1
|
Jari Y, Najid N, Necibi MC, Gourich B, Vial C, Elhalil A, Kaur P, Mohdeb I, Park Y, Hwang Y, Garcia AR, Roche N, El Midaoui A. A comprehensive review on TiO 2-based heterogeneous photocatalytic technologies for emerging pollutants removal from water and wastewater: From engineering aspects to modeling approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123703. [PMID: 39706003 DOI: 10.1016/j.jenvman.2024.123703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
The increasing presence of emerging pollutants (EPs) in water poses significant environmental and health risks, necessitating effective treatment solutions. Originating from industrial, agricultural, and domestic sources, these contaminants threaten ecological and public health, underscoring the urgent need for innovative and efficient treatment methods. TiO2-based semiconductor photocatalysts have emerged as a promising approach for the degradation of EPs, leveraging their unique band structures and heterojunction schemes. However, few studies have examined the synergistic effects of operating conditions on these contaminants, representing a key knowledge gap in the field. This review addresses this gap by exploring recent trends in TiO2-driven heterogeneous photocatalysis for water and wastewater treatment, with an emphasis on photoreactor setups and configurations. Challenges in scaling up these photoreactors are also discussed. Furthermore, Machine Learning (ML) models play a crucial role in developing predictive frameworks for complex processes, highlighting intricate temporal dynamics essential for understanding EPs behavior. This capability integrates seamlessly with Computational Fluid Dynamics (CFD) modeling, which is also addressed in this review. Together, these approaches illustrate how CFD can simulate the degradation of EPs by effectively coupling chemical kinetics, radiative transfer, and hydrodynamics in both suspended and immobilized photocatalysts. By elucidating the synergy between ML and CFD models, this study offers new insights into overcoming traditional limitations in photocatalytic process design and optimizing operating conditions. Finally, this review presents recommendations for future directions and insights on optimizing and modeling photocatalytic processes.
Collapse
Affiliation(s)
- Yassine Jari
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Noura Najid
- Laboratory of Process and Environmental Engineering, Higher School of Technology, Hassan II University of Casablanca, Morocco
| | - Mohamed Chaker Necibi
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Bouchaib Gourich
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco; Laboratory of Process and Environmental Engineering, Higher School of Technology, Hassan II University of Casablanca, Morocco.
| | - Christophe Vial
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Alaâeddine Elhalil
- Laboratory of Process and Environmental Engineering, Higher School of Technology, Hassan II University of Casablanca, Morocco
| | - Parminder Kaur
- Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| | - Idriss Mohdeb
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Yuri Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Alejandro Ruiz Garcia
- Department of Electronic Engineering and Automation, University of Las Palmas de Gran Canaria, Edificio de Ingenierías, Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Spain
| | - Nicolas Roche
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco; Aix-Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, CEDEX, 13454, Aix-en-Provence, France
| | - Azzeddine El Midaoui
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
2
|
Xu WL, Wang YJ, Wang YT, Li JG, Zeng YN, Guo HW, Liu H, Dong KL, Zhang LY. Application and innovation of artificial intelligence models in wastewater treatment. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104426. [PMID: 39270601 DOI: 10.1016/j.jconhyd.2024.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
At present, as the problem of water shortage and pollution is growing serious, it is particularly important to understand the recycling and treatment of wastewater. Artificial intelligence (AI) technology is characterized by reliable mapping of nonlinear behaviors between input and output of experimental data, and thus single/integrated AI model algorithms for predicting different pollutants or water quality parameters have become a popular method for simulating the process of wastewater treatment. Many AI models have successfully predicted the removal effects of pollutants in different wastewater treatment processes. Therefore, this paper reviews the applications of artificial intelligence technologies such as artificial neural networks (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Meanwhile, this review mainly introduces the effectiveness and limitations of artificial intelligence technology in predicting different pollutants (dyes, heavy metal ions, antibiotics, etc.) and different water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) in wastewater treatment process, involving single AI model and integrated AI model. Finally, the problems that need further research together with challenges ahead in the application of artificial intelligence models in the field of environment are discussed and presented.
