1
|
Volokhov VM, Zyubina TS, Volokhov AV, Amosova ES, Varlamov DA, Lempert DB, Yanovskii LS. Quantum Chemical Simulation of Hydrocarbon Compounds with High Enthalpy. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121010127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Bérard R, Makasheva K, Demyk K, Simon A, Reyes DN, Mastrorocco F, Sabbah H, Joblin C. Impact of metals on (star)dust chemistry: a laboratory astrophysics approach. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2021; 8:654879. [PMID: 33850840 PMCID: PMC7610582 DOI: 10.3389/fspas.2021.654879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Laboratory experiments are essential in exploring the mechanisms involved in stardust formation. One key question is how a metal is incorporated into dust for an environment rich in elements involved in stardust formation (C, H, O, Si). To address experimentally this question we have used a radiofrequency cold plasma reactor in which cyclic organosilicon dust formation is observed. Metallic (silver) atoms were injected in the plasma during the dust nucleation phase to study their incorporation in the dust. The experiments show formation of silver nanoparticles (~15 nm) under conditions in which organosilicon dust of size 200 nm or less is grown. The presence of AgSiO bonds, revealed by infrared spectroscopy, suggests the presence of junctions between the metallic nanoparticles and the organosilicon dust. Even after annealing we could not conclude on the formation of silver silicates, emphasizing that most of silver is included in the metallic nanoparticles. The molecular analysis performed by laser mass spectrometry exhibits a complex chemistry leading to a variety of molecules including large hydrocarbons and organometallic species. In order to gain insights into the involved chemical molecular pathways, the reactivity of silver atoms/ions with acetylene was studied in a laser vaporization source. Key organometallic species, Ag n C2H m (n=1-3; m=0-2), were identified and their structures and energetic data computed using density functional theory. This allows us to propose that molecular Ag-C seeds promote the formation of Ag clusters but also catalyze hydrocarbon growth. Throughout the article, we show how the developed methodology can be used to characterize the incorporation of metal atoms both in the molecular and dust phases. The presence of silver species in the plasma was motivated by objectives finding their application in other research fields than astrochemistry. Still, the reported methodology is a demonstration laying down the ground for future studies on metals of astrophysical interest such as iron.
Collapse
Affiliation(s)
- Rémi Bérard
- IRAP, Université de Toulouse, CNRS, UPS, CNES, TOULOUSE, France
- LAPLACE, Université de Toulouse, CNRS, UPS, INPT, TOULOUSE, France
| | | | - Karine Demyk
- IRAP, Université de Toulouse, CNRS, UPS, CNES, TOULOUSE, France
| | - Aude Simon
- LCPQ-IRSAMC, Université de Toulouse, UPS, CNRS, TOULOUSE, France
| | | | | | - Hassan Sabbah
- IRAP, Université de Toulouse, CNRS, UPS, CNES, TOULOUSE, France
- LCAR-IRSAMC, Université de Toulouse, UPS, CNRS, TOULOUSE, France
| | | |
Collapse
|
3
|
Volokhov VM, Zyubina TS, Volokhov AV, Amosova ES, Varlamov DA, Lempert DB, Yanovskii LS. Predictive Modeling of Molecules of High-Energy Heterocyclic Compounds. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zhao L, Doddipatla S, Kaiser RI, Lu W, Kostko O, Ahmed M, Tuli LB, Morozov AN, Howlader AH, Wnuk SF, Mebel AM, Azyazov VN, Mohamed RK, Fischer FR. Gas-phase synthesis of corannulene – a molecular building block of fullerenes. Phys Chem Chem Phys 2021; 23:5740-5749. [DOI: 10.1039/d0cp06537d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Corannulene can be formed through molecular mass growth processes in circumstellar envelopes.
