1
|
Ni LY, Ding CB, Deng JM, Wu ZW, Zhou Y. Cold Air Plasma Inhibiting Tumor-Like Biological Behavior of Rheumatoid Arthritis Fibroblast-Like Synovial Cells via G2/M Cell Cycle Arrest. Open Access Rheumatol 2024; 16:75-85. [PMID: 38756916 PMCID: PMC11096841 DOI: 10.2147/oarrr.s438536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background Rheumatoid arthritis fibroblast-like synovial cells (RA-FLS) have become the core effector cells for the progression of rheumatoid arthritis due to their "tumor-like cell" characteristics, such as being able to break free from growth restrictions caused by contact inhibition, promoting angiogenesis, invading surrounding tissues, and leading to uncontrolled synovial growth. In recent years, cold air plasma (CAP) has been widely recognized for its clear anticancer effect. Inspired by this, this study investigated the inhibitory effect of CAP on the tumor-like biological behavior of RA-FLS through in vitro experiments. Methods Treatment of RA-FLS with CAP at different time doses (0s, 30s, 60s, 120s). 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay was used to determine the cell viability. Analysis of cell migration and invasion was performed by wound-healing assay, transwell assay and immunofluorescent staining for f-actin, respectively. Flow cytometry technique was used for analysis of cell cycle and determination of reactive oxygen species (ROS). Hoechst staining was used for analysis of cell apoptosis. Protein expression was analyzed by Western blot analysis. Results Molecular and cellular level mechanisms have revealed that CAP blocks RA-FLS in the G2/M phase by increasing intracellular reactive oxygen species (ROS), leading to increased apoptosis and significantly reduced migration and invasion ability of RA-FLS. Conclusion Overall, CAP has significant anti proliferative, migratory, and invasive effects on RA-FLS. This study reveals a new targeted treatment strategy for RA.
Collapse
Affiliation(s)
- Le-Ying Ni
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Department of Rehabilitation Medicine, Maanshan People’s Hospital, Maanshan, Anhui, People’s Republic of China
| | - Cheng-Biao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ji-Min Deng
- Anhui institute for Food and Drug Control, Hefei, People’s Republic of China
| | - Zheng-Wei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People’s Republic of China
- CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, People’s Republic of China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
2
|
Biazar E, Aavani F, Zeinali R, Kheilnezhad B, Taheri K, Yahyaei Z. Delivery Systems for Plasma-reactive Species and their Applications in the Field of Biomedicine. Curr Drug Deliv 2024; 21:1497-1514. [PMID: 38251691 DOI: 10.2174/0115672018268207231124014915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 01/23/2024]
Abstract
Cold atmospheric plasma (CAP) is an ionized matter with potential applications in various medical fields, ranging from wound healing and disinfection to cancer treatment. CAP's clinical usefulness stems from its ability to act as an adjustable source of reactive oxygen and nitrogen species (RONS), which are known to function as pleiotropic signaling agents within cells. Plasma-activated species, such as RONS, have the potential to be consistently and precisely released by carriers, enabling their utilization in a wide array of biomedical applications. Furthermore, understanding the behavior of CAP in different environments, including water, salt solutions, culture medium, hydrogels, and nanoparticles, may lead to new opportunities for maximizing its therapeutic potential. This review article sought to provide a comprehensive and critical analysis of current biomaterial approaches for the targeted delivery of plasma-activated species in the hope to boost therapeutic response and clinical applicability.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Reza Zeinali
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universität Politècnica de Catalunya, Rambla Sant Nebridi, 22, Terrassa 08222, Spain
| | - Bahareh Kheilnezhad
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Kiana Taheri
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Zahra Yahyaei
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
3
|
Zhuang J, Yuan Q, Chen C, Liu G, Zhong Z, Zhu K, Guo J. Nanosecond pulsed cold atmospheric plasma jet suppresses proliferation and migration of human glioblastoma cells via apoptosis promotion and EMT inhibition. Arch Biochem Biophys 2023; 747:109757. [PMID: 37742933 DOI: 10.1016/j.abb.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Glioblastoma (GBM) is one of the most aggressive and challenging cancers to treat. Despite extensive research on dozens of cancer cells, including GBM, the effect of cold atmospheric plasma (CAP) on the invasive migration of GBM cells has received limited attention, and the underlying mechanisms remain poorly understood. This study aims to investigate the potential molecular mechanism of ns-CAPJ in inhibiting the invasive migration of human GBM cells. The findings indicate that ns-CAPJ significantly reduces GBM cell invasion and migration, and induces apoptosis in GBM cells. Further mechanistic studies demonstrate a direct correlation between the suppression of the epithelial-mesenchymal transition (EMT) signaling pathway and ns-CAPJ's inhibitory effect on GBM cell invasion and migration. Additionally, combined with the N-acetyl cysteine (NAC, a ROS inhibitor) assay, we found that the ROS stimulated by the ns-CAPJ plays an important role in suppressing the EMT process. This work is expected to provide new insight into understanding the molecular mechanisms of how ns-CAPJ inhibits the proliferation and migration of human GBM cells.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Qian Yuan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Congcong Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Gengliang Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhengyi Zhong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Kai Zhu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jinsong Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
4
|
Veronico V, Morelli S, Piscioneri A, Gristina R, Casiello M, Favia P, Armenise V, Fracassi F, De Bartolo L, Sardella E. Anticancer Effects of Plasma-Treated Water Solutions from Clinically Approved Infusion Liquids Supplemented with Organic Molecules. ACS OMEGA 2023; 8:33723-33736. [PMID: 37744835 PMCID: PMC10515361 DOI: 10.1021/acsomega.3c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023]
Abstract
Water solutions treated by cold atmospheric plasmas (CAPs) currently stand out in the field of cancer treatment as sources of exogenous blends of reactive oxygen and nitrogen species (RONS). It is well known that the balance of RONS inside both eukaryotic and prokaryotic cells is directly involved in physiological as well as pathological pathways. Also, organic molecules including phenols could exert promising anticancer effects, mostly attributed to their pro-oxidant ability in vitro and in vivo to generate RONS like O2-, H2O2, and a mixture of potentially cytotoxic compounds. By our vision of combining the efficacy of plasma-produced RONS and the use of organic molecules, we could synergistically attack cancer cells; yet, so far, this combination, to the best of our knowledge, has been completely unexplored. In this study, l-tyrosine, an amino acid with a phenolic side chain, is added to a physiological solution, often used in clinical practice (SIII) to be exposed to plasma. The efficacy of the gas plasma-oxidized SIII solution, containing tyrosine, was evaluated on four cancer cell lines selected from among tumors with poor prognosis (SHSY-5Y, MCF-7, HT-29, and SW-480). The aim was to induce tumor toxicity and trigger apoptosis pathways. The results clearly indicate that the plasma-treated water solution (PTWS) reduced cell viability and oxygen uptake due to an increase in intracellular ROS levels and activation of apoptosis pathways in all investigated cancer cells, which may be related to the activation of the mitochondrial-mediated and p-JNK/caspase-3 signaling pathways. This research offers improved knowledge about the physiological mechanisms underlying cancer treatment and a valid method to set up a prompt, adequate, and effective cancer treatment in the clinic.
Collapse
Affiliation(s)
- Valeria Veronico
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Sabrina Morelli
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Antonella Piscioneri
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Roberto Gristina
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Michele Casiello
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Pietro Favia
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Vincenza Armenise
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Francesco Fracassi
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Loredana De Bartolo
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Eloisa Sardella
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| |
Collapse
|
5
|
Moszczyńska J, Roszek K, Wiśniewski M. Non-Thermal Plasma Application in Medicine-Focus on Reactive Species Involvement. Int J Mol Sci 2023; 24:12667. [PMID: 37628848 PMCID: PMC10454508 DOI: 10.3390/ijms241612667] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Non-thermal plasma (NTP) application in medicine is a dynamically developing interdisciplinary field. Despite the fact that basics of the plasma phenomenon have been known since the 19th century, growing scientific attention has been paid in recent years to the use of plasma in medicine. Three most important plasma-based effects are pivotal for medical applications: (i) inactivation of a broad spectrum of microorganisms, (ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and (iii) inactivation of cells by initialization of cell death with higher plasma intensity. In this review, we explain the underlying chemical processes and reactive species involvement during NTP in human (or animal) tissues, as well as in bacteria inactivation, which leads to sterilization and indirectly supports wound healing. In addition, plasma-mediated modifications of medical surfaces, such as surgical instruments or implants, are described. This review focuses on the existing knowledge on NTP-based in vitro and in vivo studies and highlights potential opportunities for the development of novel therapeutic methods. A full understanding of the NTP mechanisms of action is urgently needed for the further development of modern plasma-based medicine.
