1
|
Shvalya V, Olenik J, Vengust D, Zavašnik J, Štrbac J, Modic M, Baranov O, Cvelbar U. Nanosculptured tungsten oxide: High-efficiency SERS sensor for explosives tracing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135171. [PMID: 39002481 DOI: 10.1016/j.jhazmat.2024.135171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The accurate and rapid identification of explosives and their toxic by-products is an important aspect of safety protocols, forensic investigations and pollution studies. Herein, surface-enhanced Raman scattering (SERS) is used to detect different explosive molecules using an improved substrate design by controllable oxidation of the tungsten surface and deposition of Au layers. The resulting furrow-like morphology formed at the intersection of the tungsten Wulff facets increases nanoroughness and improves the SERS response by over 300 % compared to the untreated surface. The substrate showed excellent reproducibility with a relative standard deviation of less than 15 % and a signal recovery of over 95 % after ultrafast Ar/O2 plasma cleanings. The detection limit for the "dried on a surface" measurement case was better than 10-8 M using the moving scanning regime and an acquisition time of 10 s, while for the "water droplets on a surface" scenario the LoD is 10-7, which is up to 2 orders of magnitude better than the UV-Vis spectroscopy method. The substrates were successfully used to classify the molecular fingerprints of HMX, Tetryl, TNB and TNT, demonstrating the efficiency of a sensor for label-free SERS screening in the practice of monitoring traces of explosives in the water medium.
Collapse
Affiliation(s)
- Vasyl Shvalya
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Jaka Olenik
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; York Plasma Institute, School of Physics, Engineering & Technology, University of York, York YO10 5DD, UK.
| | - Damjan Vengust
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Janez Zavašnik
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Jelena Štrbac
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Martina Modic
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Oleg Baranov
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Plasma Laboratory, National Aerospace University, Kharkov, Ukraine.
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Ben-Jaber S, Glass D, Brick T, Maier SA, Parkin IP, Cortés E, Peveler WJ, Quesada-Cabrera R. Photo-induced enhanced Raman spectroscopy as a probe for photocatalytic surfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220343. [PMID: 37691466 PMCID: PMC10493551 DOI: 10.1098/rsta.2022.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023]
Abstract
Photo-induced enhanced Raman spectroscopy (PIERS) has emerged as a highly sensitive surface-enhanced Raman spectroscopy (SERS) technique for the detection of ultra-low concentrations of organic molecules. The PIERS mechanism has been largely attributed to UV-induced formation of surface oxygen vacancies (Vo) in semiconductor materials, although alternative interpretations have been suggested. Very recently, PIERS has been proposed as a surface probe for photocatalytic materials, following Vo formation and healing kinetics. This work establishes comparison between PIERS and Vo-induced SERS approaches in defected noble-metal-free titanium dioxide (TiO2-x) films to further confirm the role of Vo in PIERS. Upon application of three post-treatment methods (namely UV-induction, vacuum annealing and argon etching), correlation of Vo kinetics and distribution could be established. A proposed mechanism and further discussion on PIERS as a probe to explore photocatalytic materials are also presented. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Sultan Ben-Jaber
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Department of Science and Forensics, King Fahad Security College, Riyadh, Saudi Arabia
| | - Daniel Glass
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Thomas Brick
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Stefan A. Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
- Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig Maximilians Universität München, 80799 München, Germany
| | - William J. Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Raúl Quesada-Cabrera
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Department of Chemistry, Institute of Environmental Studies and Natural Resources (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| |
Collapse
|
3
|
Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. BIOSENSORS 2022; 12:bios12110967. [PMID: 36354477 PMCID: PMC9688019 DOI: 10.3390/bios12110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