Collapse
Affiliation(s)
- Wen-Long Xu
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Ya-Jun Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Yi-Tong Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China.
| | - Jun-Guo Li
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Ya-Nan Zeng
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Hua-Wei Guo
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Huan Liu
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Kai-Li Dong
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Liang-Yi Zhang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| |
Collapse
|
3
|
Li X, Bai Y, Shi X, Chang S, Tian S, He M, Su N, Luo P, Pu W, Pan Z. A review of advanced oxidation process towards organic pollutants and its potential application in fracturing flowback fluid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45643-45676. [PMID: 36823463 DOI: 10.1007/s11356-023-25191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
Fracturing flowback fluid (FFF) including various kinds of organic pollutants that do harms to people and new treatments are urgently needed. Advanced oxidation processes (AOPs) are suitable methods in consideration with molecular weight, removal cost and efficiency. Here, we summarize the recent studies about AOP treatments towards organic pollutants and discuss the application prospects in treatment of FFF. Immobilization and loading methods of catalysts, evaluation method of degradation of FFF, and continuous treatment process flow are discussed in this review. In conclusion, further studies are urgently needed in aspects of catalyst loading methods, macromolecule organic evaluation methods, industrial process, and pathways of macromolecule organics' decomposition.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Yang Bai
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xian Shi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuang Chang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Shuting Tian
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Meiming He
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Na Su
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Pingya Luo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wanfen Pu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China.
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Zhicheng Pan
- National Postdoctoral Research Station, Haitian Water Group Co., Ltd, Chengdu, 610041, China
| |
Collapse
|
4
|
Alegbeleye O, Daramola OB, Adetunji AT, Ore OT, Ayantunji YJ, Omole RK, Ajagbe D, Adekoya SO. Efficient removal of antibiotics from water resources is a public health priority: a critical assessment of the efficacy of some remediation strategies for antibiotics in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56948-57020. [PMID: 35716301 DOI: 10.1007/s11356-022-21252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
This review discusses the fundamental principles and mechanism of antibiotic removal from water of some commonly applied treatment techniques including chlorination, ozonation, UV-irradiation, Fenton processes, photocatalysis, electrochemical-oxidation, plasma, biochar, anaerobicdigestion, activated carbon and nanomaterials. Some experimental shortfalls identified by researchers such as certain characteristics of degradation agent applied and the strategies explored to override the identified limitations are briefly discussed. Depending on interactions of a range of factors including the type of antibiotic compound, operational parameters applied such as pH, temperature and treatment time, among other factors, all reviewed techniques can eliminate or reduce the levels of antibiotic compounds in water to varying extents. Some of the reviewed techniques such as anaerobic digestion generally require longer treatment times (up to 360, 193 and 170 days, according to some studies), while others such as photocatalysis achieved degradation within short contact time (within a minimum of 30, but up to 60, 240, 300 and 1880 minutes, in some cases). For some treatment techniques such as ozonation and Fenton, it is apparent that subjecting compounds to longer treatment times may improve elimination efficiency, whereas for some other techniques such as nanotechnology, application of longer treatment time generally meant comparatively minimal elimination efficiency. Based on the findings of experimental studies summarized, it is apparent that operational parameters such as pH and treatment time, while critical, do not exert sole or primary influence on the elimination percentage(s) achieved. Elimination efficiency achieved rather seems to be due more to the force of a combination of several factors.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | | | - Adewole Tomiwa Adetunji
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington, Western Cape, 7654, South Africa
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, P.M.B. 022, Nigeria
| | - Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | - Damilare Ajagbe
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Oklahoma, USA
| | | |
Collapse
|
5
|
Rational fabrication flowerlike BiOBr with oxygen vacancy for enhancing photocatalytic performance to remove gaseous mercury. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Yang H, Hu S, Zhao H, Luo X, Liu Y, Deng C, Yu Y, Hu T, Shan S, Zhi Y, Su H, Jiang L. High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126046. [PMID: 34492891 DOI: 10.1016/j.jhazmat.2021.126046] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 05/26/2023]
Abstract
Efficient removal of antibiotics from aqueous solution is of fundamental importance due to the increasingly severe antibiotic-related pollution. Herein, a high-performance Fe-ZIF-8-500 adsorbent was synthesized by Fe-doping strategy and subsequent activation with high-temperature. In order to evaluate the feasibility of Fe-ZIF-8-500 as an adsorbent for tetracycline (TC) removal, the adsorption properties of Fe-ZIF-8-500 were systematically explored. The results showed that the Fe-ZIF-8-500 exhibited ultrahigh adsorption capacity for TC with a record-high value of 867 mg g-1. Additionally, the adsorption kinetics and isotherms for TC onto the Fe-ZIF-8-500 can be well-fitted by the pseudo-second-order kinetics model and the Freundlich model, respectively. The ultrahigh adsorption capacity of Fe-ZIF-8-500 can be explained by the synergistic effect of multi-affinities, i.e., surface complexation, electrostatic attraction, π-π interaction and hydrogen bonding. After being used for four cycles the adsorption capacity of Fe-ZIF-8-500 remains a high level, demonstrating its outstanding reusability. The ultrahigh adsorption capacity, excellent reusability, satisfactory water stability and easy-preparation nature of Fe-ZIF-8-500 highlight its bright prospect for removing tetracycline pollutant from wastewater.