Collapse
Affiliation(s)
- Julia Moszczyńska
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Marek Wiśniewski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| |
Collapse
|
6
|
Konina K, Freeman TA, Kushner MJ. Atmospheric pressure plasma treatment of skin: penetration into hair follicles. PLASMA SOURCES SCIENCE & TECHNOLOGY 2023; 32:085020. [PMID: 37654601 PMCID: PMC10466460 DOI: 10.1088/1361-6595/acef59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Sterilization of skin prior to surgery is challenged by the reservoir of bacteria that resides in hair follicles. Atmospheric pressure plasma jets (APPJs) have been proposed as a method to treat and deactivate these bacteria as atmospheric plasmas are able to penetrate into structures and crevices with dimensions similar to those found in hair follicles. In this paper, we discuss results from a computational investigation of an APPJ sustained in helium flowing into ambient air, and incident onto a layered dielectric similar to human skin in which there are idealized hair follicles. We found that, depending on the location of the follicle, the bulk ionization wave (IW) incident onto the skin, or the surface IW on the skin, are able to launch IWs into the follicle. The uniformity of treatment of the follicle depends on the location of the first entry of the plasma into the follicle on the top of the skin. Typically, only one side of the follicle is treated on for a given plasma pulse, with uniform treatment resulting from rastering the plasma jet across the follicle over many pulses. Plasma treatment of the follicle is sensitive to the angle of the follicle with respect to the skin, width of the follicle pocket, conductivity of the dermis and thickness of the underlying subcutaneous fat layer, the latter due to the change in capacitance of the tissue.
Collapse
Affiliation(s)
- Kseniia Konina
- Nuclear Engineering and Radiological Sciences Department, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48109-2104, United States of America
| | - Theresa A Freeman
- Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Mark J Kushner
- Electrical Engineering and Computer Science Department, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122, United States of America
| |
Collapse
|
7
|
Gonzales LISA, Qiao JW, Buffier AW, Rogers LJ, Suchowerska N, McKenzie DR, Kwan AH. An omics approach to delineating the molecular mechanisms that underlie the biological effects of physical plasma. BIOPHYSICS REVIEWS 2023; 4:011312. [PMID: 38510160 PMCID: PMC10903421 DOI: 10.1063/5.0089831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2024]
Abstract
The use of physical plasma to treat cancer is an emerging field, and interest in its applications in oncology is increasing rapidly. Physical plasma can be used directly by aiming the plasma jet onto cells or tissue, or indirectly, where a plasma-treated solution is applied. A key scientific question is the mechanism by which physical plasma achieves selective killing of cancer over normal cells. Many studies have focused on specific pathways and mechanisms, such as apoptosis and oxidative stress, and the role of redox biology. However, over the past two decades, there has been a rise in omics, the systematic analysis of entire collections of molecules in a biological entity, enabling the discovery of the so-called "unknown unknowns." For example, transcriptomics, epigenomics, proteomics, and metabolomics have helped to uncover molecular mechanisms behind the action of physical plasma, revealing critical pathways beyond those traditionally associated with cancer treatments. This review showcases a selection of omics and then summarizes the insights gained from these studies toward understanding the biological pathways and molecular mechanisms implicated in physical plasma treatment. Omics studies have revealed how reactive species generated by plasma treatment preferentially affect several critical cellular pathways in cancer cells, resulting in epigenetic, transcriptional, and post-translational changes that promote cell death. Finally, this review considers the outlook for omics in uncovering both synergies and antagonisms with other common cancer therapies, as well as in overcoming challenges in the clinical translation of physical plasma.
Collapse
Affiliation(s)
- Lou I. S. A. Gonzales
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Jessica W. Qiao
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Aston W. Buffier
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | | | | | | | - Ann H. Kwan
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Kumar Dubey S, Dabholkar N, Narayan Pal U, Singhvi G, Kumar Sharma N, Puri A, Kesharwani P. Emerging innovations in cold plasma therapy against cancer: A paradigm shift. Drug Discov Today 2022; 27:2425-2439. [PMID: 35598703 PMCID: PMC9420777 DOI: 10.1016/j.drudis.2022.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
Cancer is one of the major causes of mortality, accounting for ∼ 9.5 million deaths globally in 2018. The spectrum of conventional treatment for cancer includes surgery, chemotherapy and radiotherapy. Recently, cold plasma therapy surfaced as a novel technique in the treatment of cancer. The FDA approval of the first trial for the use of cold atmospheric plasma (CAP) in cancer therapy in 2019 is evidence of this. This review highlights the mechanisms of action of CAP. Additionally, its applications in anticancer therapy have been reviewed. In summary, this article will introduce the readers to the exciting field of plasma oncology and help them understand the current status and prospects of plasma oncology.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami, 13 BT Road, Belgharia, Kolkata 700056, India.
| | - Neha Dabholkar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Udit Narayan Pal
- Council of Scientific and Industrial Research (CSIR)-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Navin Kumar Sharma
- School of Physics, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh 452001, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Cho C, Kim S, Lee Y, Jeong W, Seong I, Lee J, Choi M, You Y, Lee S, Lee J, You S. Refined Appearance Potential Mass Spectrometry for High Precision Radical Density Quantification in Plasma. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22176589. [PMID: 36081045 PMCID: PMC9460062 DOI: 10.3390/s22176589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/02/2023]
Abstract
As the analysis of complicated reaction chemistry in bulk plasma has become more important, especially in plasma processing, quantifying radical density is now in focus. For this work, appearance potential mass spectrometry (APMS) is widely used; however, the original APMS can produce large errors depending on the fitting process, as the fitting range is not exactly defined. In this research, to reduce errors resulting from the fitting process of the original method, a new APMS approach that eliminates the fitting process is suggested. Comparing the neutral densities in He plasma between the conventional method and the new method, along with the real neutral density obtained using the ideal gas equation, confirmed that the proposed quantification approach can provide more accurate results. This research will contribute to improving the precision of plasma diagnosis and help elucidate the plasma etching process.
Collapse
Affiliation(s)
- Chulhee Cho
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Sijun Kim
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Youngseok Lee
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Wonnyoung Jeong
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Inho Seong
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jangjae Lee
- Samsung Electronics, Samsungjeonja-ro, Hwaseong-si 18448, Korea
| | - Minsu Choi
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Yebin You
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Sangho Lee
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Korea Institute of Machinery & Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
| | - Jinho Lee
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Shinjae You
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Institute of Quantum System (IQS), Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
10
|
Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int J Mol Sci 2022; 23:ijms23169288. [PMID: 36012552 PMCID: PMC9409438 DOI: 10.3390/ijms23169288] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.
Collapse
|
11
|
Gangemi S, Petrarca C, Tonacci A, Di Gioacchino M, Musolino C, Allegra A. Cold Atmospheric Plasma Targeting Hematological Malignancies: Potentials and Problems of Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11081592. [PMID: 36009311 PMCID: PMC9405440 DOI: 10.3390/antiox11081592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cold atmospheric plasma is an ionized gas produced near room temperature; it generates reactive oxygen species and nitrogen species and induces physical changes, including ultraviolet, radiation, thermal, and electromagnetic effects. Several studies showed that cold atmospheric plasma could effectively provoke death in a huge amount of cell types, including neoplastic cells, via the induction of apoptosis, necrosis, and autophagy. This technique seems able to destroy tumor cells by disturbing their more susceptible redox equilibrium with respect to normal cells, but it is also able to cause immunogenic cell death by enhancing the immune response, to decrease angiogenesis, and to provoke genetic and epigenetics mutations. Solutions activated by cold gas plasma represent a new modality for treatment of less easily reached tumors, or hematological malignancies. Our review reports on accepted knowledge of cold atmospheric plasma’s effect on hematological malignancies, such as acute and chronic myeloid leukemia and multiple myeloma. Although relevant progress was made toward understanding the underlying mechanisms concerning the efficacy of cold atmospheric plasma in hematological tumors, there is a need to determine both guidelines and safety limits that guarantee an absence of long-term side effects.