Collapse
|
5
|
Zhao L, Prendergast MB, Kaiser RI, Xu B, Lu W, Ablikim U, Ahmed M, Oleinikov AD, Azyazov VN, Mebel AM, Howlader AH, Wnuk SF. Reactivity of the Indenyl Radical (C 9 H 7 ) with Acetylene (C 2 H 2 ) and Vinylacetylene (C 4 H 4 ). Chemphyschem 2019; 20:1437-1447. [PMID: 30938059 DOI: 10.1002/cphc.201900052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/28/2019] [Indexed: 11/09/2022]
Abstract
The reactions of the indenyl radicals with acetylene (C2 H2 ) and vinylacetylene (C4 H4 ) is studied in a hot chemical reactor coupled to synchrotron based vacuum ultraviolet ionization mass spectrometry. These experimental results are combined with theory to reveal that the resonantly stabilized and thermodynamically most stable 1-indenyl radical (C9 H7 . ) is always formed in the pyrolysis of 1-, 2-, 6-, and 7-bromoindenes at 1500 K. The 1-indenyl radical reacts with acetylene yielding 1-ethynylindene plus atomic hydrogen, rather than adding a second acetylene molecule and leading to ring closure and formation of fluorene as observed in other reaction mechanisms such as the hydrogen abstraction acetylene addition or hydrogen abstraction vinylacetylene addition pathways. While this reaction mechanism is analogous to the bimolecular reaction between the phenyl radical (C6 H5 . ) and acetylene forming phenylacetylene (C6 H5 CCH), the 1-indenyl+acetylene→1-ethynylindene+hydrogen reaction is highly endoergic (114 kJ mol-1 ) and slow, contrary to the exoergic (-38 kJ mol-1 ) and faster phenyl+acetylene→phenylacetylene+hydrogen reaction. In a similar manner, no ring closure leading to fluorene formation was observed in the reaction of 1-indenyl radical with vinylacetylene. These experimental results are explained through rate constant calculations based on theoretically derived potential energy surfaces.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Matthew B Prendergast
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Utuq Ablikim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Alexander M Mebel
- Samara National Research University, Samara, 443086, Russia.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - A Hasan Howlader
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Morozov AN, Mebel AM, Kaiser RI. A Theoretical Study of Pyrolysis of exo-Tetrahydrodicyclopentadiene and Its Primary and Secondary Unimolecular Decomposition Products. J Phys Chem A 2018; 122:4920-4934. [DOI: 10.1021/acs.jpca.8b02934] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander N. Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
7
|
Belisario-Lara D, Mebel AM, Kaiser RI. Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates III: Butylbenzene Isomers ( n-, s-, and t-C 14H 10). J Phys Chem A 2018; 122:3980-4001. [PMID: 29608299 DOI: 10.1021/acs.jpca.8b01836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ab initio G3(CCSD,MP2)//B3LYP/6-311G(d,p) calculations of potential energy surfaces have been carried out to unravel the mechanism of the initial stages of pyrolysis of three C10H14 isomers: n-, s-, and t-butylbenzenes. The computed energy and molecular parameters have been utilized in RRKM-master equation calculations to predict temperature- and pressure-dependent rate constants and product branching ratios for the primary unimolecular decomposition of these molecules and for the secondary decomposition of their radical fragments. The results showed that the primary dissociation of n-butylbenzene produces mostly benzyl (C7H7) + propyl (C3H7) and 1-phenyl-2-ethyl (C6H5C2H4) + ethyl (C2H5), with their relative yields strongly dependent on