This article compares the applications of traditional gold and silver-based SERS substrates and less conventional (Pd/Pt, Cu, Al, Si-based) SERS substrates, focusing on sensing, biosensing, and clinical analysis. In recent decades plethora of new biosensing and clinical SERS applications have fueled the search for more cost-effective, scalable, and stable substrates since traditional gold and silver-based substrates are quite expensive, prone to corrosion, contamination and non-specific binding, particularly by S-containing compounds. Following that, we briefly described our experimental experience with Si and Al-based SERS substrates and systematically analyzed the literature on SERS on substrate materials such as Pd/Pt, Cu, Al, and Si. We tabulated and discussed figures of merit such as enhancement factor (EF) and limit of detection (LOD) from analytical applications of these substrates. The results of the comparison showed that Pd/Pt substrates are not practical due to their high cost; Cu-based substrates are less stable and produce lower signal enhancement. Si and Al-based substrates showed promising results, particularly in combination with gold and silver nanostructures since they could produce comparable EFs and LODs as conventional substrates. In addition, their stability and relatively low cost make them viable alternatives for gold and silver-based substrates. Finally, this review highlighted and compared the clinical performance of non-traditional SERS substrates and traditional gold and silver SERS substrates. We discovered that if we take the average sensitivity, specificity, and accuracy of clinical SERS assays reported in the literature, those parameters, particularly accuracy (93-94%), are similar for SERS bioassays on AgNP@Al, Si-based, Au-based, and Ag-based substrates. We hope that this review will encourage research into SERS biosensing on aluminum, silicon, and some other substrates. These Al and Si based substrates may respond efficiently to the major challenges to the SERS practical application. For instance, they may be not only less expensive, e.g., Al foil, but also in some cases more selective and sometimes more reproducible, when compared to gold-only or silver-only based SERS substrates. Overall, it may result in a greater diversity of applicable SERS substrates, allowing for better optimization and selection of the SERS substrate for a specific sensing/biosensing or clinical application.
Collapse
|
4
|
Fabrication of silver-coated PET track-etched membrane as SERS platform for detection of acetaminophen. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04900-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Palermo G, Rippa M, Conti Y, Vestri A, Castagna R, Fusco G, Suffredini E, Zhou J, Zyss J, De Luca A, Petti L. Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43715-43725. [PMID: 34469103 PMCID: PMC8447193 DOI: 10.1021/acsami.1c12525] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An inverted pyramidal metasurface was designed, fabricated, and studied at the nanoscale level for the development of a label-free pathogen detection on a chip platform that merges nanotechnology and surface-enhanced Raman scattering (SERS). Based on the integration and synergy of these ingredients, a virus immunoassay was proposed as a relevant proof of concept for very sensitive detection of hepatitis A virus, for the first time to our best knowledge, in a very small volume (2 μL), without complex signal amplification, allowing to detect a minimal virus concentration of 13 pg/mL. The proposed work aims to develop a high-flux and high-accuracy surface-enhanced Raman spectroscopy (SERS) nanobiosensor for the detection of pathogens to provide an effective method for early and easy water monitoring, which can be fast and convenient.
Collapse
Affiliation(s)
- Giovanna Palermo
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
- CNR
NANOTEC—Istituto di Nanotecnologia, UOS Cosenza, 87036 Rende, CS, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Ylli Conti
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Riccardo Castagna
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Giovanna Fusco
- Department
of Food Safety, Nutrition and Veterinary
Public Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Elisabetta Suffredini
- Department
of Food Safety, Nutrition and Veterinary
Public Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Jun Zhou
- Institute
of Photonics, Faculty of Science, Ningbo University, 315211 Ningbo, People’s Republic of China
| | - Joseph Zyss
- LUMIN Laboratory