Collapse
Affiliation(s)
- Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Claudia Petrarca
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy
- Correspondence:
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Mario Di Gioacchino
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| |
Collapse
|
12
|
Brunner TF, Probst FA, Troeltzsch M, Schwenk-Zieger S, Zimmermann JL, Morfill G, Becker S, Harréus U, Welz C. Primary cold atmospheric plasma combined with low dose cisplatin as a possible adjuvant combination therapy for HNSCC cells-an in-vitro study. Head Face Med 2022; 18:21. [PMID: 35768853 PMCID: PMC9245296 DOI: 10.1186/s13005-022-00322-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The aim of the present study was to examine the cytostatic effects of cold atmospheric plasma (CAP) on different head and neck squamous carcinoma (HNSCC) cell lines either in isolation or in combination with low dose cisplatin. The effect of CAP treatment was investigated by using three different HNSCC cell lines (chemo-resistant Cal 27, chemo-sensitive FaDu and OSC 19). MATERIALS AND METHOD Cell lines were exposed to CAP treatment for 30, 60, 90, 120 and 180 s (s). Cisplatin was added concurrently (cc) or 24 h after CAP application (cs). Cell viability, DNA damage and apoptosis was evaluated by dye exclusion, MTT, alkaline microgel electrophoresis assay and Annexin V-Fit-C/PI respectively. RESULTS In all cell lines, 120 s of CAP exposure resulted in a significant reduction of cell viability. DNA damage significantly increased after 60 s. Combined treatment of cells with CAP and low dose cisplatin showed additive effects. A possible sensitivity to cisplatin could be restored in Cal 27 cells by CAP application. CONCLUSION CAP shows strong cytostatic effects in HNSCC cell lines that can be increased by concurrent cisplatin treatment, suggesting that CAP may enhance the therapeutic efficacy of low dose cisplatin.
Collapse
Affiliation(s)
- Teresa F Brunner
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany.
| | - Florian A Probst
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany
| | - Matthias Troeltzsch
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich, Germany
| | | | | | - Sven Becker
- Department of Otolaryngology, Head and Neck Surgery, University Hospital, EKU , Tübingen, Germany
| | - Ulrich Harréus
- Department of ENT/Head and Neck Surgery, Asklepios Hospital, Bad Tölz, Germany
| | | |
Collapse
|
13
|
Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of thermal and non-thermal atmospheric pressure plasma to solve problems related to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used where heat is required. In agriculture, it is used to treat soil and land contaminated by the products of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological phenomena that have recently been observed, such as droughts, floods and storms, leading to environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is also suitable in the treatment of living tissues and sterilisation of medical instruments made of materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper presents an overview of agriculture and soil protection problems and biomedical and health protection problems that can be solved with the aid of plasma produced with electrical discharges. In particular, agricultural processes related to water, sewage purification with ozone and with advanced oxidation processes, as well as those related to contaminated soil treatment and pest control, are presented. Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer treatment and dental problems are briefly discussed.
Collapse
|
14
|
Hou Z, Lee T, Keidar M. Reinforcement Learning With Safe Exploration for Adaptive Plasma Cancer Treatment. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3094874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Atmospheric pressure plasma jet-mouse skin interaction: Mitigation of damages by liquid interface and gas flow control. Biointerphases 2022; 17:021004. [PMID: 35360909 DOI: 10.1116/6.0001596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The possible benefits of an atmospheric pressure plasma jet skin treatment have been tested in vivo on mouse skin. Many studies have been conducted in vitro on mouse skin cells, but only a few in vivo where, due to the complexity of the biological system, plasma can cause severe damages. For this reason, we investigated how kHz plasma generated in a jet that is known to inflict skin damage interacts with mouse skin and explored how we can reduce the skin damage. First, the focus was on exploring plasma effects on skin damage formation with different plasma gases and jet inclinations. The results pointed to the perpendicular orientation of a He plasma jet as the most promising condition with the least skin damage. Then, the skin damage caused by a He plasma jet was explored, focusing on damage mitigation with different liquid interfaces applied to the treatment site, adding N2 to the gas mixture, or alternating the gas flow dynamics by elongating the jet's glass orifice with a funnel. All these mitigations proved highly efficient, but the utmost benefits for skin damage reduction were connected to skin temperature reduction, the reduction in reactive oxygen species (ROS), and the increase in reactive nitrogen species (RNS).
Collapse
|
16
|
Muccignat DL, Stokes PW, Cocks DG, Gascooke JR, Jones DB, Brunger MJ, White RD. Simulating the Feasibility of Using Liquid Micro-Jets for Determining Electron–Liquid Scattering Cross-Sections. Int J Mol Sci 2022; 23:ijms23063354. [PMID: 35328775 PMCID: PMC8954820 DOI: 10.3390/ijms23063354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
The extraction of electron–liquid phase cross-sections (surface and bulk) is proposed through the measurement of (differential) energy loss spectra for electrons scattered from a liquid micro-jet. The signature physical elements of the scattering processes on the energy loss spectra are highlighted using a Monte Carlo simulation technique, originally developed for simulating electron transport in liquids. Machine learning techniques are applied to the simulated electron energy loss spectra, to invert the data and extract the cross-sections. The extraction of the elastic cross-section for neon was determined within 9% accuracy over the energy range 1–100 eV. The extension toward the simultaneous determination of elastic and ionisation cross-sections resulted in a decrease in accuracy, now to within 18% accuracy for elastic scattering and 1% for ionisation. Additional methods are explored to enhance the accuracy of the simultaneous extraction of liquid phase cross-sections.
Collapse
Affiliation(s)
- Dale L. Muccignat
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; (P.W.S.); (R.D.W.)
- Correspondence:
| | - Peter W. Stokes
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; (P.W.S.); (R.D.W.)
- Department of Medical Physics, Townsville University Hospital, Townsville, QLD 4814, Australia
| | - Daniel G. Cocks
- Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia;
- Synchronous Technologies PTE LTD, 6 Raffles Quay, #11-07, Singapore 048580, Singapore
| | - Jason R. Gascooke
- College of Science & Engineering, Flinders University, Bedford Park, SA 5042, Australia; (J.R.G.); (D.B.J.); (M.J.B.)
| | - Darryl B. Jones
- College of Science & Engineering, Flinders University, Bedford Park, SA 5042, Australia; (J.R.G.); (D.B.J.); (M.J.B.)
| | - Michael J. Brunger
- College of Science & Engineering, Flinders University, Bedford Park, SA 5042, Australia; (J.R.G.); (D.B.J.); (M.J.B.)
- Institute of Actuarial Science and Data Analytics, Faculty of Business and Management, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Ronald D. White
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; (P.W.S.); (R.D.W.)
| |
Collapse
|
17
|
Choi EH, Kaushik NK, Hong YJ, Lim JS, Choi JS, Han I. Plasma bioscience for medicine, agriculture and hygiene applications. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2022; 80:817-851. [PMID: 35261432 PMCID: PMC8895076 DOI: 10.1007/s40042-022-00442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.7 ~ 1.8 eV and (3-5) × 1014-15 cm-3, respectively. Herein, we introduce a general schematic view of the plasma ultraviolet photolysis of water molecules for reactive oxygen and nitrogen species (RONS) generation inside biological cells or living tissues, which would be synergistically important with RONS diffusive propagation into cells or tissues. Of the RONS, the hydroxyl radical [OH] and hydrogen peroxide H2O2 species would mainly result in apoptotic cell death with other RONS in plasma bioscience and medicines. The diseased biological protein, cancer, and mutated cells could be treated by using a NBP or plasma activated water (PAW) resulting in their apoptosis for a new paradigm of plasma medicine.
Collapse
Affiliation(s)
- Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Young June Hong
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jin Sung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Ihn Han
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| |
Collapse
|
18
|
Gholami N, Colagar AH, Sinkakarimi MH, Sohbatzadeh F. In vivo assessment of APPJ discharge on the earthworm: coelomic TAC and MDA levels, cell death, and tissue regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16045-16051. [PMID: 34637123 DOI: 10.1007/s11356-021-16838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The effective medical applications of cold atmospheric pressure plasma jet (APPJ) have been reported by many researchers, including sterilization of liquid and solid surfaces, treatment of chronic wounds, treatment of cancer tumors, and blood clots. Therefore, in this study, we exposed Aporrectodea trapezoides and Eisenia fetida earthworms to APPJ discharge (0-30 s) to evaluate the impacts on regeneration of missed segments, apoptosis, lipid peroxidation (LPo), catalase activity (CAT), total antioxidant capacity (TAC), total proteins, and protein profile. Results showed APPJ induced significant effects on regeneration ability of earthworms after 20 and 30 s of exposure (p < 0.05). Atmospheric pressure plasma jet did not have significant effects on MDA content and TUNEL-positive cells, but this effect was significant for TAC and CAT in both species (p < 0.05). In conclusion, the present study revealed for the first time that regeneration of missed segments in earthworms can be stimulated by plasma treatment.
