1
|
Wang 王宇扬 Y, Little AG, Aristizabal MJ, Robertson RM. Low Glycolysis Is Neuroprotective during Anoxic Spreading Depolarization (SD) and Reoxygenation in Locusts. eNeuro 2023; 10:ENEURO.0325-23.2023. [PMID: 37932046 PMCID: PMC10683553 DOI: 10.1523/eneuro.0325-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Migratory locusts enter a reversible hypometabolic coma to survive environmental anoxia, wherein the cessation of CNS activity is driven by spreading depolarization (SD). While glycolysis is recognized as a crucial anaerobic energy source contributing to animal anoxia tolerance, its influence on the anoxic SD trajectory and recovery outcomes remains poorly understood. We investigated the effects of varying glycolytic capacity on adult female locust anoxic SD parameters, using glucose or the glycolytic inhibitors 2-deoxy-d-glucose (2DG) or monosodium iodoacetate (MIA). Surprisingly, 2DG treatment shared similarities with glucose yet had opposite effects compared with MIA. Specifically, although SD onset was not affected, both glucose and 2DG expedited the recovery of CNS electrical activity during reoxygenation, whereas MIA delayed it. Additionally, glucose and MIA, but not 2DG, increased tissue damage and neural cell death following anoxia-reoxygenation. Notably, glucose-induced injuries were associated with heightened CO2 output during the early phase of reoxygenation. Conversely, 2DG resulted in a bimodal response, initially dampening CO2 output and gradually increasing it throughout the recovery period. Given the discrepancies between effects of 2DG and MIA, the current results require cautious interpretations. Nonetheless, our findings present evidence that glycolysis is not a critical metabolic component in either anoxic SD onset or recovery and that heightened glycolysis during reoxygenation may exacerbate CNS injuries. Furthermore, we suggest that locust anoxic recovery is not solely dependent on energy availability, and the regulation of metabolic flux during early reoxygenation may constitute a strategy to mitigate damage.
Collapse
Affiliation(s)
- Yuyang Wang 王宇扬
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | - Maria J Aristizabal
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Fukushi A, Kim HD, Chang YC, Kim CH. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int J Mol Sci 2022; 23:ijms231710037. [PMID: 36077431 PMCID: PMC9456516 DOI: 10.3390/ijms231710037] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
Aerobic glycolysis is an emerging hallmark of many human cancers, as cancer cells are defined as a “metabolically abnormal system”. Carbohydrates are metabolically reprogrammed by its metabolizing and catabolizing enzymes in such abnormal cancer cells. Normal cells acquire their energy from oxidative phosphorylation, while cancer cells acquire their energy from oxidative glycolysis, known as the “Warburg effect”. Energy–metabolic differences are easily found in the growth, invasion, immune escape and anti-tumor drug resistance of cancer cells. The glycolysis pathway is carried out in multiple enzymatic steps and yields two pyruvate molecules from one glucose (Glc) molecule by orchestral reaction of enzymes. Uncontrolled glycolysis or abnormally activated glycolysis is easily observed in the metabolism of cancer cells with enhanced levels of glycolytic proteins and enzymatic activities. In the “Warburg effect”, tumor cells utilize energy supplied from lactic acid-based fermentative glycolysis operated by glycolysis-specific enzymes of hexokinase (HK), keto-HK-A, Glc-6-phosphate isomerase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, phosphofructokinase (PFK), phosphor-Glc isomerase (PGI), fructose-bisphosphate aldolase, phosphoglycerate (PG) kinase (PGK)1, triose phosphate isomerase, PG mutase (PGAM), glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase isozyme type M2 (PKM2), pyruvate dehydrogenase (PDH), PDH kinase and lactate dehydrogenase. They are related to glycolytic flux. The key enzymes involved in glycolysis are directly linked to oncogenesis and drug resistance. Among the metabolic enzymes, PKM2, PGK1, HK, keto-HK-A and nucleoside diphosphate kinase also have protein kinase activities. Because glycolysis-generated energy is not enough, the cancer cell-favored glycolysis to produce low ATP level seems to be non-efficient for cancer growth and self-protection. Thus, the Warburg effect is still an attractive phenomenon to understand the metabolic glycolysis favored in cancer. If the basic properties of the Warburg effect, including genetic mutations and signaling shifts are considered, anti-cancer therapeutic targets can be raised. Specific therapeutics targeting metabolic enzymes in aerobic glycolysis and hypoxic microenvironments have been developed to kill tumor cells. The present review deals with the tumor-specific Warburg effect with the revisited viewpoint of recent progress.