Collapse
Affiliation(s)
- Huan Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shuai Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hui Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiaofei Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chengfei Deng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yulan Yu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hongying Su
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lihong Jiang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
7
|
Artificial neural network modeling of the hexavalent uranium sorption onto chemically activated bentonite. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04541-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Vasseghian Y, Berkani M, Almomani F, Dragoi EN. Data mining for pesticide decontamination using heterogeneous photocatalytic processes. CHEMOSPHERE 2021; 270:129449. [PMID: 33418218 DOI: 10.1016/j.chemosphere.2020.129449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Pesticides are chemical compounds used to kill pests and weeds. Due to their nature, pesticides are potentially toxic to many organisms, including humans. Among the various methods used to decontaminate pesticides from the environment, the heterogeneous photocatalytic process is one of the most effective approaches. This study focuses on artificial intelligence (AI) techniques used to generate optimum predictive models for pesticide decontamination processes using heterogeneous photocatalytic processes. In the present study, 537 valid cases from 45 articles from January 2000 to April 2020 were filtered based on their content collected and analyzed. Based on cross-industry standard process (CRISP) methodology, a set of four classifiers were applied: Decision Trees (DT), Bayesian Network (BN), Support Vector Machines (SVM), and Feed Forward Multilayer Perceptron Neural Networks (MLP). To compare the accuracy of the selected algorithms, accuracy, and sensitivity criteria were applied. After the final analysis, the DT classification algorithm with seven factors of prediction, the accuracy of 91.06%, and sensitivity of 80.32% was selected as the optimal predictor model.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam.
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania
| |
Collapse
|
9
|
Yousefi SR, Sobhani A, Alshamsi HA, Salavati-Niasari M. Green sonochemical synthesis of BaDy 2NiO 5/Dy 2O 3 and BaDy 2NiO 5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv 2021; 11:11500-11512. [PMID: 35423650 PMCID: PMC8698594 DOI: 10.1039/d0ra10288a] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
The present work reports the sonochemical synthesis of DBNO NC (dysprosium nickelate nanocomposite) using metal nitrates and core almond as a capping agent. In addition, the effects of the power of ultrasound irradiation were investigated. The BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites were synthesized with sonication powers of 50 and 30 W, respectively. The agglomerated nanoparticles were obtained using different sonication powers, including 15, 30, and 50 W. The results showed that upon increasing the sonication power, the particle size decreased. After characterization, the optical, electrical, magnetic, and photocatalytic properties of the NC were studied. The nanocomposites showed an antiferromagnetic behavior. In this study, the photocatalytic degradations of two dyes, AR14 and AB92, were investigated in the presence of DBNO NC. Furthermore, the effects of the amount of photocatalyst, the concentration of the dye solution, the type of organic dye, and light irradiation on the photocatalytic activity of the nanocomposite were studied. The results showed that with an increasing amount of catalyst and decreasing concentration of dye, the photocatalytic activity of the nanocomposite was increased. This activity for the degradation of AR14 is higher than that of AB92. Both AR14 and AB92 dyes show higher photocatalytic degradation under UV irradiation than under Vis irradiation.