Collapse
Affiliation(s)
- Neda Gholami
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, CP: 47416-95447, Babolsar, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, CP: 47416-95447, Babolsar, Mazandaran, Iran.
| | - Mohammad Hossein Sinkakarimi
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, CP: 47416-95447, Babolsar, Mazandaran, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, CP: 47416-95447, Babolsar, Mazandaran, Iran
| |
Collapse
|
19
|
Armenise I, Esposito F. N + O2(v) collisions: reactive, inelastic and dissociation rates for state-to-state vibrational kinetic models. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Anti-Bacterial Action of Plasma Multi-Jets in the Context of Chronic Wound Healing. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work is a contribution to the development and implementation of non-thermal plasma technology for decontamination in the perspective of nosocomial and chronic wound innovative therapies. Multi jets devices based on Plasma Gun® technology in static and scanning operation modes and bacterial lawns inoculated with resistant and non-resistant bacterial strains were designed and used. A pilot toxicity study exploring plasma treatment of wound bearing patients, performed with a low voltage plasma applicator, is documented as a first step for the translation of in vitro experiments to clinical care. Bacterial inactivation was demonstrated for Staphylococcus aureus, Pseudomonas aeruginosa and drug resistant S. aureus, P. aeruginosa and Escherichia Coli strains collected from patient wounds at Orleans (France) hospital. A few square centimeter large contaminated samples were inactivated following a single plasma exposure as short as one minute. Samples inoculated with a single but also a mix of three resistant pathogens were successfully inactivated not only right after their contamination but for mature lawns as well. Similar bactericidal action was demonstrated for antibiotic-resistant and non-resistant P. aeruginosa. The time exposure dependent increase of the inhibition spots, following multi jets exposure, is discussed as either the accumulation of reactive species or the likely combinatory action of both the reactive species and transient electric field delivery on inoculated samples.
Collapse
|
21
|
Soni V, Adhikari M, Simonyan H, Lin L, Sherman JH, Young CN, Keidar M. In Vitro and In Vivo Enhancement of Temozolomide Effect in Human Glioblastoma by Non-Invasive Application of Cold Atmospheric Plasma. Cancers (Basel) 2021; 13:4485. [PMID: 34503293 PMCID: PMC8430547 DOI: 10.3390/cancers13174485] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive forms of adult brain cancers and is highly resistant to treatment, with a median survival of 12-18 months after diagnosis. The poor survival is due to its infiltrative pattern of invasion into the normal brain parenchyma, the diffuse nature of its growth, and its ability to quickly grow, spread, and relapse. Temozolomide is a well-known FDA-approved alkylating chemotherapy agent used for the treatment of high-grade malignant gliomas, and it has been shown to improve overall survival. However, in most cases, the tumor relapses. In recent years, CAP has been used as an emerging technology for cancer therapy. The purpose of this study was to implement a combination therapy of CAP and TMZ to enhance the effect of TMZ and apparently sensitize GBMs. In vitro evaluations in TMZ-sensitive and resistant GBM cell lines established a CAP chemotherapy enhancement and potential sensitization effect across various ranges of CAP jet application. This was further supported with in vivo findings demonstrating that a single CAP jet applied non-invasively through the skull potentially sensitizes GBM to subsequent treatment with TMZ. Gene functional enrichment analysis further demonstrated that co-treatment with CAP and TMZ resulted in a downregulation of cell cycle pathway genes. These observations indicate that CAP can be potentially useful in sensitizing GBM to chemotherapy and for the treatment of glioblastoma as a non-invasive translational therapy.
Collapse
Affiliation(s)
- Vikas Soni
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| | - Manish Adhikari
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Li Lin
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| | - Jonathan H. Sherman
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| | - Colin N. Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| |
Collapse
|
22
|
Esposito F, Armenise I. Reactive, Inelastic, and Dissociation Processes in Collisions of Atomic Nitrogen with Molecular Oxygen. J Phys Chem A 2021; 125:3953-3964. [PMID: 33909438 PMCID: PMC9282678 DOI: 10.1021/acs.jpca.0c09999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collisions of atomic nitrogen with molecular oxygen have been treated with the quasiclassical trajectory method (QCT) in order to obtain a complete database of vibrationally detailed cross sections and rate coefficients for reactive, inelastic, and dissociation processes. For reaction rate coefficients, the agreement with experimental and theoretical data in the literature is excellent on the whole available interval 300-5000 K, with reliable extension to 20,000 K. For the inelastic case and for dissociation, no comparisons are available; therefore, a study of QCT reliability is proposed. In the inelastic case, it is found that "purely inelastic" and "quasireactive" collisions show not only different mechanisms but also different QCT levels of reliability at low energy. For dissociation, similar considerations bring to the conclusion that for the present collisional system, the QCT method is appropriate on the whole energy range studied. Rate coefficients for all the processes studied are provided in the electronic form.
Collapse
Affiliation(s)
- Fabrizio Esposito
- CNR ISTP (Istituto per la Scienza e Tecnologia dei Plasmi), Via Amendola 122/D, 70126 Bari, Italy
| | - Iole Armenise
- CNR ISTP (Istituto per la Scienza e Tecnologia dei Plasmi), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
23
|
Bekeschus S, Clemen R, Haralambiev L, Niessner F, Grabarczyk P, Weltmann KD, Menz J, Stope M, von Woedtke T, Gandhirajan R, Schmidt A. The Plasma-Induced Leukemia Cell Death is Dictated by the ROS Chemistry and the HO-1/CXCL8 Axis. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3020686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Kenari AJ, Siadati SN, Abedian Z, Sohbatzadeh F, Amiri M, Gorji KE, Babapour H, Zabihi E, Ghoreishi SM, Mehraeen R, Monfared AS. Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells). Bioorg Chem 2021; 111:104892. [PMID: 33894430 DOI: 10.1016/j.bioorg.2021.104892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023]
Abstract
Cervical cancer is one of the important cancers in women. Research on novel treatment approach can reduce the mortality and burden. Although radiotherapy is a common treatment, its negative side effects have concerned physician. In our study, we studied impact of cold atmospheric pressure plasma on the Hela cancer cells, as an alternative treatment. The effect of three different types of such plasma; dielectric barrier discharge (DBD), plasma jet, and afterglow plasma, on the cancer cells were studied. Moreover, some effective operating parameters such as exposure time, applied voltage, composition of working gas in plasma treatment were investigated on the survival of the afterglow plasma. Finally, treatments by the afterglow plasma, gamma radiation (1 Gy), and combination of both were compared. Analysis showed that DBD and plasma jet (direct exposure) effectively killed the cancer cells, even by a minimum applied voltage. But a fraction of the cells survived after the exposure of indirect diffused afterglow plasma. In the case of this plasma, we realized that higher applied voltage and exposure time led to less cell viability. Fewer fractions of survival cells were detected in the case of argon afterglow plasma comparing to oxygen afterglow. Cold atmospheric plasma and its combination with radiation therapy showed a significant decrease in viability of the cells, comparing to the radiation alone. Our research showed that plasma and its combination with radiation therapy have superiority over radiation therapy.
Collapse
Affiliation(s)
- Ali Jamaati Kenari
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 267/2, 611 37 Brno, Czech Republic; Atomic and Molecular Physics Department, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Seyedeh Neda Siadati
- Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz-Maragheh Road, 53714-161 Tabriz, Iran
| | - Zeinab Abedian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farshad Sohbatzadeh
- Atomic and Molecular Physics Department, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mehrangiz Amiri
- Department of Nuclear Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Hamed Babapour
- Department of Radiotherapy Physics, Guilan Oncology Hospital, Rasht, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyedeh Masoumeh Ghoreishi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Rahele Mehraeen
- Departeman of Radiology, Babol University of Medical Sciences, Babol, Iran
| | - Ali Shabestani Monfared
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
25
|
Plasma-Treated Solutions (PTS) in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13071737. [PMID: 33917469 PMCID: PMC8038720 DOI: 10.3390/cancers13071737] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. Abstract Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to the toxic action of PTSs, suggesting a broad mechanism of action based on the tumor-toxic activity of ROS/RNS stored in these solutions. Moreover, it is indicated that the PTS has immuno-stimulatory properties. Two different routes of application are currently envisaged in the clinical setting. One is direct injection into the bulk tumor, and the other is lavage in patients suffering from peritoneal carcinomatosis adjuvant to standard chemotherapy. While many promising results have been achieved so far, several obstacles, such as the standardized generation of large volumes of sterile PTS, remain to be addressed.