temperature and pressure, together with a minor amount of 1-phenyl-prop-3-yl (C9H11) + methyl (CH3). Secondary decomposition reactions that are anticipated to occur on a nanosecond scale under typical combustion conditions split propyl (C3H7) into ethylene (C2H4) + methyl (CH3), ethyl (C2H5) into ethylene (C2H4) + hydrogen (H), 1-phenyl-2-ethyl (C6H5C2H4) into mostly styrene (C8H8) + hydrogen (H) and to a lesser extent phenyl (C6H5) + ethylene (C2H4), and 1-phenyl-prop-3-yl (C9H11) into predominantly benzyl (C7H7) + ethylene (C2H4). The primary decomposition of s-butylbenzene is predicted to produce 1-phenyl-1-ethyl (C6H5CHCH3) + ethyl (C2H5) and a minor amount of 1-phenyl-prop-1-yl (C9H11) + methyl (CH3), and then 1-phenyl-1-ethyl (C6H5CHCH3) and 1-phenyl-prop-1-yl (C9H11) rapidly dissociate to styrene (C8H8) + hydrogen (H) and styrene (C8H8) + methyl (CH3), respectively. t-Butylbenzene decomposes nearly exclusively to 2-phenyl-prop-2-yl (C9H11) + methyl (CH3), and further, 2-phenyl-prop-2-yl (C9H11) rapidly eliminates a hydrogen atom to form 2-phenylpropene (C9H10). If hydrogen atoms or other reactive radicals are available to make a direct hydrogen-atom abstraction from butylbenzenes possible, the C10H13 radicals (1-phenyl-but-1-yl, 2-phenyl-but-2-yl, and t-phenyl-isobutyl) can be formed as the primary products from n-, s-, and t-butylbenzene, respectively. The secondary decomposition of 1-phenyl-but-1-yl leads to styrene (C8H8) + ethyl (C2H5), whereas 2-phenyl-but-2-yl and t-phenyl-isobutyl dissociate to 2-phenylpropene (C9H10) + methyl (CH3). Thus, the three butylbenzene isomers produce distinct but overlapping nascent pyrolysis fragments, which likely affect the successive oxidation mechanism and combustion kinetics of these JP-8 fuel components. Temperature- and pressure-dependent rate constants generated for the initial stages of pyrolysis of butylbenzenes are recommended for kinetic modeling.
Collapse
Affiliation(s)
- Daniel Belisario-Lara
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
8
|
Tarczay G, Förstel M, Góbi S, Maksyutenko P, Kaiser RI. Synthesis of the Smallest Member of the Silylketene Family: H 3 SiC(H)=C=O. Chemphyschem 2017; 18:882-889. [PMID: 28129476 DOI: 10.1002/cphc.201601422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/08/2022]
Abstract
Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) combined with electronic structure calculations, it is shown that the hitherto elusive silylketene molecule (H3 SiC(H)=C=O)-the isovalent counterpart of the well-known methylketene molecule-is forming via interaction of energetic electrons with low-temperature silane-carbon monoxide ices. In combination with the infrared spectroscopically detected triplet dicarbon monoxide reactant, electronic structure calculations suggest that dicarbon monoxide reacts with silane via a de facto insertion of the terminal carbon atom into a silicon-hydrogen single bond. This is followed by non-adiabatic reaction dynamics triggered by the heavy silicon atom intersystem crossing from the triplet to the singlet manifold, eventually leading to the formation of silylketene. The non-equilibrium nature of the elementary reactions within the exposed ices results in an exciting and novel chemistry which cannot be explored via traditional preparative chemistry. Since the replacement of hydrogen in silane can introduce side groups such as silyl or alkyl, the reaction of triplet dicarbon monoxide with silane represents the parent system for a previously disregarded reaction class revealing an elegant path to access the largely reactive group of silylketenes.
