael Wörle
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
| | - Dominique Borgeaud
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
| | - Thomas Vonderach
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
| | - Kostiantyn Sakhatskyi
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Sergii Yakunin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Detlef Günther
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
23
|
Li P, Soudackov AV, Koronkiewicz B, Mayer JM, Hammes-Schiffer S. Theoretical Study of Shallow Distance Dependence of Proton-Coupled Electron Transfer in Oligoproline Peptides. J Am Chem Soc 2020; 142:13795-13804. [PMID: 32664731 DOI: 10.1021/jacs.0c04716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-range electron transfer is coupled to proton transfer in a wide range of chemically and biologically important processes. Recently the proton-coupled electron transfer (PCET) rate constants for a series of biomimetic oligoproline peptides linking Ru(bpy)32+ to tyrosine were shown to exhibit a substantially shallower dependence on the number of proline spacers compared to the analogous electron transfer (ET) systems. The experiments implicated a concerted PCET mechanism involving intramolecular electron transfer from tyrosine to Ru(bpy)33+ and proton transfer from tyrosine to a hydrogen phosphate dianion. Herein these PCET systems, as well as the analogous ET systems, are studied with microsecond molecular dynamics, and the ET and PCET rate constants are calculated with the corresponding nonadiabatic theories. The molecular dynamics simulations illustrate that smaller ET donor-acceptor distances are sampled by the PCET systems than by the analogous ET systems. The shallower dependence of the PCET rate constant on the ET donor-acceptor distance is explained in terms of an additional positive, distance-dependent electrostatic term in the PCET driving force, which attenuates the rate constant at smaller distances. This electrostatic term depends on the change in the electrostatic interaction between the charges on each end of the bridge and can be modified by altering these charges. On the basis of these insights, this theory predicted a less shallow distance dependence of the PCET rate constant when imidazole rather than hydrogen phosphate serves as the proton acceptor, even though their pKa values are similar. This theoretical prediction was subsequently validated experimentally, illustrating that long-range electron transfer processes can be tuned by modifying the nature of the proton acceptor in concerted PCET processes. This level of control has broad implications for the design of more effective charge-transfer systems.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - James M Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
24
|
Koronkiewicz B, Swierk J, Regan K, Mayer JM. Shallow Distance Dependence for Proton-Coupled Tyrosine Oxidation in Oligoproline Peptides. J Am Chem Soc 2020; 142:12106-12118. [PMID: 32510937 PMCID: PMC7545454 DOI: 10.1021/jacs.0c01429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have explored the kinetic effect of increasing electron transfer (ET) distance in a biomimetic, proton-coupled electron-transfer (PCET) system. Biological ET often occurs simultaneously with proton transfer (PT) in order to avoid the high-energy, charged intermediates resulting from the stepwise transfer of protons and electrons. These concerted proton-electron-transfer (CPET) reactions are implicated in numerous biological ET pathways. In many cases, PT is coupled to long-range ET. While many studies have shown that the rate of ET is sensitive to the distance between the electron donor and acceptor, extensions to biological CPET reactions are sparse. The possibility of a unique ET distance dependence for CPET reactions deserves further exploration, as this could have implications for how we understand biological ET. We therefore explored the ET distance dependence for the CPET oxidation of tyrosine in a model system. We prepared a series of metallopeptides with a tyrosine separated from a Ru(bpy)32+ complex by an oligoproline bridge of increasing length. Rate constants for intramolecular tyrosine oxidation were measured using the flash-quench transient absorption technique in aqueous solutions. The rate constants for tyrosine oxidation decreased by 125-fold with three added proline residues between tyrosine and the oxidant. By comparison, related intramolecular ET rate constants in very similar constructs were reported to decrease by 4-5 orders of magnitude over the same number of prolines. The observed shallow distance dependence for tyrosine oxidation is proposed to originate in part from the requirement for stronger oxidants, leading to a smaller hole-transfer effective tunneling barrier height. The shallow distance dependence observed here and extensions to distance-dependent CPET reactions have potential implications for long-range charge transfers.