Collapse
|
26
|
Cold atmospheric plasma induced genotoxicity and cytotoxicity in esophageal cancer cells. Mol Biol Rep 2021; 48:1323-1333. [PMID: 33547994 DOI: 10.1007/s11033-021-06178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
In this paper, we studied the functional effects of cold atmospheric plasma (CAP) on the esophageal cancer cell line (KYSE-30) by direct and indirect treatment and fibroblast cell lines as normal cells. KYSE-30 cells were treated with CAP at different time points of 60, 90, 120 and, 240 s for direct exposure and 90, 180, 240 and, 360 s for indirect exposure. Cell viability was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptosis induction in the treated cells was measured by Annexin-V/PI using flow cytometry. The expression of apoptotic related genes (BAX/BCL-2) was analyzed by real-time polymerase chain reaction. Moreover, the genotoxicity was analyzed by comet assay. Cell viability results showed that direct CAP treatment has a markedly cytotoxic impact on the reduction of KYSE-30 cells at 60 s (p = 0.000), while indirect exposure was less impactful (p > 0.05). The results of the Annexin-V/PI staining confirmed this analysis. Subsequently, the genotoxicity study of the direct CAP treatment demonstrated a longer tail-DNA length and caused increase in DNA damage in the cells (p < 0.00001) as well as shift BAX/BCL-2 toward apoptosis. The concentration of H2O2 and NO2- in direct CAP treatment was significantly higher than indirect (p > 0.05). Treatment with direct CAP showed genotoxicity in cancer cells. Collectively, our results pave a deeper understanding of CAP functions and the way for further investigations in the field of esophageal cancer treatment.
Collapse
|
27
|
Sklias K, Santos Sousa J, Girard PM. Role of Short- and Long-Lived Reactive Species on the Selectivity and Anti-Cancer Action of Plasma Treatment In Vitro. Cancers (Basel) 2021; 13:cancers13040615. [PMID: 33557129 PMCID: PMC7913865 DOI: 10.3390/cancers13040615] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary One fundamental feature that has emerged from in vitro application of cold plasmas in cancer treatment is the key role of the liquid phase covering the cells. In the present work, we investigated the effect of direct and indirect plasma treatments on two cancer and three normal cell lines to assess the benefits of one treatment over the other in terms of death of tumor versus healthy cells. Our results demonstrate that indirect plasma treatment is as efficient at killing tumor cells as an appropriate combination of H2O2, NO2− and acidic pH in ad hoc solutions, while sparing normal cells. However, direct plasma treatment is far more efficient at killing normal than tumor cells, and we provide evidence that short- and long-lived reactive species contribute synergistically to kill normal cells, while having an additive effect regarding tumor cell death. Collectively, our results call the use of plasma-activated liquid in cancer treatment into question. Abstract (1) Plasma-activated liquids (PAL) have been extensively studied for their anti-cancer properties. Two treatment modalities can be applied to the cells, direct and indirect plasma treatments, which differ by the environment to which the cells are exposed. For direct plasma treatment, the cells covered by a liquid are present during the plasma treatment time (phase I, plasma ON) and the incubation time (phase II, plasma OFF), while for indirect plasma treatment, phase I is cell-free and cells are only exposed to PAL during phase II. The scope of this work was to study these two treatment modalities to bring new insights into the potential use of PAL for cancer treatment. (2) We used two models of head and neck cancer cells, CAL27 and FaDu, and three models of normal cells (1Br3, NHK, and RPE-hTERT). PBS was used as the liquid of interest, and the concentration of plasma-induced H2O2, NO2− and NO3−, as well as pH change, were measured. Cells were exposed to direct plasma treatment, indirect plasma treatment or reconstituted buffer (PBS adjusted with plasma-induced concentrations of H2O2, NO2−, NO3− and pH). Metabolic cell activity, cell viability, lipid peroxidation, intracellular ROS production and caspase 3/7 induction were quantified. (3) If we showed that direct plasma treatment is slightly more efficient than indirect plasma treatment and reconstituted buffer at inducing lipid peroxidation, intracellular increase of ROS and cancer cell death in tumor cells, our data also revealed that reconstituted buffer is equivalent to indirect plasma treatment. In contrast, normal cells are quite insensitive to these two last treatment modalities. However, they are extremely sensitive to direct plasma treatment. Indeed, we found that phase I and phase II act in synergy to trigger cell death in normal cells and are additive concerning tumor cell death. Our data also highlight the presence in plasma-treated PBS of yet unidentified short-lived reactive species that contribute to cell death. (4) In this study, we provide strong evidence that, in vitro, the concentration of RONS (H2O2, NO2− and NO3−) in combination with the acidic pH are the main drivers of plasma-induced PBS toxicity in tumor cells but not in normal cells, which makes ad hoc reconstituted solutions powerful anti-tumor treatments. In marked contrast, direct plasma treatment is deleterious for normal cells in vitro and should be avoided. Based on our results, we discuss the limitations to the use of PAL for cancer treatments.
Collapse
Affiliation(s)
- Kyriakos Sklias
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
| | - João Santos Sousa
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| |
Collapse
|
28
|
Akter M, Lim JS, Choi EH, Han I. Non-Thermal Biocompatible Plasma Jet Induction of Apoptosis in Brain Cancer Cells. Cells 2021; 10:cells10020236. [PMID: 33530311 PMCID: PMC7911799 DOI: 10.3390/cells10020236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant and rapidly advancing astrocytic brain tumor in adults. Current therapy possibilities are chemotherapy, surgical resection, and radiation. The complexity of drug release through the blood-brain barrier, tumor reaction to chemotherapy, and the inherent resistance of tumor cells present challenges. New therapies are needed for individual use or combination with conventional methods for more effective treatment and improved survival for patients. GBM is difficult to treat because it grows quickly, spreads finger-shaped tentacles, and creates an irregular margin of normal tissue surrounding the tumor. Non-thermal biocompatible plasma (NBP) has recently been shown to selectively target cancer cells with minimal effects on regular cells, acting by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS). We applied a soft jet plasma device with a syringe shape to U87 MG cells and astrocytes. Our results show that NBP-J significantly inhibits cell proliferation and changes morphology, induces cell cycle arrest, inhibits the survival pathway, and induces apoptosis. Our results indicate that NBP-J may be an efficient and safe clinical device for brain cancer therapy.
Collapse
Affiliation(s)
- Mahmuda Akter
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
| | - Jun Sup Lim
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (E.H.C.); (I.H.); Tel.: +82-2-940-5666 (I.H.); Fax: +82-2-940-5664 (I.H.)
| | - Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Correspondence: (E.H.C.); (I.H.); Tel.: +82-2-940-5666 (I.H.); Fax: +82-2-940-5664 (I.H.)
| |
Collapse
|
29
|
Busco G, Robert E, Chettouh-Hammas N, Pouvesle JM, Grillon C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic Biol Med 2020; 161:290-304. [PMID: 33039651 DOI: 10.1016/j.freeradbiomed.2020.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
The maintenance of skin integrity is crucial to ensure the physiological barrier against exogenous compounds, microorganisms and dehydration but also to fulfill social and aesthetic purposes. Besides the development of new actives intended to enter a formulation, innovative technologies based on physical principles have been proposed in the last years. Among them, Cold Atmospheric Plasma (CAP) technology, which already showed interesting results in dermatology, is currently being studied for its potential in skin treatments and cares. CAP bio-medical studies gather several different expertise ranging from physics to biology through chemistry and biochemistry, making this topic hard to pin. In this review we provide a broad survey of the interactions between CAP and skin. In the first section, we tried to give some fundamentals on skin structure and physiology, related to its essential functions, together with the main bases on cold plasma and its physicochemical properties. In the following parts we dissected and analyzed each CAP parameter to highlight the already known and the possible effects they can play on skin. This overview aims to get an idea of the potential of cold atmospheric plasma technology in skin biology for the future developments of dermo-cosmetic treatments, for example in aging prevention.