Collapse
Affiliation(s)
- György Tarczay
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA.,Permanent Address: Laboratory of Molecular Spectroscopy, Institute of Chemistry, Eötvös University, PO Box 32, H-1518, Budapest 112, Hungary
| | - Marko Förstel
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA.,Present address: Berlin Institute of Technology, IOAP, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Sándor Góbi
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Pavlo Maksyutenko
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Ralf I Kaiser
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
9
|
Zhao L, Yang T, Kaiser RI, Troy TP, Ahmed M, Belisario-Lara D, Ribeiro JM, Mebel AM. Combined Experimental and Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates. I. n-Decane (n-C10H22). J Phys Chem A 2017; 121:1261-1280. [DOI: 10.1021/acs.jpca.6b11472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tyler P. Troy
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Belisario-Lara
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Joao Marcelo Ribeiro
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
10
|
Zhao L, Yang T, Kaiser RI, Troy TP, Ahmed M, Ribeiro JM, Belisario-Lara D, Mebel AM. Combined Experimental and Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates. II: n-Dodecane (n-C12H26). J Phys Chem A 2017; 121:1281-1297. [DOI: 10.1021/acs.jpca.6b11817] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tyler P. Troy
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joao Marcelo Ribeiro
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Daniel Belisario-Lara
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
11
|
Zhao L, Yang T, Kaiser RI, Troy TP, Xu B, Ahmed M, Alarcon J, Belisario-Lara D, Mebel AM, Zhang Y, Cao C, Zou J. A vacuum ultraviolet photoionization study on high-temperature decomposition of JP-10 (exo-tetrahydrodicyclopentadiene). Phys Chem Chem Phys 2017; 19:15780-15807. [DOI: 10.1039/c7cp01571b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-temperature pyrolysis of JP-10 in flow reactors were performed both experimentally and theoretically. Dozens of products were detected and the decomposition pathways of JP-10 were discussed.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Tao Yang
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Tyler P. Troy
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Bo Xu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Juan Alarcon
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Yan Zhang
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chuangchuang Cao
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jiabiao Zou
- Key Laboratory for Power Machinery and Engineering of MOE
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
12
|
Choe JC, Kim GS. An ab initioStudy of Excited States of C 4H 3Radical. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joong Chul Choe
- Department of Chemistry; Dongguk University; Seoul 04620 Korea
| | - Gap-Sue Kim
- Dharma College; Dongguk University; Seoul 04620 Korea
| |
Collapse
|
13
|
Sakai N, Takano S, Sakai T, Shiba S, Sumiyoshi Y, Endo Y, Yamamoto S. Anomalous 13C Isotope Abundances in C3S and C4H Observed toward the Cold Interstellar Cloud, Taurus Molecular Cloud-1. J Phys Chem A 2013; 117:9831-9. [DOI: 10.1021/jp3127913] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nami Sakai
- Department of Physics, The University of Tokyo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Shuro Takano
- Nobemaya
Radio Observatory, National Astronomical Observatory of
Japan, and Department of Astronomical Science, The Graduate University for Advanced Studies, Minamimaki, Minamisaku, Nagano 384-1305, Japan
| | - Takeshi Sakai
- Graduate School of Informatics
and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Shoichi Shiba
- Department of Physics, The University of Tokyo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Yoshihiro Sumiyoshi
- Department of Chemistry
and Chemical Biology, Graduate School of Engineering, Gunma University, Aramaki, Maebashi, Gunma 371-8510,
Japan
| | - Yasuki Endo
- Department
of Basic
Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Yamamoto
- Department of Physics, The University of Tokyo, Bunkyo-ku,
Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Yan L, Cudry F, Li W, Suits AG. Isomer-Specific Mass Spectrometric Detection Via “Semisoft” Strong-Field Ionization. J Phys Chem A 2013; 117:11890-5. [DOI: 10.1021/jp403118c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lu Yan
- Department of Chemistry, Wayne State University, Detroit Michigan
48202, United
States
| | - Fadia Cudry
- Department of Chemistry, Wayne State University, Detroit Michigan
48202, United
States
| | - Wen Li
- Department of Chemistry, Wayne State University, Detroit Michigan
48202, United
States
| | - Arthur G. Suits
- Department of Chemistry, Wayne State University, Detroit Michigan
48202, United
States
| |
Collapse
|
15
|
Leone SR, Ahmed M, Wilson KR. Chemical dynamics, molecular energetics, and kinetics at the synchrotron. Phys Chem Chem Phys 2010; 12:6564-78. [PMID: 20419177 DOI: 10.1039/c001707h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.
Collapse
Affiliation(s)
- Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|