Collapse
Affiliation(s)
- Brian Koronkiewicz
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - John Swierk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kevin Regan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
25
|
Huang J, Zarzycki J, Gunner MR, Parson WW, Kern JF, Yano J, Ducat DC, Kramer DM. Mesoscopic to Macroscopic Electron Transfer by Hopping in a Crystal Network of Cytochromes. J Am Chem Soc 2020; 142:10459-10467. [DOI: 10.1021/jacs.0c02729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingcheng Huang
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jan Zarzycki
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - M. R. Gunner
- Department of Physics, City College of New York, New York, New York 10031, United States
| | - William W. Parson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jan F. Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel C. Ducat
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - David M. Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Pinter TBJ, Koebke KJ, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds. Angew Chem Int Ed Engl 2020; 59:7678-7699. [PMID: 31441170 PMCID: PMC7035182 DOI: 10.1002/anie.201907502] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 12/31/2022]
Abstract
The relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha-helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron-transfer sites in cupredoxins (CuHis2 Cys) or rubredoxins (FeCys4 ). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000-fold.
Collapse
Affiliation(s)
- Tyler B. J. Pinter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| | - Karl J. Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| |
Collapse
|
27
|
Pinter TBJ, Koebke KJ, Pecoraro VL. Katalyse und Elektronentransfer in helikalen De‐novo‐Gerüststrukturen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tyler B. J. Pinter
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Karl J. Koebke
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Vincent L. Pecoraro
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| |
Collapse
|
28
|
Yu J, Horsley JR, Abell AD. Unravelling electron transfer in peptide-cation complexes: a model for mimicking redox centres in proteins. Phys Chem Chem Phys 2020; 22:8409-8417. [DOI: 10.1039/d0cp00635a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We provide evidence that bound zinc promotes electron transfer in a peptide by changing the electronic properties of the peptide.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
29
|
Poznański RR, Brändas EJ. Panexperiential materialism: A physical exploration of qualitativeness in the brain. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Li SH, Liu Y, Yang YY, Zhang YX, Xu QD, Hu SM, Wu XT, Sheng TL. Syntheses, crystal structures and MMCT properties of cyanide-bridged binuclear Ru–Fe complexes. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Tan W, Yuan Y, Zhao X, Dang Q, Yuan Y, Li R, Cui D, Xi B. Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:378-386. [PMID: 31048168 DOI: 10.1016/j.scitotenv.2019.04.288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
The microbial reduction of Fe(III) minerals (MRF) is an important process in paddy soil because it can affect the biogeochemical cycles of many major and trace elements. Natural organic matter (NOM) that mainly exists in the form of solid phase in soil can mediate MRF through electron shuttling functionality. However, whether a link exists between solid-phase NOM-mediated MRF in soil and the age of paddy field since the reclamation on fallow is unclear. Here, we use microbial reduction method to assess the solid-phase NOM-mediated MRF of paddy soils with different reclamation ages. The results show that solid-phase NOM-mediated MRF exhibits a positive response to land use change sequence from fallow to paddy field, indicating that the long-term natural development of paddy field favors the electron shuttling of NOM between cells and Fe(III) minerals. This increase in the electron shuttling of NOM is not due to the increase in the redox functional groups of NOM, but may be attributed to the formation of NOM-mineral complex through the synergistic increases in NOM content and transformation of soil texture from clay loam to loam. The decrease in the redox potential of Fe(III) minerals in soil caused by decreased pH and the increase in Fe content in the organic matter-complexed form may also partly facilitate electron transfer from NOM to Fe(III) minerals. Our work is useful in predicting the role of soil solid-phase NOM in mediating MRF in the context of long-term reclamation of paddy field and provides guidance for the environmental management of paddy fields.