Collapse
Affiliation(s)
- Giovanni Busco
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France; Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France.
| | - Eric Robert
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | | | - Jean-Michel Pouvesle
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France.
| |
Collapse
|
30
|
Dai X, Bazaka K, Thompson EW, Ostrikov K(K. Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers (Basel) 2020; 12:cancers12113360. [PMID: 33202842 PMCID: PMC7696697 DOI: 10.3390/cancers12113360] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer treatment is complicated by the distinct phenotypic attractor states in which cancer cells exist within individual tumors, and inherent plasticity of cells in transiting between these states facilitates the acquisition of drug-resistant and more stem cell-like phenotypes in cancer cells. Controlling these crucial transition switches is therefore critical for the long-term success of any cancer therapy. This paper highlights the most promising avenues for controlling cancer state transition events by cold atmospheric plasma (CAP) to enable the development of efficient tools for cancer prevention and management. The key switches in carcinogenesis can be used to halt or reverse cancer progression, and understanding how CAP can modulate these processes is critical for the development of CAP-based strategies for cancer prevention, detection and effective treatment. Abstract Rich in reactive oxygen and nitrogen species, cold atmospheric plasma has been shown to effectively control events critical to cancer progression; selectively inducing apoptosis, reducing tumor volume and vasculature, and halting metastasis by taking advantage of, e.g., synergies between hydrogen peroxide and nitrites. This paper discusses the efficacy, safety and administration of cold atmospheric plasma treatment as a potential tool against cancers, with a focus on the mechanisms by which cold atmospheric plasma may affect critical transitional switches that govern tumorigenesis: the life/death control, tumor angiogenesis and epithelial–mesenchymal transition, and drug sensitivity spectrum. We introduce the possibility of modeling cell transitions between the normal and cancerous states using cold atmospheric plasma as a novel research avenue to enhance our understanding of plasma-aided control of oncogenesis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuhan Ammunition Life-Tech Company, Ltd., Wuhan 430200, China
- Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: ; Tel.: +86-181-6887-0169
| | - Kateryna Bazaka
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia;
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
31
|
Extracellular Vesicle Isolation Yields Increased by Low-Temperature Gaseous Plasma Treatment of Polypropylene Tubes. Polymers (Basel) 2020; 12:polym12102363. [PMID: 33076317 PMCID: PMC7602565 DOI: 10.3390/polym12102363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022] Open
Abstract
Novel Extracellular Vesicles (EVs) based diagnostic techniques are promising non-invasive procedures for early stage disease detection which are gaining importance in the medical field. EVs are cell derived particles found in body liquids, especially blood, from which they are isolated for further analysis. However, techniques for their isolation are not fully standardized and require further improvement. Herein modification of polypropylene (PP) tubes by cold Atmospheric Pressure Plasma Jet (APPJ) is suggested to minimize the EVs to surface binding and thus increase EVs isolation yields. The influence of gaseous plasma treatment on surface morphology was studied by Atomic Force Microscopy (AFM), changes in surface wettability by measuring the Water Contact Angle (WCA), while surface chemical changes were analyzed by X-Ray Photoelectron Spectroscopy (XPS). Moreover, PP tubes from different manufacturers were compared. The final isolation yields of EVs were evaluated by flow cytometry. The results of this study suggest that gaseous plasma treatment is an intriguing technique to uniformly alter surface properties of PP tubes and improve EVs isolation yields up to 42%.
Collapse
|
32
|
Penetration and Microbial Inactivation by High Voltage Atmospheric Cold Plasma in Semi-Solid Material. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02506-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
The Hyaluronan Pericellular Coat and Cold Atmospheric Plasma Treatment of Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In different tumors, high amounts of hyaluronan (HA) are correlated with tumor progression. Therefore, new tumor therapy strategies are targeting HA production and degradation. In plasma medicine research, antiproliferative and apoptosis-inducing effects on tumor cells were observed using cold atmospheric plasma (CAP) or plasma-activated media (PAM). Until now, the influence of PAM on the HA pericellular coat has not been the focus of research. PAM was generated by argon-plasma treatment of Dulbecco’s modified Eagle’s Medium via the kINPen®09 plasma jet. The HA expression on PAM-treated HaCaT cells was determined by flow cytometry and confocal laser scanning microscopy. Changes in the adhesion behavior of vital cells in PAM were observed by impedance measurement using the xCELLigence system. We found that PAM treatment impaired the HA pericellular coat of HaCaT cells. The time-dependent adhesion was impressively diminished. However, a disturbed HA coat alone was not the reason for the inhibition of cell adhesion because cells enzymatically treated with HAdase did not lose their adhesion capacity completely. Here, we showed for the first time that the plasma-activated medium (PAM) was able to influence the HA pericellular coat.
Collapse
|
34
|
Stancampiano A, Chung TH, Dozias S, Pouvesle JM, Mir LM, Robert E. Mimicking of Human Body Electrical Characteristic for Easier Translation of Plasma Biomedical Studies to Clinical Applications. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2936667] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Abstract
For many decades non-equilibrium plasmas (NEPs) that can be generated at atmospheric pressure have played important roles in various material and surface processing applications [...]
Collapse
|
36
|
Yadav DK, Kumar S, Choi EH, Kim MH. Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane. J Biomol Struct Dyn 2020; 39:1343-1353. [PMID: 32072876 DOI: 10.1080/07391102.2020.1730972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electroporation processes affect the permeability of cell membranes, which can be utilized for the delivery of plasma species in cancer therapy. By means of computational dynamics, many aspects of membrane electroporation have been unveiled at the atomic level for lipid membranes. Herein, a molecular dynamics simulation study was performed on native and oxidized membrane systems with transversal electric fields. The simulation result shows that the applied electric field mainly affects the membrane properties so that electroporation takes place and these pores are lined by hydrophilic headgroups of the lipid components. The calculated hydrophobic thickness, lateral diffusion and pair correlation revealed the role of 5α-CH in creation of water-pore in an oxidized membrane. Additionally, the permeability of reactive oxygen species was examined through these electroporated systems. The permeability study suggested that water pores in the membrane facilitate the penetration of these species across the membrane to the interior of the cell. These findings may have significance in experimental applications in vivo as once the reactive oxygen species reaches the interior of the cell, they may cause oxidative stress and induce apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Seoul, South Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
37
|
Revealing Plasma-Surface Interaction at Atmospheric Pressure: Imaging of Electric Field and Temperature inside the Targeted Material. Sci Rep 2020; 10:2712. [PMID: 32066814 PMCID: PMC7026449 DOI: 10.1038/s41598-020-59345-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
The plasma-surface interaction is studied for a low temperature helium plasma jet generated at atmospheric pressure using Mueller polarimetry on an electro-optic target. The influence of the AC kHz operating frequency is examined by simultaneously obtaining images of the induced electric field and temperature of the target. The technique offers high sensitivity in the determination of the temperature variation on the level of single degrees. Simultaneously, the evolution of the electric field in the target caused by plasma-driven charge accumulation can be measured with the threshold of the order of 105 V/m. Even though a specific electro-optic crystal is used to obtain the results, they are generally applicable to dielectric targets under exposure of a plasma jet when they are of 0.5 mm thickness, have a dielectric constant greater than 4 and are at floating potential. Other techniques to examine the induced electric field in a target do not exist to the best of our knowledge, making this technique unique and necessary. The influence of the AC kHz operating frequency is important because many plasma jet designs used throughout the world operate at different frequency which changes the time between the ionization waves and hence the leftover species densities and stability of the plasma. Results for our jet show a linear operating regime between 20 and 50 kHz where the ionization waves are stable and the temperature increases linearly by 25 K. The charge deposition and induced electric fields do not increase significantly but the surface area does increase due to an extended surface propagation. Additionally, temperature mapping using a 100 μm GaAs probe of the plasma plume area has revealed a mild heat exchange causing a heating of several degrees of the helium core while the surrounding air slightly cools. This peculiarity is also observed without plasma in the gas plume.
Collapse
|
38
|
Bulson JM, Liveris D, Derkatch I, Friedman G, Geliebter J, Park S, Singh S, Zemel M, Tiwari RK. Non-thermal atmospheric plasma treatment of onychomycosis in an in vitro human nail model. Mycoses 2019; 63:225-232. [PMID: 31677288 PMCID: PMC7003814 DOI: 10.1111/myc.13030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Onychomycosis affects almost 6% of the world population. Topical azoles and systemic antifungal agents are of low efficacy and can have undesirable side effects. An effective, non-invasive therapy for onychomycosis is an unmet clinical need. OBJECTIVE Determine the efficacy threshold of non-thermal atmospheric plasma (NTAP) to treat onychomycosis in an in vitro model. METHODS A novel toe/nail-plate model using cadaver nails and agarose media inoculated with Candida albicans was exposed to a range of NTAP doses. RESULTS Direct exposure of C albicans and Trichophyton mentagrophytes to 12 minutes of NTAP results in complete killing at doses of 39 and 15 kPulses, respectively. Onset of reduced viability of C albicans to NTAP treatment through the nail plate occurs at 64 kPulses with 10× and 100× reduction at 212 and 550 kPulses, respectively. CONCLUSIONS NTAP is an effective, non-invasive therapeutic approach to onychomycosis that should be evaluated in a clinical setting.