Collapse
Affiliation(s)
- Seyede Raheleh Yousefi
- Institute of Nano Science and Nano Technology, University of Kashan Kashan P. O. Box. 87317-51167 Islamic Republic of Iran +98 31 55913201 +98 31 55912383
| | - Azam Sobhani
- Department of Chemistry, Kosar University of Bojnord Bojnord Islamic Republic of Iran
| | - Hassan Abbas Alshamsi
- Department of Chemistry, College of Education, University of Al-Qadisiyah Diwaniya 1753 Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan Kashan P. O. Box. 87317-51167 Islamic Republic of Iran +98 31 55913201 +98 31 55912383
| |
Collapse
|
10
|
Baaloudj O, Nasrallah N, Kebir M, Guedioura B, Amrane A, Nguyen-Tri P, Nanda S, Assadi AA. Artificial neural network modeling of cefixime photodegradation by synthesized CoBi 2O 4 nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15436-15452. [PMID: 33237561 DOI: 10.1007/s11356-020-11716-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
CoBi2O4 (CBO) nanoparticles were synthesized by sol-gel method using polyvinylpyrrolidone (PVP) as a complexing reagent. For a single phase with the spinel structure, the formed gel was dried and calcined at four temperatures stages. Various methods were used to identify and characterize the obtained spinel, such as X-ray diffraction (XRD), scanning electron micrograph (SEM-EDX), transmission electron microscope (TEM), Fourier transform infrared (FT-IR), X-ray fluorescence (XRF), Raman, and UV-Vis spectroscopies. The photocatalytic activity of CBO was examined for the degradation of a pharmaceutical product cefixime (CFX). Furthermore, for the prediction of the CFX degradation rate, an artificial neural network model was used. The network was trained using the experimental data obtained at different pH with different CBO doses and initial CFX concentrations. To optimize the network, various algorithms and transfer functions for the hidden layer were tested. By calculating the mean square error (MSE), 13 neurons were found to be the optimal number of neurons and produced the highest coefficient of correlation R2 of 99.6%. The relative significance of the input variables was calculated, and the most impacting input was proved to be the initial CFX concentration. The effects of some scavenging agents were also studied. The results confirmed the dominant role of hydroxyl radical OH• in the degradation process. With the novel CoBi2O4/ZnO hetero-system, the photocatalytic performance has been enhanced, giving an 80% degradation yield of CFX (10 mg/L) at neutral pH in only 3 h.
Collapse
Affiliation(s)
- Oussama Baaloudj
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, Algiers, Algeria
| | - Noureddine Nasrallah
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, Algiers, Algeria
| | - Mohamed Kebir
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, Algiers, Algeria
- Research Unit on Analysis and Technological Development in Environment (URADTE-CRAPC), BP 384, Bou-Ismail Tipaza, Algeria
| | | | - Abdeltif Amrane
- Univ Rennes - ENSCR / UMR CNRS 6226 "Chemical Sciences of Rennes" ENSCR, Campus de Beaulieu, 11, allée de Beaulieu - CS 50837 - 35708 Rennes, 35708, Rennes, France
| | - Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, Québec, G9A 5H7, Canada.
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada
| | - Aymen Amin Assadi
- Univ Rennes - ENSCR / UMR CNRS 6226 "Chemical Sciences of Rennes" ENSCR, Campus de Beaulieu, 11, allée de Beaulieu - CS 50837 - 35708 Rennes, 35708, Rennes, France.
| |
Collapse
|
11
|
|
12
|
Qi S, Liu X, Ma N, Xu H. Construction and photocatalytic properties of WS2/MoS2/BiOCl heterojunction. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Liu H, Yang H, Fan J, Zhou C, Zhang J, Wan Y, Liu Z, Chen J, Wang G, Wang R. The novel p-Co3O4/n-I-Fe2O3 nano hollow spheres with the enhanced photocatalytic activity. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Structural, optical and photocatalytic properties of ZnS spherical/flake nanostructures by sugar-assisted hydrothermal process. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|