(CNRS), Institut d’Alembert, Universitè Paris Saclay, 91190 Gif sur Yvette, France
| | - Antonio De Luca
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
- CNR
NANOTEC—Istituto di Nanotecnologia, UOS Cosenza, 87036 Rende, CS, Italy
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| |
Collapse
|
6
|
Luo X, Kang T, Zhu J, Wu P, Cai C. Sensitivity-Improved SERS Detection of Methyltransferase Assisted by Plasmonically Engineered Nanoholes Array and Hybridization Chain Reaction. ACS Sens 2020; 5:3639-3648. [PMID: 33147006 DOI: 10.1021/acssensors.0c02016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Detection of methyltransferase (MTase) activity is of great significance in methylation-related disease diagnosis and drug screening. Herein, we present a dual-amplification sensing strategy that is assisted by plasmonically enhanced Raman intensity at engineered nanoholes array, along with signal amplification by the hybridization chain reaction (HCR) for the ultrasensitive detection of M.SssI MTase activity and inhibitor screening. An engineered surface-enhanced Raman scattering (SERS) substrate, namely, a structured nanoholes array (NHA) with wavelength-matched surface plasmon resonance (SPR) at the wavelength of laser excitation (785 nm), was rationally designed through finite-difference time-domain (FDTD) simulations, precisely fabricated through master-assisted replication, and then used as a sensing platform. Uniform and intense SERS signals were achieved by turning on the plasmonic enhancement under the excitation of SPR. Probe DNA was designed to hybridize with target DNA (a BRCA1 gene fragment), and the formed dsDNA with the recognition site of M.SssI was assembled on the NHA. In the presence of M.SssI, the HCR process was triggered upon adding DNAs labeled with the Raman reporter Cy5, leading to an amplified SERS signal of Cy5. The intensity of Cy5 increases with increasing M.SssI activity, which establishes the basis of the assay for M.SssI. The developed assay displays an ultrasensitivity that has a broad linear range (0.002-200 U/mL) and a low detection limit (2 × 10-4 U/mL), which is superior to that of the reported SERS-based detection methods. Moreover, it can selectively detect M.SssI in human serum samples and evaluate the efficiency of M.SssI inhibitors.
Collapse
Affiliation(s)
- Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Tuli Kang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Jingtian Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| |
Collapse
|
7
|
Yang M, Zou Q, Chen D, Hu J, Lin Q, Zhu H. Factors of Importance for Arsenic Migration/Separation under Coffee-Ring Effect on Silver Nanofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1662-1670. [PMID: 32005052 DOI: 10.1021/acs.langmuir.9b03672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been recognized as a promising analytical technique owing to its merit of nondestructive and fast detection capabilities. However, SERS usually suffers signal interferences from different analytes or a complicated matrix. Separation is an effective approach to solve the signal interference in the application of SERS. It was proposed that two concentric coffee rings could serve as a simple separation platform; however, there are still many questions to be answered for in-depth understanding. In this study, critical parameters during the formation of two concentric coffee rings are characterized for a better understanding of this phenomenon, including surface tension, surface morphology, and surface energy. Two arsenicals, including arsenate (AsV) and cacodylic acid (DMAV), are chosen to study the arsenicals' separation/migration mechanism due to their significant difference in chemical properties. In the typical coffee ring, these two arsenicals have signal interference and only DMAV is detected via SERS; however, they are detected along the radius of the two concentric coffee rings. The distribution of arsenicals on the two concentric coffee rings is further verified by the chromatographic method. Under this simple platform, interactions between the arsenicals and the surface of the silver nanofilm are pivotal to their migration/separation. By surface modification of silver nanofilm with small molecules, the surface polarity and surface ζ potential are manipulated. The signal dynamics of these two arsenicals are studied on these modified silver nanofilms. It is clear that the electrostatic interaction plays a more important role than the polarity in the arsenicals' migration. This study reveals the mechanism of small molecule migration/separation in the two concentric coffee rings and provides insights for future study of employing this simple platform.