Collapse
Affiliation(s)
| | - Dionysios Liveris
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Gary Friedman
- MOE Medical Devices LLC, Valhalla, NY, USA.,Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA, USA
| | | | - Sin Park
- MOE Medical Devices LLC, Valhalla, NY, USA
| | - Sarnath Singh
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Marc Zemel
- MOE Medical Devices LLC, Valhalla, NY, USA
| | - Raj K Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
39
|
Bauer G, Sersenová D, Graves DB, Machala Z. Cold Atmospheric Plasma and Plasma-Activated Medium Trigger RONS-Based Tumor Cell Apoptosis. Sci Rep 2019; 9:14210. [PMID: 31578342 PMCID: PMC6775051 DOI: 10.1038/s41598-019-50291-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/15/2023] Open
Abstract
The selective in vitro anti-tumor mechanisms of cold atmospheric plasma (CAP) and plasma-activated media (PAM) follow a sequential multi-step process. The first step involves the formation of primary singlet oxygen (1O2) through the complex interaction between NO2− and H2O2.1O2 then inactivates some membrane-associated catalase molecules on at least a few tumor cells. With some molecules of their protective catalase inactivated, these tumor cells allow locally surviving cell-derived, extracellular H2O2 and ONOO─ to form secondary 1O2. These species continue to inactivate catalase on the originally triggered cells and on adjacent cells. At the site of inactivated catalase, cell-generated H2O2 enters the cell via aquaporins, depletes glutathione and thus abrogates the cell’s protection towards lipid peroxidation. Optimal inactivation of catalase then allows efficient apoptosis induction through the HOCl signaling pathway that is finalized by lipid peroxidation. An identical CAP exposure did not result in apoptosis for nonmalignant cells. A key conclusion from these experiments is that tumor cell-generated RONS play the major role in inactivating protective catalase, depleting glutathione and establishing apoptosis-inducing RONS signaling. CAP or PAM exposure only trigger this response by initially inactivating a small percentage of protective membrane associated catalase molecules on tumor cells.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominika Sersenová
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - David B Graves
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
40
|
Bauer G, Sersenová D, Graves DB, Machala Z. Dynamics of Singlet Oxygen-Triggered, RONS-Based Apoptosis Induction after Treatment of Tumor Cells with Cold Atmospheric Plasma or Plasma-Activated Medium. Sci Rep 2019; 9:13931. [PMID: 31558835 PMCID: PMC6763425 DOI: 10.1038/s41598-019-50329-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 11/09/2022] Open
Abstract
Treatment of tumor cells with cold atmospheric plasma (CAP) or with plasma-activated medium (PAM) leads to a biochemical imprint on these cells. This imprint is mediated by primary singlet oxygen, which is mainly generated through the interaction between CAP-derived H2O2 and NO2-. This imprint is induced with a low efficiency as local inactivation of a few membrane-associated catalase molecules. As sustained generation of secondary singlet oxygen by the tumor cells is activated at the site of the imprint, a rapid bystander effect-like spreading of secondary singlet oxygen generation and catalase inactivation within the cell population is thus induced. This highly dynamic process is essentially driven by NOX1 and NOS of the tumor cells, and finally leads to intercellular RONS-driven apoptosis induction. This dynamic process can be studied by kinetic analysis, combined with the use of specific inhibitors at defined time intervals. Alternatively, it can be demonstrated and quantified by transfer experiments, where pretreated cells are mixed with untreated cells and bystander signaling is determined. These studies allow to conclude that the specific response of tumor cells to generate secondary singlet oxygen is the essential motor for their self-destruction, after a singlet oxygen-mediated triggering process by CAP or PAM.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominika Sersenová
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - David B Graves
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
41
|
Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N. Applications of Plasma-Liquid Systems: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2751. [PMID: 31461960 PMCID: PMC6747786 DOI: 10.3390/ma12172751] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
Plasma-liquid systems have attracted increasing attention in recent years, owing to their high potential in material processing and nanoscience, environmental remediation, sterilization, biomedicine, and food applications. Due to the multidisciplinary character of this scientific field and due to its broad range of established and promising applications, an updated overview is required, addressing the various applications of plasma-liquid systems till now. In the present review, after a brief historical introduction on this important research field, the authors aimed to bring together a wide range of applications of plasma-liquid systems, including nanomaterial processing, water analytical chemistry, water purification, plasma sterilization, plasma medicine, food preservation and agricultural processing, power transformers for high voltage switching, and polymer solution treatment. Although the general understanding of plasma-liquid interactions and their applications has grown significantly in recent decades, it is aimed here to give an updated overview on the possible applications of plasma-liquid systems. This review can be used as a guide for researchers from different fields to gain insight in the history and state-of-the-art of plasma-liquid interactions and to obtain an overview on the acquired knowledge in this field up to now.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium.
| | - Patrick Vanraes
- Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Boehm D, Bourke P. Safety implications of plasma-induced effects in living cells - a review of in vitro and in vivo findings. Biol Chem 2019; 400:3-17. [PMID: 30044756 DOI: 10.1515/hsz-2018-0222] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Cold atmospheric plasma is a versatile new tool in the biomedical field with applications ranging from disinfection, wound healing and tissue regeneration to blood coagulation, and cancer treatment. Along with improved insights into the underlying physical, chemical and biological principles, plasma medicine has also made important advances in the introduction into the clinic. However, in the absence of a standard plasma 'dose' definition, the diversity of the field poses certain difficulties in terms of comparability of plasma devices, treatment parameters and resulting biological effects, particularly with regards to the question of what constitutes a safe plasma application. Data from various in vitro cytotoxic and genotoxic studies along with in vivo findings from animal and human trials are reviewed to provide an overview of the current state of knowledge on the safety of plasma for biological applications. Treatment parameters employed in clinical studies were well tolerated but intense treatment conditions can also induce tissue damage or genotoxicity. There is a need identified to establish both guidelines and safety limits that ensure an absence of (long-term) side effects and to define treatments as safe for applications, where cell stimulation is desired, e.g. in wound healing, or those aimed at inducing cell death in the treatment of cancer.