Collapse
Affiliation(s)
- Abekura Fukushi
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Hee-Do Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (Y.-C.C.); (C.-H.K.); Fax: +82-31-290-7015 (C.-H.K.)
| | - Cheorl-Ho Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (Y.-C.C.); (C.-H.K.); Fax: +82-31-290-7015 (C.-H.K.)
| |
Collapse
|
3
|
Zhu X, Jin C, Pan Q, Hu X. Determining the quantitative relationship between glycolysis and GAPDH in cancer cells exhibiting the Warburg effect. J Biol Chem 2021; 296:100369. [PMID: 33545174 PMCID: PMC7960551 DOI: 10.1016/j.jbc.2021.100369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/04/2022] Open
Abstract
Previous studies have identified GAPDH as a promising target for treating cancer and modulating immunity because its inhibition reduces glycolysis in cells (cancer cells and immune cells) with the Warburg effect, a modified form of cellular metabolism found in cancer cells. However, the quantitative relationship between GAPDH and the aerobic glycolysis remains unknown. Here, using siRNA-mediated knockdown of GAPDH expression and iodoacetate-dependent inhibition of enzyme activity, we examined the quantitative relationship between GAPDH activity and glycolysis rate. We found that glycolytic rates were unaffected by the reduction of GAPDH activity down to 19% ± 4.8% relative to untreated controls. However, further reduction of GAPDH activity below this level caused proportional reductions in the glycolysis rate. GAPDH knockdown or inhibition also simultaneously increased the concentration of glyceraldehyde 3-phosphate (GA3P, the substrate of GAPDH). This increased GA3P concentration countered the effect of GAPDH knockdown or inhibition and stabilized the glycolysis rate by promoting GAPDH activity. Mechanistically, the intracellular GA3P concentration is controlled by the Gibbs free energy of the reactions upstream of GAPDH. The thermodynamic state of the reactions along the glycolysis pathway was only affected when GAPDH activity was reduced below 19% ± 4.8%. Doing so moved the reactions catalyzed by GAPDH + PGK1 (phosphoglycerate kinase 1, the enzyme immediate downstream of GAPDH) away from the near-equilibrium state, revealing an important biochemical basis to interpret the rate control of glycolysis by GAPDH. Collectively, we resolved the numerical relationship between GAPDH and glycolysis in cancer cells with the Warburg effect and interpreted the underlying mechanism.
Collapse
Affiliation(s)
- Xiaobing Zhu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengmeng Jin
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangrong Pan
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Pereira PRM, Araújo JDO, Silva JRA, Alves CN, Lameira J, Lima AH. Exploring Chloride Selectivity and Halogenase Regioselectivity of the SalL Enzyme through Quantum Mechanical/Molecular Mechanical Modeling. J Chem Inf Model 2020; 60:738-746. [DOI: 10.1021/acs.jcim.9b01079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paulo R. M. Pereira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - Jéssica de O. Araújo
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - Cláudio N. Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| |
Collapse
|
5
|
Virtual Screening and Molecular Dynamics Simulations from a Bank of Molecules of the Amazon Region Against Functional NS3-4A Protease-Helicase Enzyme of Hepatitis C Virus. Appl Biochem Biotechnol 2015; 176:1709-21. [DOI: 10.1007/s12010-015-1672-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
|
6
|
Makshakova ON, Semenyuk PI, Kuravsky ML, Ermakova EA, Zuev YF, Muronetz VI. Structural basis for regulation of stability and activity in glyceraldehyde-3-phosphate dehydrogenases. Differential scanning calorimetry and molecular dynamics. J Struct Biol 2015; 190:224-35. [PMID: 25869789 DOI: 10.1016/j.jsb.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
Tissue specific isoforms of human glyceraldehyde-3-phosphate dehydrogenase, somatic (GAPD) and sperm-specific (GAPDS), have been reported to display different levels of both stability and catalytic activity. Here we apply MD simulations to investigate molecular basis of this phenomenon. The protein is a tetramer where each subunit consists of two domains - catalytic and NAD-binding one. We demonstrated key residues responsible for intersubunit and interdomain interactions. Effect of several residues was studied by point mutations. Overall we considered three mutations (Glu96Gln, Glu244Gln and Asp311Asn) disrupting GAPDS-specific salt bridges. Comparison of calculated interaction energies with calorimetric enthalpies confirmed that intersubunit interactions were responsible for enhanced thermostability of GAPDS whereas interdomain interactions had indirect influence on intersubunit contacts. Mutation Asp311Asn was around 10Å far from the active center and corresponded to the closest natural substitution in the isoenzymes. MD simulations revealed that this residue had slight interaction with catalytic residues but influenced the hydrogen bond net and dynamics in active site. These effects can be responsible for a strong influence of this residue on catalytic activity. Overall, our results provide new insight into glyceraldehyde-3-phosphate dehydrogenase structure-function relationships and can be used for the engineering of mutant proteins with modified properties and for development of new inhibitors with indirect influence on the catalytic site.