Collapse
Affiliation(s)
- Mingwei Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
- Xiamen Institute of Rare-earth Materials , Haixi Institutes, Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| | - Qilin Zou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
- Xiamen Institute of Rare-earth Materials , Haixi Institutes, Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| | - Dejian Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
- Xiamen Institute of Rare-earth Materials , Haixi Institutes, Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| | - Jie Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
- Xiamen Institute of Rare-earth Materials , Haixi Institutes, Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| | - Qinghuai Lin
- Amoy Institute of Technovation , Xiamen , Fujian 361021 , China
| | - Haomiao Zhu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
- Xiamen Institute of Rare-earth Materials , Haixi Institutes, Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| |
Collapse
|
8
|
Mussel-inspired immobilization of silver nanoparticles toward sponge for rapid swabbing extraction and SERS detection of trace inorganic explosives. Talanta 2019; 204:189-197. [PMID: 31357281 DOI: 10.1016/j.talanta.2019.05.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
It is fairly crucial to detect inorganic explosives through a sensitive and fast method in the field of public safety, nevertheless, the high non-volatility and stability characteristics severely confine their accurate on-site detection from a real-world surface. In this work, an efficient, simple and cost effective method was developed to fabricate uniform silver nanoparticles (AgNPs) immobilized on polyurethane (PU) sponge through the in-situ reduction of polydopamine (PDA) based on mussel-inspired surface chemistry, in virtue of a large quantities catechol and amine functional groups. The formed PU@PDA@Ag sponges exhibited high SERS sensitivity, uniformity and reproducibility to 4-Aminothiophenol (4-ATP) probe molecule, and the limit of detection was calculated to be about 0.02 nmol L-1. Moreover, these PU@PDA@Ag sponges could be served as excellent flexible SERS substrates to rapidly detect trace inorganic explosives with high collection efficiency via swabbing extraction. The detection limit for perchlorates (ClO4-), chlorates (ClO3-) and nitrates (NO3-) were approximately down to 0.13, 0.13 and 0.11 ng respectively. These flexible substrates not only could drastically increase the sample collection efficiency, but also enhance analytical sensitivity and reliability for inorganic explosive, and would have a great potential application in the future homeland security fields.
Collapse
|
9
|
Liyanage T, Rael A, Shaffer S, Zaidi S, Goodpaster JV, Sardar R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 2018; 143:2012-2022. [PMID: 29431838 DOI: 10.1039/c8an00008e] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apart from high sensitivity and selectivity of surface-enhanced Raman scattering (SERS)-based trace explosive detection, efficient sampling of explosive residue from real world surfaces is very important for homeland security applications. Herein, we demonstrate an entirely new SERS nanosensor fabrication approach. The SERS nanosensor was prepared by self-assembling chemically synthesized gold triangular nanoprisms (Au TNPs), which we show display strong electromagnetic field enhancements at the sharp tips and edges, onto a pressure-sensitive flexible adhesive film. Our SERS nanosensor provides excellent SERS activity (enhancement factor = ∼6.0 × 106) and limit of detection (as low as 56 parts-per-quadrillions) with high selectivity by chemometric analyses among three commonly military high explosives (TNT, RDX, and PETN). Furthermore, the SERS nanosensors present excellent reproducibility (<4.0% relative standard deviation at 1.0 μM concentration) and unprecedentedly high stability with a "shelf life" of at least 5 months. Finally, TNT and PETN were analyzed and quantified by transferring solid explosive residues from fingerprints left on solid surfaces to the SERS nanosensor. Taken together, the demonstrated sensitivity, selectivity, and reliability of the measurements as well as with the excellent shelf life of our SERS nanosensors obviate the need for complicated sample processing steps required for other analytical techniques, and thus these nanosensors have tremendous potential not only in the field of measurement science but also for homeland security applications to combat acts of terror and military threats.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Raziman TV, Duenas JA, Milne WI, Martin OJF, Dawson P. Origin of enhancement in Raman scattering from Ag-dressed carbon-nanotube antennas: experiment and modelling. Phys Chem Chem Phys 2018; 20:5827-5840. [PMID: 29412206 DOI: 10.1039/c7cp06416k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The D- and G-band Raman signals from random arrays of vertically aligned, multi-walled carbon nanotubes are significantly enhanced (up to ∼14×) while the signal from the underlying Si substrate is simultaneously attenuated (up to ∼6×) when the nanotubes are dressed, either capped or coated, with Ag. These Ag-induced counter-changes originate with the difference in geometry of the nanotubes and planar Si substrate and contrast in the Ag depositions on the substrate (essentially thin film) and the nanotube (nano-particulate). The surface integral equation technique is used to perform detailed modelling of the electromagnetic response of the system in a computationally efficient manner. Within the modelling the overall antenna response of the Ag-dressed nanotubes is shown to underpin the main contribution to enhancement of the nanotube Raman signal with hot-spots between the Ag nanoparticles making a subsidiary contribution on account of their relatively weak penetration into the nanotube walls. Although additional hot-spot activity likely accounts for a shortfall in modelling relative to experiment it is nonetheless the case that the significant antenna-driven enhancement stands in marked contrast to the hot-spot dominated enhancement of the Raman spectra from molecules adsorbed on the same Ag-dressed structures. The Ag-dressing procedure for amplifying the nanotube Raman output not only allows for ready characterisation of individual nanotubes, but also evidences a small peak at ∼1150 cm-1 (not visible for the bare, undressed nanotube) which is suggested to be due to the presence of trans-polyacetylene in the structures.