Collapse
Affiliation(s)
- Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Ye Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongyu Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
32
|
Computational Assessment of MLCT versus MC Stabilities in First‐to‐Third‐Row d
6
Pseudo‐Octahedral Transition Metal Complexes. J Comput Chem 2019; 40:2377-2390. [DOI: 10.1002/jcc.26014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/07/2022]
|
33
|
Ru X, Zhang P, Beratan DN. Assessing Possible Mechanisms of Micrometer-Scale Electron Transfer in Heme-Free Geobacter sulfurreducens Pili. J Phys Chem B 2019; 123:5035-5047. [PMID: 31095388 DOI: 10.1021/acs.jpcb.9b01086] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrically conductive pili of Geobacter sulfurreducens are of both fundamental and practical interest. They facilitate extracellular and interspecies electron transfer (ET) and also provide an electrical interface between living and nonliving systems. We examine the possible mechanisms of G. sulfurreducens electron transfer in regimes ranging from incoherent to coherent transport. For plausible ET parameters, electron transfer in G. sulfurreducens bacterial nanowires mediated only by the protein is predicted to be dominated by incoherent hopping between phenylalanine (Phe) and tyrosine (Tyr) residues that are 3 to 4 Å apart, where Phe residues in the hopping pathways may create delocalized "islands." This mechanism could be accessible in the presence of strong oxidants that are capable of oxidizing Phe and Tyr residues. We also examine the physical requirements needed to sustain biological respiration via nanowires. We find that the hopping regimes with ET rates on the order of 108 s-1 between Phe islands and Tyr residues, and conductivities on the order of mS/cm, can support ET fluxes that are compatible with cellular respiration rates, although sustaining this delocalization in the heterogeneous protein environment may be challenging. Computed values of fully coherent electron fluxes through the pili are orders of magnitude too low to support microbial respiration. We suggest experimental probes of the transport mechanism based on mutant studies to examine the roles of aromatic amino acids and yet to be identified redox cofactors.
Collapse
Affiliation(s)
- Xuyan Ru
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Peng Zhang
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - David N Beratan
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States.,Department of Biochemistry , Duke University , Durham , North Carolina 27710 , United States.,Department of Physics , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
34
|
Mejias SH, Bahrami-Dizicheh Z, Liutkus M, Sommer DJ, Astashkin A, Kodis G, Ghirlanda G, Cortajarena AL. Repeat proteins as versatile scaffolds for arrays of redox-active FeS clusters. Chem Commun (Camb) 2019; 55:3319-3322. [PMID: 30829362 PMCID: PMC6484676 DOI: 10.1039/c8cc06827e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular string of beads: modular extension of a protein backbone builds a chain of electroactive clusters.
Arrays of one, two and four electron-transfer active [4Fe–4S] clusters were constructed on modular tetratricopeptide repeat protein scaffolds, with the number of clusters determined solely by the size of the scaffold. The constructs show reversible redox activity and transient charge stabilization necessary to facilitate charge transfer.
Collapse
Affiliation(s)
- Sara H Mejias
- CIC biomaGUNE Paseo de Miramón 182, E-20014 Donostia-San Sebastian, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Machovina MM, Ellis ES, Carney TJ, Brushett FR, DuBois JL. How a cofactor-free protein environment lowers the barrier to O 2 reactivity. J Biol Chem 2019; 294:3661-3669. [PMID: 30602564 DOI: 10.1074/jbc.ra118.006144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/01/2019] [Indexed: 11/06/2022] Open
Abstract
Molecular oxygen (O2)-utilizing enzymes are among the most important in biology. The abundance of O2, its thermodynamic power, and the benign nature of its end products have raised interest in oxidases and oxygenases for biotechnological applications. Although most O2-dependent enzymes have an absolute requirement for an O2-activating cofactor, several classes of oxidases and oxygenases accelerate direct reactions between substrate and O2 using only the protein environment. Nogalamycin monooxygenase (NMO) from Streptomyces nogalater is a cofactor-independent enzyme that catalyzes rate-limiting electron transfer between its substrate and O2 Here, using enzyme-kinetic, cyclic voltammetry, and mutagenesis methods, we demonstrate that NMO initially activates the substrate, lowering its pKa by 1.0 unit (ΔG* = 1.4 kcal mol-1). We found that the one-electron reduction potential, measured for the deprotonated substrate both inside and outside the protein environment, increases by 85 mV inside NMO, corresponding to a ΔΔG 0' of 2.0 kcal mol-1 (0.087 eV) and that the activation barrier, ΔG ‡, is lowered by 4.8 kcal mol-1 (0.21 eV). Applying the Marcus model, we observed that this suggests a sizable decrease of 28 kcal mol-1 (1.4 eV) in the reorganization energy (λ), which constitutes the major portion of the protein environment's effect in lowering the reaction barrier. A similar role for the protein has been proposed in several cofactor-dependent systems and may reflect a broader trend in O2-utilizing proteins. In summary, NMO's protein environment facilitates direct electron transfer, and NMO accelerates rate-limiting electron transfer by strongly lowering the reorganization energy.
