1
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
2
|
Qian H, Chen A, Lin D, Deng J, Gao F, Wei J, Wu X, Huang Y, Cai D, Chen X, Zheng X. Activation of the CD200/CD200R1 axis improves cognitive impairment by enhancing hippocampal neurogenesis via suppression of M1 microglial polarization and neuroinflammation in hypoxic-ischemic neonatal rats. Int Immunopharmacol 2024; 128:111532. [PMID: 38237226 DOI: 10.1016/j.intimp.2024.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Following hypoxic-ischemic brain damage (HIBD), there is a decline in cognitive function; however, there are no effective treatment strategies for this condition in neonates. This study aimed to evaluate the role of the cluster of differentiation 200 (CD200)/CD200R1 axis in cognitive function following HIBD using an established model of HIBD in postnatal day 7 rats. Western blotting analysis was conducted to evaluate the protein expression levels of CD200, CD200R1, proteins associated with the PI3K/Akt-NF-κB pathway, and inflammatory factors such as TNF-α, IL-1β, and IL-6 in the hippocampus. Additionally, double-immunofluorescence labeling was utilized to evaluate M1 microglial polarization and neurogenesis in the hippocampus. To assess the learning and memory function of the experimental rats, the Morris water maze (MWM) test was conducted. HIBDleads to a decrease in the expression of CD200 and CD200R1 proteins in the neonatal rat hippocampus, while simultaneously increasing the expression of TNF-α, IL-6, and IL-1β proteins, ultimately resulting in cognitive impairment. The administration of CD200Fc, a fusion protein of CD200, was found to enhance the expression of p-PI3K and p-Akt, but reduce the expression of p-NF-κB. Additionally, CD200Fc inhibited M1 polarization of microglia, reduced neuroinflammation, improved hippocampal neurogenesis, and mitigated cognitive impairment caused by HIBD in neonatal rats. In contrast, blocking the interaction between CD200 and CD200R1 with the anti-CD200R1 antibody (CD200R1 Ab) exerted the opposite effect. Furthermore, the PI3K specific activator, 740Y-P, significantly increased the expression of p-PI3K and p-Akt, but reduced p-NF-κB expression. It also inhibited M1 polarization of microglia, reduced neuroinflammation, and improved hippocampal neurogenesis and cognitive function in neonatal rats with HIBD. Our findings illustrate that activation of the CD200/CD200R1 axis inhibits the NF-κB-mediated M1 polarization of microglia to improve HIBD-induced cognitive impairment and hippocampal neurogenesis disorder via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Haitao Qian
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Daoyi Lin
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianhui Deng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianjie Wei
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Xuyang Wu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongxin Huang
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Dingliang Cai
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaohui Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of "Belt and Road", Fuzhou, China.
| |
Collapse
|
3
|
Zhou T, Li J, Cheng A, Zuo Z. Desflurane Post-treatment Reduces Hypoxic-ischemic Brain Injury via Reducing Transient Receptor Potential Ankyrin 1 in Neonatal Rats. Neuroscience 2023; 522:121-131. [PMID: 37196978 PMCID: PMC10330691 DOI: 10.1016/j.neuroscience.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Perinatal hypoxic-ischemic (HI) brain injury leads to mortality and morbidity in neonates and children. There are no effective and practical methods to attenuate this brain injury. This study determined whether desflurane, a volatile anesthetic with limited effect on the cardiovascular system, protected against HI-induced brain damage and the role of transient receptor potential ankyrin 1 (TRPA1), a mediator for simulated ischemia-induced myelin damage, in this protection. Seven-day-old male and female Sprague-Dawley rats had brain HI. They were exposed to 4.8%, 7.6% or 11.4% desflurane immediately or 4.8% desflurane at 0.5, 1 or 2 h after the HI. Brain tissue loss was evaluated 7 days later. Neurological functions and brain structures of rats with HI and 4.8% desflurane post-treatment were evaluated 4 weeks after the HI. TRPA1 expression was determined by Western blotting. HC-030031, a TRPA1 inhibitor, was used to determine the role of TRPA1 in the HI-induced brain injury. HI induced brain tissue and neuronal loss, which was attenuated by all tested concentrations of desflurane. Desflurane post-treatment also improved motor function, learning and memory in rats with brain HI. Brain HI increased the expression of TRPA1 and this increase was inhibited by desflurane. TRPA1 inhibition reduced HI-induced brain tissue loss and impairment of learning and memory. However, the combination of TRPA1 inhibition and desflurane post-treatment did not preserve brain tissues, learning and memory better than TRPA1 inhibition or desflurane post-treatment alone. Our results suggest that desflurane post-treatment induces neuroprotection against neonatal HI. This effect may be mediated by inhibiting TRPA1.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA; Department of Anesthesiology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Aobing Cheng