Collapse
Affiliation(s)
- T V Raziman
- Nanophotonics and Metrology Laboratory, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Sol CWO, Papakonstantinou I, Parkin IP. Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. NANOSCALE 2017; 9:16459-16466. [PMID: 29063930 DOI: 10.1039/c7nr05057g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been widely utilised as a sensitive analytical technique for the detection of trace levels of organic molecules. The detection of organic compounds in the gas phase is particularly challenging due to the low concentration of adsorbed molecules on the surface of the SERS substrate. This is particularly the case for explosive materials, which typically have very low vapour pressures, limiting the use of SERS for their identification. In this work, silver nanocubes (AgNCs) were developed as a highly sensitive SERS substrate with very low limit-of-detection (LOD) for explosive materials down to the femtomolar (10-15 M) range. Unlike typical gold-based nanostructures, the AgNCs were found suitable for the detection of both aromatic and aliphatic explosives, enabling detection with high specificity at low concentration. SERS studies were first carried out using a model analyte, Rhodamine-6G (Rh-6G), as a probe molecule. The SERS enhancement factor was estimated as 8.71 × 1010 in this case. Further studies involved femtomolar concentrations of 2,4-dinitrotoluene (DNT) and nanomolar concentrations of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), as well as vapour phase detection of DNT.
Collapse
Affiliation(s)
- Sultan Ben-Jaber
- Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| | - William J Peveler
- Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| | - Raul Quesada-Cabrera
- Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| | - Christian W O Sol
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Ioannis Papakonstantinou
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Ivan P Parkin
- Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| |
Collapse
|
12
|
Ma L, Zhang Z, Huang H. Design of Ag nanorods for sensitivity and thermal stability of surface-enhanced Raman scattering. NANOTECHNOLOGY 2017; 28:405602. [PMID: 28786818 DOI: 10.1088/1361-6528/aa84f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The technology of surface-enhanced Raman scattering (SERS) has found many applications and may find more if it can possess both sensitivity and thermal stability. This paper reports a rational design of Ag nanorods to simultaneously achieve two competing goals: the sensitivity and the thermal stability of SERS substrates. The Ag nanorods are designed and synthesized using physical vapor deposition under the condition of glancing angle incidence. The working pressure of the vacuum chamber is controlled so the mean free path of depositing atoms is comparable to the dimension of the chamber, so as to grow Ag nanorods with small diameter, and small but clear separation for optimal SERS sensitivity. Such Ag nanorods are further capped with Al2O3 on their top surfaces to reduce the diffusion-induced coarsening at high temperatures, and thereby to improve the thermal stability for SERS detections. Meanwhile, since the side surfaces of Ag nanorods are not coated with oxides in this approach, the SERS sensitivity is largely preserved while good thermal stability is achieved.