Collapse
Affiliation(s)
- Melodie M Machovina
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400 and
| | - Emerald S Ellis
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400 and
| | | | - Fikile R Brushett
- Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400 and
| |
Collapse
|
36
|
Ellis GFR, Kopel J. The Dynamical Emergence of Biology From Physics: Branching Causation via Biomolecules. Front Physiol 2019; 9:1966. [PMID: 30740063 PMCID: PMC6355675 DOI: 10.3389/fphys.2018.01966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/31/2018] [Indexed: 01/30/2023] Open
Abstract
Biology differs fundamentally from the physics that underlies it. This paper proposes that the essential difference is that while physics at its fundamental level is Hamiltonian, in biology, once life has come into existence, causation of a contextual branching nature occurs at every level of the hierarchy of emergence at each time. The key feature allowing this to happen is the way biomolecules such as voltage-gated ion channels can act to enable branching logic to arise from the underlying physics, despite that physics per se being of a deterministic nature. Much randomness occurs at the molecular level, which enables higher level functions to select lower level outcomes according to higher level needs. Intelligent causation occurs when organisms engage in deduction, enabling prediction and planning. This is possible because ion channels enable action potentials to propagate in axons. The further key feature is that such branching biological behavior acts down to cause the underlying physical interactions to also exhibit a contextual branching behavior.
Collapse
Affiliation(s)
- George F. R. Ellis
- Mathematics Department, University of Cape Town, Cape Town, South Africa
| | - Jonathan Kopel
- Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, United States
| |
Collapse
|
37
|
Madrid-Úsuga D, Melo-Luna CA, Insuasty A, Ortiz A, Reina JH. Optical and Electronic Properties of Molecular Systems Derived from Rhodanine. J Phys Chem A 2018; 122:8469-8476. [PMID: 30350632 DOI: 10.1021/acs.jpca.8b08265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Push-pull functional compounds consisting of dicyanorhodanine derivatives have attracted a lot of interest because their optical, electronic, and charge transport properties make them useful as building blocks for organic photovoltaic implementations. The analysis of the frontier molecular orbitals shows that the vertical transitions of electronic absorption are characterized as intramolecular charge transfer; furthermore, we show that the analyzed compounds exhibit bathochromic displacements when comparing the presence (or absence) of solvent as an interacting medium. In comparison with materials defined by their energy of reorganization of electrons (holes) as electron (hole) transporters, we find a transport hierarchy whereby the molecule ( Z)-2-(1,1-dicyanomethylene)-5-[(4-dimethylamino)benzylidene]-1,3-thiazol-4 is better at transporting holes than molecule ( Z)-2-(1,1-dicyanomethylene)-5-(tetrathiafulvalene-2-ylidene)-1,3-thiazol-4.