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA; Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510515, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
4
|
Li S, Wan L, Sun J, Yan W, Wang J, Gao X, Ren C, Hao L. New Insights into Mechanisms of Ferroptosis Associated with Immune Infiltration in Neonatal Hypoxic-Ischemic Brain Damage. Cells 2022; 11:3778. [PMID: 36497037 PMCID: PMC9736049 DOI: 10.3390/cells11233778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The mechanisms underlying ferroptosis in neonatal hypoxic-ischemic brain damage (HIBD) remain unclear. METHOD Four microarray datasets were collected from the GEO database (three mRNA datasets GSE23317, GSE144456, and GSE112137, and one miRNA microarray dataset GSE184939). Weighted gene co-expression network analysis (WGCNA) was used to identify modules of HIBD-related genes. The ferroptosis-related genes were extracted from FerrDb, of which closely correlated to HIBD were obtained after the intersection with existing HIBD's DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as protein-protein interaction (PPI) network analysis were subsequently conducted. Cytoscape was used to identify central genes. Immune cell infiltration analysis was performed by the CIBERSORT algorithm. RESULT Fifty-six ferroptosis-related differentially expressed genes (FRDEGs) were screened, mainly related to ferroptosis, autophagy, hypoxia response, metabolic pathways, and immune inflammation. The seven optimal hub FRDEGs were obtained by intersecting with key modules of WGCNA. Then, the expression levels of the seven optimal hub FRDEGs were validated in the GSE144456 and GSE112137 datasets, and the ferroptosis-related mRNA-miRNA network was established. In addition, this study revealed immune cell infiltration in the HIBD cerebral cortex and the interaction between immune cells. Moreover, notably, specific FRDEGs were strongly positively correlated with immune function. CONCLUSIONS The mechanism of ferroptosis is intricate and closely related to neonatal HIBD. Therefore, targeting ferroptosis-related gene therapy and immunotherapy may have therapeutic prospects for neonatal HIBD.
Collapse
Affiliation(s)
- Shangbin Li
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Li Wan
- Institute for Epidemic Disease Control, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Jingfei Sun
- Department of Pediatrics, Zhengding People’s Hospital, Shijiazhuang 050000, China
| | - Weichen Yan
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Jie Wang
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Xiong Gao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Changjun Ren
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Ling Hao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
5
|
Huang HZ, Hu XF, Wen XH, Yang LQ. Serum neuron-specific enolase, magnetic resonance imaging, and electrophysiology for predicting neurodevelopmental outcomes of neonates with hypoxic-ischemic encephalopathy: a prospective study. BMC Pediatr 2022; 22:290. [PMID: 35581579 PMCID: PMC9112575 DOI: 10.1186/s12887-022-03329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of mortality and morbidity. Effective indicators for the early diagnosis of brain injury after HIE and prognosis are lacking. This study aimed to examine the predictive value of serum neuron-specific enolase (NSE), amplitude-integrated electroencephalography (aEEG), and magnetic resonance imaging (MRI), alone and in combination, for the neurological outcomes in neonates with HIE. Methods Newborns with HIE born and treated at the Third Affiliated Hospital of An-Hui Medical University were consecutively included in this prospective cohort study (June 2013 to December 2020). Encephalopathy was classified as mild, moderate or severe according to Samat and Sarnat. All patients were assessed serum 1-day NSE and 3-day NSE levels after birth. The children were classified by neurological examination and Bayley Scales of Infant Development II at 18 months of age. ROC analysis was used to evaluate the predictive accuracy of the neurodevelopment outcomes. Results A total of 50 HIE neonates were enrolled (normal group: 32 (64.0%), moderate delay: 5 (10.0%), severe delay: 30(26.0%)) according to Bayley II scores. Serum 3-day NSE levels increased with worsening neurodevelopment outcomes (normal: 20.52 ± 6.42 μg/L vs. moderate: 39.82 ± 5.92 μg/L vs. severe: 44.60 ± 9.01 μg/L, P < 0.001). The MRI findings at 4–7 days after birth were significantly different among the three groups (P < 0.001). Forty-two (84.0%) children had abnormal aEEG. The combination of the three abnormalities combined together had 100% sensitivity, 97.70% specificity, 98.25% PPV, and 99.98% NPV. Conclusions MRI, aEEG, and 3-day NSE can predict the neurological prognosis of newborns with HIE without hypothermia treatment. Their combination can improve the predictive ability for long-term neurobehavioral prognosis.