Collapse
Affiliation(s)
- Lingwei Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China. Department of Mechanical and Industrial Engineering, Northeastern University, United States of America
| | | | | |
Collapse
|
13
|
Versatile gold based SERS substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Yang W, Si KJ, Guo P, Dong D, Sikdar D, Premaratne M, Cheng W. Self-Assembled Plasmonic Pyramids from Anisotropic Nanoparticles for High-Efficient SERS. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0033-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Lee BS, Lin DZ, Yen TJ. A Low-cost, Highly-stable Surface Enhanced Raman Scattering Substrate by Si Nanowire Arrays Decorated with Au Nanoparticles and Au Backplate. Sci Rep 2017; 7:4604. [PMID: 28676628 PMCID: PMC5496898 DOI: 10.1038/s41598-017-04062-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
We present a facile and cost-effective manner to fabricate a highly sensitive and stable surface enhanced Raman scattering (SERS) substrate. First, a silicon nanowire array (SiNWA) is tailored by metal-assisted chemical etching (MaCE) method as a scaffold of the desired SERS substrate. Next, with an oblique angle deposition (OAD) method, optimized gold nanoparticles (AuNPs) are successfully decorated on the surface of the SiNWA. These AuNPs enable a strong localized electric field, providing abundant hot spots to intensify the Raman signals from the targeting molecules. By applying a well-established methodology, Taguchi method, which is invented for designing experiments, the optimized combination of parameters is obtained efficiently. The experimental results are also confirmed by finite-difference time-domain (FDTD) simulation calculations. Besides, a gold metal backplate (AuMBP) is applied to further enhancing the Raman signal intensity. Based on this developed SERS substrate, we demonstrated an enhancement factor (EF) of 1.78 × 106 and a coefficient of variation (CV) of 4.2%. Both EF and CV indicate a highly stable property and the optimized SERS substrate substantially outperform the commercial product. In the end, we also demonstrate a quantitative measurement on practical application of detecting malachite green (MG) with concentration from 10 nM to 100 μM.
Collapse
Affiliation(s)
- Bi-Shen Lee
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ding-Zheng Lin
- Department of Material and Chemical Research Laboratories, Industrial technology and research institute (ITRI), Hsinchu, Taiwan
| | - Ta-Jen Yen
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
16
|
Fu Y, Kuppe C, Valev VK, Fu H, Zhang L, Chen J. Surface-Enhanced Raman Spectroscopy: A Facile and Rapid Method for the Chemical Component Study of Individual Atmospheric Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6260-6267. [PMID: 28498657 DOI: 10.1021/acs.est.6b05910] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A simple and rapid method for detecting chemical components of individual aerosol particles on Klarite substrate with surface-enhanced Raman spectroscopy (SERS) is described. For both single simulated aerosol particles and ambient atmospheric particles, this new analytical method promotes the enhancement factor of the Raman signal. The spectra of ammonium sulfate and naphthalene particles at the microscopic level are enhanced by a factor of 6 and therefore greatly improve the detection of the chemical composition of an individual aerosol particle. When aerosol particles are found over a microscopic domain, a set of Raman spectra with chemical information can be obtained via SERS mapping. The maps illustrate the distribution of organic or inorganic species on the SERS substrate. This constitutes a facile and rapid method to study aerosol particles. This new method allows the analysis of chemical composition in single aerosol particles, demonstrating the power of SERS to probe the ambient atmospheric particles and to study the formation of aerosol particles.
Collapse
Affiliation(s)
- Yu Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, People's Republic of China
| | - Christian Kuppe
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| | - Ventsislav K Valev
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, People's Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, People's Republic of China
| |
Collapse
|
17
|
Bu Y, Liu K, Hu Y, Kaneti YV, Brioude A, Jiang X, Wang H, Yu A. Bilayer composites consisting of gold nanorods and titanium dioxide as highly sensitive and self-cleaning SERS substrates. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2301-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Yuan Y, Panwar N, Yap SHK, Wu Q, Zeng S, Xu J, Tjin SC, Song J, Qu J, Yong KT. SERS-based ultrasensitive sensing platform: An insight into design and practical applications. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Farrell ME, Strobbia P, Pellegrino PM, Cullum B. Surface regeneration and signal increase in surface-enhanced Raman scattering substrates. APPLIED OPTICS 2017; 56:B198-B213. [PMID: 28157898 DOI: 10.1364/ao.56.00b198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Regenerated surface-enhanced Raman scattering (SERS) substrates allow users the ability to not only reuse sensing surfaces, but also tailor them to the sensing application needs (wavelength of the available laser, plasmon band matching). In this review, we discuss the development of SERS substrates for response to emerging threats and some of our collaborative efforts to improve on the use of commercially available substrate surfaces. Thus, we are able to extend the use of these substrates to broader Army needs (like emerging threat response).