Collapse
Affiliation(s)
- Duvalier Madrid-Úsuga
- Centre for Bioinformatics and Photonics-CIBioFi , Universidad del Valle , Calle 13 No. 100-00, Edificio E20, No. 1069, Cali 760032 , Colombia.,Department of Physics , Universidad del Valle , 760032 Cali , Colombia
| | - Carlos A Melo-Luna
- Centre for Bioinformatics and Photonics-CIBioFi , Universidad del Valle , Calle 13 No. 100-00, Edificio E20, No. 1069, Cali 760032 , Colombia.,Department of Physics , Universidad del Valle , 760032 Cali , Colombia
| | - Alberto Insuasty
- Department of Chemistry and Biology , Universidad del Norte , Km 5 via Puerto Colombia , 081007 Barranquilla , Colombia
| | - Alejandro Ortiz
- Centre for Bioinformatics and Photonics-CIBioFi , Universidad del Valle , Calle 13 No. 100-00, Edificio E20, No. 1069, Cali 760032 , Colombia.,Department of Chemistry , Universidad del Valle , 760032 Cali , Colombia
| | - John H Reina
- Centre for Bioinformatics and Photonics-CIBioFi , Universidad del Valle , Calle 13 No. 100-00, Edificio E20, No. 1069, Cali 760032 , Colombia.,Department of Physics , Universidad del Valle , 760032 Cali , Colombia
| |
Collapse
|
38
|
Porter TM, Heim GP, Kubiak CP. Stable Mixed-Valent Complexes Formed by Electron Delocalization Across Hydrogen Bonds of Pyrimidinone-Linked Metal Clusters. J Am Chem Soc 2018; 140:12756-12759. [PMID: 30265005 DOI: 10.1021/jacs.8b09273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electron transfer across a mixed-valent hydrogen-bonded self-dimer of oxo-centered triruthenium clusters bridged by a pair of 4(3 H)-pyrimidinones is reported. Spectroelectrochemical studies in methylene chloride reveal that 1 rapidly self-dimerizes upon one-electron reduction, forming the strongly coupled mixed-valent hydrogen-bonded dimer (12)-. In the mixed-valent state, significantly broadened, partially coalesced ν(CO) bands are observed, allowing estimation of the electron transfer rate ( kET) by an optical Bloch line shape analysis. Simulation of the FTIR line shapes provides an estimate of kET on the order of 1011 s-1, indicating a highly delocalized electronic structure across the hydrogen bonds. These findings are supported by the determination of the formation constant ( KMV) for (12)-, which is found to be on the order of 106 M-1, or nearly 4 orders of magnitude higher than that for the neutral isovalent dimer (12). This represents a stabilization of approximately 5.7 kcal/mol (1980 cm-1) arising from electron exchange across the hydrogen bonds in the mixed-valent state. Significantly, an enormous intensity enhancement of the amide ν(NH) band (3300 cm-1) of (12)- is observed, supporting strong mixing of the bridging ligand vibrational modes with the electronic wave function of the mixed-valent state. These findings demonstrate strong donor-bridge-acceptor coupling and that highly delocalized electronic structures can be attained in hydrogen-bonded systems, which are often considered to be too weakly bound to support strong electronic communication.
Collapse
Affiliation(s)
- Tyler M Porter
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - Gavin P Heim
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| |
Collapse
|
39
|
Ing NL, El-Naggar MY, Hochbaum AI. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. J Phys Chem B 2018; 122:10403-10423. [DOI: 10.1021/acs.jpcb.8b07431] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Tunneling explains efficient electron transport via protein junctions. Proc Natl Acad Sci U S A 2018; 115:E4577-E4583. [PMID: 29712853 DOI: 10.1073/pnas.1719867115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.
Collapse
|
41
|
Nathanael JG, Gamon LF, Cordes M, Rablen PR, Bally T, Fromm KM, Giese B, Wille U. Amide Neighbouring-Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Long-Distance Electron Transfer. Chembiochem 2018; 19:922-926. [PMID: 29460322 DOI: 10.1002/cbic.201800098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Indexed: 12/27/2022]
Abstract
In nature, proteins serve as media for long-distance electron transfer (ET) to carry out redox reactions in distant compartments. This ET occurs either by a single-step superexchange or through a multi-step charge hopping process, which uses side chains of amino acids as stepping stones. In this study we demonstrate that Phe can act as a relay amino acid for long-distance electron hole transfer through peptides. The considerably increased susceptibility of the aromatic ring to oxidation is caused by the lone pairs of neighbouring amide carbonyl groups, which stabilise the Phe radical cation. This neighbouring-amide-group effect helps improve understanding of the mechanism of extracellular electron transfer through conductive protein filaments (pili) of anaerobic bacteria during mineral respiration.
Collapse
Affiliation(s)
- Joses G Nathanael
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Luke F Gamon
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Meike Cordes
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Paul R Rablen
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA, 19081-1397, USA
| | - Thomas Bally
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Bernd Giese
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Uta Wille
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| |
Collapse
|
42
|
Microbial nanowires - Electron transport and the role of synthetic analogues. Acta Biomater 2018; 69:1-30. [PMID: 29357319 DOI: 10.1016/j.actbio.2018.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.