Collapse
Affiliation(s)
- Olga N Makshakova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia.
| | - Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail L Kuravsky
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Moscow, Russia
| | - Elena A Ermakova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
do Nascimento JP, Araújo Silva JR, Lameira J, Alves CN. Metal-dependent inhibition of HIV-1 integrase by 5CITEP inhibitor: A theoretical QM/MM approach. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Reis M, Alves CN, Lameira J, Tuñón I, Martí S, Moliner V. The catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi elucidated via the QM/MM approach. Phys Chem Chem Phys 2013; 15:3772-85. [PMID: 23389436 DOI: 10.1039/c3cp43968b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as a key enzyme involved in glycolysis processes for energy production in the Trypanosoma cruzi parasite. This enzyme catalyses the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) in the presence of inorganic phosphate (Pi) and nicotinamide adenosine dinucleotide (NAD+). The catalytic mechanism used by GAPDH has been intensively investigated. However, the individual roles of Pi and the C3 phosphate of G3P (Ps) sites, as well as some residues such as His194 in the catalytic mechanism, remain unclear. In this study, we have employed Molecular Dynamics (MD) simulations within hybrid quantum mechanical/molecular mechanical (QM/MM) potentials to obtain the Potential of Mean Force of the catalytic oxidative phosphorylation mechanism of the G3P substrate used by GAPDH. According to our results, the first stage of the reaction (oxidoreduction) takes place in the Pi site (energetically more favourable), with the formation of oxyanion thiohemiacetal and thioacylenzyme intermediates without acid-base assistance of His194. Analysis of the interaction energy by residues shows that Arg249 has an important role in the ability of the enzyme to bind the G3P substrate, which interacts with NAD+ and other important residues, such as Cys166, Glu109, Thr167, Ser247 and Thr226, in the GAPDH active site. Finally, the inhibition mechanism of the GAPDH enzyme by the 3-(p-nitrophenoxycarboxyl)-3-ethylene propyl dihydroxyphosphonate inhibitor was investigated in order to contribute to the design of new inhibitors of GAPDH from Trypanosoma cruzi.
Collapse
Affiliation(s)
- Mauro Reis
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
de Farias Silva N, Lameira J, Alves CN, Martí S. Computational study of the mechanism of half-reactions in class 1A dihydroorotate dehydrogenase from Trypanosoma cruzi. Phys Chem Chem Phys 2013; 15:18863-71. [DOI: 10.1039/c3cp52692e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Sousa PRM, de Alencar NAN, Lima AH, Lameira J, Alves CN. Protein-ligand interaction study of CpOGA in complex with GlcNAcstatin. Chem Biol Drug Des 2012; 81:284-90. [PMID: 23066949 DOI: 10.1111/cbdd.12078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The GlcNAcstatin is a potent inhibitor of O-glycoprotein 2-acetamino-2-deoxy-β-D-glucopyranosidase, which has been related with type II diabetes and neurodegenerative disorders. Herein, hybrid quantum mechanics/molecular mechanics, molecular dynamics simulations, and potential of mean force were employed to study the interactions established between GlcNAcstatin and a bacterial O-GlcNAcase enzyme from Clostridium perfringens. The results reveal that the imidazole nitrogen atom of GlcNAcstatin has shown a better interaction with the active site of Clostridium perfringens in its protonated form, which is compatible with a substrate-assisted reaction mechanism involving two conserved aspartate residues (297 and 298). Furthermore, the quantum mechanics/molecular mechanics-molecular dynamics simulations appointed a strong interaction between Asp401, Asp298, and Asp297 residues and the GlcNAcstatin inhibitor, which is in accordance with experimental data. Lastly, these results may contribute to understand the molecular mechanism of inhibition of Clostridium perfringens by GlcNAcstatin inhibitor and, consequently, this study might be useful to design new molecules with more interesting inhibitory activity.
Collapse
Affiliation(s)
- Paulo Robson M Sousa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brazil
| | | | | | | | | |
Collapse
|