Collapse
|
20
|
Yan Y, Zhang J, Xu P, Miao P. Fabrication of arrayed triangular micro-cavities for SERS substrates using the force modulated indention process. RSC Adv 2017. [DOI: 10.1039/c6ra28875h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Based on the tip-based continuous indentation process, a novel method for the fabrication of periodic arrayed triangular micro-cavities on copper (Cu) surface is presented as SERS substrates.
Collapse
Affiliation(s)
- Yongda Yan
- The State Key Laboratory of Robotics and Systems
- Robotics Institute
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Jingran Zhang
- The State Key Laboratory of Robotics and Systems
- Robotics Institute
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Ping Xu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Peng Miao
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
21
|
Muehlethaler C, Leona M, Lombardi JR. Review of Surface Enhanced Raman Scattering Applications in Forensic Science. Anal Chem 2015; 88:152-69. [DOI: 10.1021/acs.analchem.5b04131] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cyril Muehlethaler
- The Metropolitan Museum of Art, Department of
Scientific Research, New York, New York 10028, United States
- Department
of Chemistry, City College of New York and Graduate Center of the City University of New York, New York, New York 10031, United States
| | - Marco Leona
- The Metropolitan Museum of Art, Department of
Scientific Research, New York, New York 10028, United States
| | - John R. Lombardi
- Department
of Chemistry, City College of New York and Graduate Center of the City University of New York, New York, New York 10031, United States
| |
Collapse
|
22
|
Advances in explosives analysis--part II: photon and neutron methods. Anal Bioanal Chem 2015; 408:49-65. [PMID: 26446898 DOI: 10.1007/s00216-015-9043-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023]
Abstract
The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245-246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. This part, Part II, will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.
Collapse
|
23
|
Hakonen A, Andersson PO, Stenbæk Schmidt M, Rindzevicius T, Käll M. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta 2015; 893:1-13. [PMID: 26398417 DOI: 10.1016/j.aca.2015.04.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 01/18/2023]
Abstract
Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational "fingerprinting" of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes.
Collapse
Affiliation(s)
- Aron Hakonen
- Division of Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Per Ola Andersson
- Swedish Defense Research Agency FOI, Division of CBRN Defence & Security, SE-90182 Umeå, Sweden
| | - Michael Stenbæk Schmidt
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 East, 2800 Kgs. Lyngby, Denmark
| | - Tomas Rindzevicius
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 East, 2800 Kgs. Lyngby, Denmark
| | - Mikael Käll
- Division of Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
24
|
Botti S, Laurenzi S, Mezi L, Rufoloni A, Santonicola MG. Surface-enhanced Raman spectroscopy characterisation of functionalised multi-walled carbon nanotubes. Phys Chem Chem Phys 2015; 17:21373-80. [DOI: 10.1039/c4cp05075d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By applying SERS, we recorded spectral features from functional molecules bound to the nanotube surface, which are otherwise very difficult to see.
Collapse
Affiliation(s)
- Sabina Botti
- Application of Radiations Technical Unit
- ENEA
- UTAPRAD-MNF
- Frascati
- Italy
| | - Susanna Laurenzi
- Department of Astronautics
- Electrical and Energy Engineering
- Sapienza University of Rome
- 00138 Rome
- Italy
| | - Luca Mezi
- Application of Radiations Technical Unit
- ENEA
- UTAPRAD-MNF
- Frascati
- Italy
| | | | - M. Gabriella Santonicola
- Department of Chemical Materials Environmental Engineering
- Sapienza University of Rome
- 00161 Rome
- Italy
| |
Collapse
|