Collapse
|
43
|
Schneider CR, Shafaat HS. An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme. Chem Commun (Camb) 2018; 52:9889-92. [PMID: 27406946 DOI: 10.1039/c6cc03901d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an artificial metalloenzyme for CO2 reduction is described. The small-molecule catalyst [Ni(II)(cyclam)](2+) has been incorporated within azurin. Selectivity for CO generation over H(+) reduction is enhanced within the protein environment, while the azurin active site metal impacts the electrochemical overpotential and photocatalytic activity. The enhanced catalysis observed for copper azurin suggests an important role for intramolecular electron transfer, analogous to native CO2 reducing enzymes.
Collapse
Affiliation(s)
- Camille R Schneider
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Porter TM, Heim GP, Kubiak CP. Effects of electron transfer on the stability of hydrogen bonds. Chem Sci 2017; 8:7324-7329. [PMID: 29163883 PMCID: PMC5672789 DOI: 10.1039/c7sc03361c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
The measurement of the dimerization constants of hydrogen-bonded ruthenium complexes (12, 22, 32) linked by a self-complementary pair of 4-pyridylcarboxylic acid ligands in different redox states is reported.
The measurement of the dimerization constants of hydrogen-bonded ruthenium complexes (12, 22, 32) linked by a self-complementary pair of 4-pyridylcarboxylic acid ligands in different redox states is reported. Using a combination of FTIR and UV/vis/NIR spectroscopies, the dimerization constants (KD) of the isovalent, neutral states, 12, 22, 32, were found to range from 75 to 130 M–1 (ΔG0 = –2.56 to –2.88 kcal mol–1), while the dimerization constants (K2–) of the isovalent, doubly-reduced states, (12)2–, (22)2–, (32)2–, were found to range from 2000 to 2500 M–1 (ΔG0 = –4.5 to –4.63 kcal mol–1). From the aforementioned values and the comproportionation constant for the mixed-valent dimers, the dimerization constants (KMV) of the mixed-valent, hydrogen-bonded dimers, (12)–, (22)–, (32)–, were found to range from 0.5 × 106 to 1.2 × 106 M–1 (ΔG0 = –7.78 to –8.31 kcal mol–1). On average, the hydrogen-bonded, mixed-valent states are stabilized by –5.27 (0.04) kcal mol–1 relative to the isovalent, neutral, hydrogen-bonded dimers and –3.47 (0.06) kcal mol–1 relative to the isovalent, dianionic hydrogen bonded dimers. Electron exchange in the mixed valence states imparts significant stability to hydrogen bonding. This is the first quantitative measurement of the strength of hydrogen bonds in the presence and absence of electronic exchange.
Collapse
Affiliation(s)
- Tyler M Porter
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , USA .
| | - Gavin P Heim
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , USA .
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , USA .
| |
Collapse
|
45
|
Tebo AG, Quaranta A, Herrero C, Pecoraro VL, Aukauloo A. Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein. CHEMPHOTOCHEM 2017; 1:89-92. [PMID: 29046892 DOI: 10.1002/cptc.201600044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Long-distance biological electron transfer occurs through a hopping mechanism and often involves tyrosine as a high potential intermediate, for example in the early charge separation steps during photosynthesis. Protein design allows for the development of minimal systems to study the underlying principles of complex systems. Herein, we report the development of the first ruthenium-linked designed protein for the photogeneration of a tyrosine radical by intramolecular electron transfer.