Collapse
Affiliation(s)
- Hui-Zhi Huang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Neonatology, Anhui Provincial Children's Hospital/Children's Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Feng Hu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao-Hong Wen
- Department of Pediatrics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Qi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Guan X, Zhou W, Li L, Peng Q. Dexmedetomidine Alleviates Hypoxic-Ischemic Brain Damage in Neonatal Rats Through Reducing MicroRNA-134-5p-Mediated NLRX1 Downregulation. J Stroke Cerebrovasc Dis 2022; 31:106411. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
|
7
|
Comprehensive Analysis of RNA Expression Profile Identifies Hub miRNA-circRNA Interaction Networks in the Hypoxic Ischemic Encephalopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6015473. [PMID: 34603484 PMCID: PMC8481051 DOI: 10.1155/2021/6015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
Hypoxic ischemic encephalopathy (HIE) is classified as a sort of serious nervous system syndrome that occurs in the early life period. Noncoding RNAs had been confirmed to have crucial roles in human diseases. So far, there were few systematical and comprehensive studies towards the expression profile of RNAs in the brain after hypoxia ischemia. In this study, 31 differentially expressed microRNAs (miRNAs) with upregulation were identified. In addition, 5512 differentially expressed mRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) were identified in HIE groups. Bioinformatics analysis showed these circRNAs and mRNAs were significantly enriched in regulation of leukocyte activation, response to virus, and neutrophil degranulation. Pathway and its related gene network analysis indicated that HLA - DPA1, HLA - DQA2, HLA - DQB1, and HLA - DRB4 have a more crucial role in HIE. Finally, miRNA-circRNA-mRNA interaction network analysis was also performed to identify hub miRNAs and circRNAs. We found that miR-592 potentially targeting 5 circRNAs, thus affecting 15 mRNA expressions in HIR. hsa_circ_0068397 and hsa_circ_0045698 were identified as hub circRNAs in HIE. Collectively, using RNA-seq, bioinformatics analysis, and circRNA/miRNA interaction prediction, we systematically investigated the differentially expressed RNAs in HIE, which could give a new hint of understanding the pathogenesis of HIE.
Collapse
|
8
|
Huang J, Tan YX, Xue LL, Du RL, Chen JJ, Chen L, Li TT, Bai X, Yang SJ, Xiong LL, Wang TH. Panax notoginseng saponin attenuates the hypoxic-ischaemic injury in neonatal rats by regulating the expression of neurotrophin factors. Eur J Neurosci 2021; 54:6304-6321. [PMID: 34405468 DOI: 10.1111/ejn.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023]
Abstract
Neonatal hypoxic-ischaemic (HI) injury is a serious complication of neonatal asphyxia and the leading cause of neonatal acute death and chronic neurological injury, and the effective therapeutic method is lacking to improve patients' outcomes. We reported in this study that panax notoginseng saponin (PNS) may provide a treatment option for HI. HI model was established using neonatal Sprague-Dawley rats and then intraperitoneally injected with different dosage of PNS, once a day for 7 days. Histological staining and behavioural evaluations were performed to elucidate the pathological changes and neurobehavioural variation after PNS treatment. We found PNS administration significantly reduced the infarct volume of brain tissues and improved the autonomous activities of neonatal rats, especially with higher dosage. PNS treatment at 40 mg/kg reduced neuronal damage, suppressed neuronal apoptosis and depressed astroglial reactive response. Moreover, the long-term cognitive and motor functions were also improved after PNS treatment at 40 mg/kg. Importantly, PNS treatment elevated the levels of BDNF and TrkB but decreased the expression of p75NTR both in the cortex and hippocampus of HI rats. The therapeutic efficacy of PNS might be correlated with PNS-activated BDNF/TrkB signalling and inactivation of p75NTR expression, providing a novel potential therapy for alleviating HI injury.