Collapse
Affiliation(s)
- Daniela Boehm
- School of Food Science and Environmental Health, Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - Paula Bourke
- School of Food Science and Environmental Health, Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland
| |
Collapse
|
43
|
Bauer G. The synergistic effect between hydrogen peroxide and nitrite, two long-lived molecular species from cold atmospheric plasma, triggers tumor cells to induce their own cell death. Redox Biol 2019; 26:101291. [PMID: 31421409 PMCID: PMC6831866 DOI: 10.1016/j.redox.2019.101291] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Nitrite and H2O2 are long-lived species in cold atmospheric plasma and plasma-activated medium. It is known that their synergistic interaction is required for selective apoptosis induction in tumor cells that are treated with plasma-activated medium. This study shows that the interaction between nitrite and H2O2 leads to the formation of peroxynitrite, followed by singlet oxygen generation through the interaction between peroxynitrite and residual H2O2. This primary singlet oxygen causes local inactivation of few catalase molecules on the surface of tumor cells. As a consequence, H2O2 and peroxynitrite that are constantly produced by tumor cells and are usually decomposed by their protective membrane-associated catalase, are surviving at the site of locally inactivated catalase. This leads to the generation of secondary singlet oxygen through the interaction between tumor cell-derived H2O2 and peroxynitrite. This selfsustained process leads to autoamplification of secondary singlet oxygen generation and catalase inactivation. Inactivation of catalase allows the influx of H2O2 through aquaporins, leading to intracellular glutathione depletion and sensitization of the cells for apoptosis induction through lipid peroxidation. It also allows to establish intercellular apoptosis-inducing HOCl signaling, driven by active NOX1 and finalized by lipid peroxidation through hydroxyl radicals that activates the mitochondrial pathway of apoptosis. This experimentally established model is based on a triggering function of CAP and PAM-derived H2O2/nitrite that causes selective cell death in tumor cells based on their own ROS and RNS. This model explains the selectivity of CAP and PAM action towards tumor cells and is in contradiction to previous models that implicated that ROS/RNS from CAP or PAM were sufficient to directly cause cell death of tumor cells. H2O2 and nitrite generate peroxynitrite, followed by primary singlet oxygen formation. Primary singlet oxygen causes local inactivation of tumor cell protective catalase. Amplificatory generation of secondary singlet oxygen and catalase inactivation are established. Inactivation of catalase allows aquaporin-mediated influx of H2O2 and glutathione depletion. In this way, CAP and PAM trigger tumor cells to contribute to their own cell death.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
44
|
Heusler T, Bruno G, Bekeschus S, Lackmann JW, von Woedtke T, Wende K. Can the effect of cold physical plasma-derived oxidants be transported via thiol group oxidation? CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2019.100086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Cold Argon Plasma as Adjuvant Tumour Therapy on Progressive Head and Neck Cancer: A Preclinical Study. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102061] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Investigating cold argon plasma (CAP) for medical applications is a rapidly growing, innovative field of research. The controllable supply of reactive oxygen and nitrogen species through CAP has the potential for utilization in tumour treatment. Maxillofacial surgery is limited if tumours grow on vital structures such as the arteria carotis. Here CAP could be considered as an option for adjuvant intraoperative tumour therapy especially in the case of squamous cell carcinoma of the head and neck. Further preclinical research is necessary to investigate the efficacy of this technology for future clinical applications in cancer treatment. Initially, a variety of in vitro assays was performed on two cell lines that served as surrogate for the squamous cell carcinoma (SCC) and healthy tissue, respectively. Cell viability, motility and the activation of apoptosis in SCC cells (HNO97) was compared with those in normal HaCaT keratinocytes. In addition, induction of apoptosis in ex vivo CAP treated human tissue biopsies of patients with tumours of the head and neck was monitored and compared to healthy control tissue of the same patient. In response to CAP treatment, normal HaCaT keratinocytes differed significantly from their malignant counterpart HNO97 cells in cell motility only whereas cell viability remained similar. Moreover, CAP treatment of tumour tissue induced more apoptotic cells than in healthy tissue that was accompanied by elevated extracellular cytochrome c levels. This study promotes a future role of CAP as an adjuvant intraoperative tumour therapy option in the treatment of head and neck cancer. Moreover, patient-derived tissue explants complement in vitro examinations in a meaningful way to reflect an antitumoral role of CAP.
Collapse
|
46
|
|
47
|
Kaushik NK, Kaushik N, Linh NN, Ghimire B, Pengkit A, Sornsakdanuphap J, Lee SJ, Choi EH. Plasma and Nanomaterials: Fabrication and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E98. [PMID: 30646530 PMCID: PMC6358811 DOI: 10.3390/nano9010098] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
Application of plasma medicine has been actively explored during last several years. Treating every type of cancer remains a difficult task for medical personnel due to the wide variety of cancer cell selectivity. Research in advanced plasma physics has led to the development of different types of non-thermal plasma devices, such as plasma jets, and dielectric barrier discharges. Non-thermal plasma generates many charged particles and reactive species when brought into contact with biological samples. The main constituents include reactive nitrogen species, reactive oxygen species, and plasma ultra-violets. These species can be applied to synthesize biologically important nanomaterials or can be used with nanomaterials for various kinds of biomedical applications to improve human health. This review reports recent updates on plasma-based synthesis of biologically important nanomaterials and synergy of plasma with nanomaterials for various kind of biological applications.
Collapse
Affiliation(s)
- Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Neha Kaushik
- Department of Life Science, Hanyang University, Seoul 04763, Korea.
| | - Nguyen Nhat Linh
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Bhagirath Ghimire
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Anchalee Pengkit
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Jirapong Sornsakdanuphap
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Su-Jae Lee
- Department of Life Science, Hanyang University, Seoul 04763, Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| |
Collapse
|
48
|
Cold Physical Plasma Modulates p53 and Mitogen-Activated Protein Kinase Signaling in Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7017363. [PMID: 30733851 PMCID: PMC6348845 DOI: 10.1155/2019/7017363] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
Small reactive oxygen and nitrogen species (ROS/RNS) driven signaling plays a significant role in wound healing processes by controlling cell functionality and wound phase transitions. The application of cold atmospheric pressure plasma (CAP), a partially ionized gas expelling a variety of ROS and RNS, was shown to be effective in chronic wound management and contrastingly also in malignant diseases. The underlying molecular mechanisms are not well understood but redox signaling events are involved. As a central player, the cellular tumor antigen p53 governs regulatory networks controlling proliferation, death, or metabolism, all of which are grossly modulated by anti- and prooxidant signals. Using a human skin cell model, a transient phosphorylation and nuclear translocation of p53, preceded by the phosphorylation of upstream serine- (ATM) and serine/threonine-protein kinase (ATR), was detected after CAP treatment. Results indicate that ATM acts as a direct redox sensor without relevant contribution of phosphorylation of the histone A2X, a marker of DNA damage. Downstream events are the activation of checkpoint kinases Chk1/2 and several mitogen-activated (MAP) kinases. Subsequently, the expression of MAP kinase signaling effectors (e.g., heat shock protein Hsp27), epithelium derived growth factors, and cytokines (Interleukins 6 + 8) was increased. A number of p53 downstream effectors pointed at a decrease of cell growth due to DNA repair processes. In summary, CAP treatment led to an activation of cell repair and defense mechanisms including a modulation of paracrine inflammatory signals emphasizing the role of prooxidant species in CAP-related cell signaling.
Collapse
|
49
|
Heirman P, Van Boxem W, Bogaerts A. Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study. Phys Chem Chem Phys 2019; 21:12881-12894. [DOI: 10.1039/c9cp00647h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasma-treated liquids have great potential for biomedical applications.
Collapse
Affiliation(s)
- Pepijn Heirman
- PLASMANT Research group
- Department of Chemistry
- University of Antwerp
- BE-2610 Wilrijk
- Belgium
| | - Wilma Van Boxem
- PLASMANT Research group
- Department of Chemistry
- University of Antwerp
- BE-2610 Wilrijk
- Belgium
| | - Annemie Bogaerts
- PLASMANT Research group
- Department of Chemistry
- University of Antwerp
- BE-2610 Wilrijk
- Belgium
| |
Collapse
|
50
|
Li W, Yu H, Ding D, Chen Z, Wang Y, Wang S, Li X, Keidar M, Zhang W. Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radic Biol Med 2019; 130:71-81. [PMID: 30342190 DOI: 10.1016/j.freeradbiomed.2018.10.429] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Cold atmospheric plasma (CAP) is an emerging biomedical technique that shows great potential for cancer treatment. On the other hand, magnetic nanoparticles open up a wide field of possible applications in medicine. Here we seek to develop a novel dual cancer therapeutic method by integrating promising CAP and iron oxide-based magnetic nanoparticles (MNPs), and evaluate its underlying mechanism for targeted lung cancer treatment. For this purpose, the synergistic effects of CAP and iron oxide-based MNPs on cellular bioactivity, epidermal growth factor receptor (EGFR) expression, and EGFR downstream signaling pathways were investigated. Results showed that the effectiveness of CAP and iron oxide-based MNPs for synergistic strongly killed activity against lung cancer cells, and significantly inhibited cell proliferation via reduction of viability and induction of apoptosis. Importantly, CAP combining with iron oxide-based MNPs induced EGFR downregulation while CAP inhibited lung cancer cells via depressing pERK and pAKT. Translation of these findings to an in vivo setting demonstrates that CAP combining iron oxide-based MNPs is effective at preventing xenograft tumors. Thus, the integration of CAP and iron oxide-based MNPs provides a promising tool for the development of a new cancer treatment strategy.
Collapse
Affiliation(s)
- Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Hongli Yu
- Department of pharmaceutics, Weifang Medical University, Weifang, Shandong 261053, China
| | - Dejun Ding
- Department of Inorganic Chemistry, Weifang Medical University, Weifang, Shandong 261053, China
| | - Zhitong Chen
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA.
| | - Yonghong Wang
- Department of pharmaceutics, Weifang Medical University, Weifang, Shandong 261053, China
| | - Saisai Wang
- Department of pharmaceutics, Weifang Medical University, Weifang, Shandong 261053, China
| | - Xujing Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA.
| | - Weifen Zhang
- Department of pharmaceutics, Weifang Medical University, Weifang, Shandong 261053, China.
| |
Collapse
|