Collapse
Affiliation(s)
- Alison G Tebo
- Dr. A. G. Tebo, Prof. V. L. Pecoraro, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Annamaria Quaranta
- Dr. A. Quaranta, Prof. A. Aukauloo, CEA Saclay, iBiTecS, Service de Bioénergétique Biologie Structurale et Mécanismes (SB2SM), Gif-sur-Yvette, 91191 (France)
| | - Christian Herrero
- Dr. C. Herrero, Prof. A. Aukauloo, Institut de Chimie Moléculaire et des Matériaux D'Orsay, Université Paris Sud, Université Paris Saclay, CNRS UMR 8182, 91405 Orsay Cedex (France)
| | - Vincent L Pecoraro
- Dr. A. G. Tebo, Prof. V. L. Pecoraro, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Ally Aukauloo
- Dr. C. Herrero, Prof. A. Aukauloo, Institut de Chimie Moléculaire et des Matériaux D'Orsay, Université Paris Sud, Université Paris Saclay, CNRS UMR 8182, 91405 Orsay Cedex (France).,Dr. A. Quaranta, Prof. A. Aukauloo, CEA Saclay, iBiTecS, Service de Bioénergétique Biologie Structurale et Mécanismes (SB2SM), Gif-sur-Yvette, 91191 (France)
| |
Collapse
|
46
|
Stan RC, Kros A, Akkilic N, Sanghamitra NJ, Appel J. Direct wiring of the azurin redox center to gold electrodes investigated by protein film voltammetry. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Bao R, Tan B, Liang S, Zhang N, Wang W, Liu W. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterials 2017; 122:63-71. [PMID: 28107665 DOI: 10.1016/j.biomaterials.2017.01.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
Previous studies suggested that a stiffer hydrogel system exhibited a better performance to promote heart function after myocardial infarction (MI). However, the nature of myocardium, a tissue that alternately contracts and relaxes with electrical impulses, leads us to hypothesize that a soft and conductive hydrogel may be in favor of mechanical and electrical signals transmission to enhance heart function after MI. In this work, π-π conjugation interaction was first employed to produce a soft injectable hydrogel with conductive property. Melamine with π-π conjugation ring was used as a core to synthesize a multi-armed crosslinker PEGDA700-Melamine (PEG-MEL), which could crosslink with thiol-modified hyaluronic acid (HA-SH) to form an injectable hydrogel rapidly. By incorporating graphene oxide (GO), the injectable PEG-MEL/HA-SH/GO hydrogel exhibited a soft (G' = 25 Pa) and anti-fatigue mechanical property and conductive property (G = 2.84 × 10-4 S/cm). The hydrogel encapsulating adipose tissue-derived stromal cells (ADSCs) was injected into MI area of rats. The significant increase in α-Smooth Muscle Actin (α-SMA) and Connexin 43 (Cx43) expression confirmed that the gel efficiently promoted the transmission of mechanical and electrical signals. Meanwhile, a significant improvement of heart functions, such as distinct increase of ejection fraction (EF), smaller infarction size, less fibrosis area, and higher vessel density, was achieved.
Collapse
Affiliation(s)
- Rui Bao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Baoyu Tan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Shuang Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Ning Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
48
|
Kalyoncu E, Ahan RE, Olmez TT, Safak Seker UO. Genetically encoded conductive protein nanofibers secreted by engineered cells. RSC Adv 2017. [DOI: 10.1039/c7ra06289c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial biofilms are promising tools for functional applications as bionanomaterials.
Collapse
Affiliation(s)
- Ebuzer Kalyoncu
- UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology
- Bilkent University
- Ankara
- Turkey
| | - Recep E. Ahan
- UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology
- Bilkent University
- Ankara
- Turkey
| | - Tolga T. Olmez
- UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology
- Bilkent University
- Ankara
- Turkey
| | - Urartu Ozgur Safak Seker
- UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology
- Bilkent University
- Ankara
- Turkey
| |
Collapse
|
49
|
Tamasi G, Merlino A, Scaletti F, Heffeter P, Legin AA, Jakupec MA, Berger W, Messori L, Keppler BK, Cini R. {Ru(CO)x}-Core complexes with benzimidazole ligands: synthesis, X-ray structure and evaluation of anticancer activity in vivo. Dalton Trans 2017; 46:3025-3040. [DOI: 10.1039/c6dt04295c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
fac-[RuII(CO)3Cl2(MBI)] and -[RuII(CO)3Cl2(DMBI)] are CO-releasing materials able to link histidines of proteins, and the latter showed antitumor effects in murine colon cancer.
Collapse
|
50
|
|