Collapse
Affiliation(s)
- Jin Huang
- Institute of Neuroscience, School of Preclinical Medicine, Kunming Medical University, Kunming, China
| | - Ya-Xin Tan
- Institute of Neuroscience, School of Preclinical Medicine, Kunming Medical University, Kunming, China.,Department of Pediatrics, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lu-Lu Xue
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Ruo-Lan Du
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Jun-Jie Chen
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Ting Li
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Bai
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Si-Jin Yang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ting-Hua Wang
- Animal Zoology Department, Kunming Medical University, Kunming, China.,Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Xu L, Li G, Tang X, Feng C, Li M, Jiang X, Gu Y, Yun Y, Lu L, Feng X, Ding X, Sun B. MiR-375-3p mediates reduced pineal function in hypoxia-ischemia brain damage. Exp Neurol 2021; 344:113814. [PMID: 34280452 DOI: 10.1016/j.expneurol.2021.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The functional roles of microRNAs (miRNAs) have been studied in various diseases, including hypoxic-ischemic brain damage (HIBD). However, changes in the expression of miRNAs and the underlying mechanisms in the pineal gland during HIBD remain unknown. Based on the previous study by microRNA array, hundreds of miRNAs showed altered expression patterns in the pineal gland in a rat model of HIBD. MiR-375-3p was found to be significantly upregulated and abundant in the pineal gland. Further investigation in an in vitro HI model of pinealocytes showed that miRNA-375 exacerbated the damage to pineal function. After oxygen-glucose deprivation / reoxygenation (OGD/R), miR-375-3p expression increased, while aralkylamine N-acetyltransferase (AANAT) expression and melatonin (MT) secretion decreased. Overexpression of miRNA-375 in pinealocytes aggravated the influence of OGD/R on AANAT expression and MT secretion. Because miRNA-375 overexpression in pinealocytes induced decreased rasd1 mRNA and protein expression, rasd1 may mediate the effect of miR-375-3p on pineal function. Furthermore, miR-375-3p aggravated the cognitive impairment caused by HIBD in rats, as observed by Morris water maze test, and also affected emotion and circadian rhythm in HIBD-treated rats. Thus, miR-375-3p may be a key regulatory molecule in the pineal gland following HIBD, and targeting of miR-375-3p may represent a new strategy for the treatment of HIBD.
Collapse
Affiliation(s)
- Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xiaojuan Tang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xiaolu Jiang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yan Gu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yajing Yun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Lianghua Lu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China.
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
10
|
Frajewicki A, Laštůvka Z, Borbélyová V, Khan S, Jandová K, Janišová K, Otáhal J, Mysliveček J, Riljak V. Perinatal hypoxic-ischemic damage: review of the current treatment possibilities. Physiol Res 2020; 69:S379-S401. [PMID: 33464921 DOI: 10.33549/physiolres.934595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a disorder with heterogeneous manifestation due to asphyxia during perinatal period. It affects approximately 3-12 children per 1000 live births and cause death of 1 million neonates worldwide per year. Besides, motor disabilities, seizures, impaired muscle tone and epilepsy are few of the consequences of hypoxic-ischemic encephalopathy. Despite an extensive research effort regarding various treatment strategies, therapeutic hypothermia with intensive care unit supportive treatment remains the only approved method for neonates who have suffered from moderate to severe hypoxic-ischemic encephalopathy. However, these protocols are only partially effective given that many infants still suffer from severe brain damage. Thus, further research to systematically test promising neuroprotective treatments in combination with hypothermia is essential. In this review, we discussed the pathophysiology of hypoxic-ischemic encephalopathy and delved into different promising treatment modalities, such as melatonin and erythropoietin. However, preclinical studies and clinical trials are still needed to further elucidate the mechanisms of action of these modalities.
Collapse
Affiliation(s)
- A Frajewicki
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gamdzyk M, Doycheva DM, Kang R, Tang H, Travis ZD, Tang J, Zhang JH. GW0742 activates miR-17-5p and inhibits TXNIP/NLRP3-mediated inflammation after hypoxic-ischaemic injury in rats and in PC12 cells. J Cell Mol Med 2020; 24:12318-12330. [PMID: 33034416 PMCID: PMC7686982 DOI: 10.1111/jcmm.15698] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the effects of PPAR‐β/δ receptor agonist GW0742 on neuroinflammation in a rat model of hypoxia‐ischaemia (HI) and in PC12 cells in OGD model. HI was induced by ligating the common carotid artery and inducing hypoxia for 150 minutes. Immunofluorescence was used for quantification of microglia activation and for determining cellular localization of PPAR‐β/δ. Expression of proteins was measured by Western blot. Activation of miR‐17‐5p by GW0742 was assessed in PC12 cells by Dual‐Luciferase Reporter Gene Assay. The endogenous expression of TXNIP, NLRP3, cleaved caspase‐1 and IL‐1β was increased after HI. GW0742 treatment significantly reduced the number of activated pro‐inflammatory microglia in ipsilateral hemisphere after HI. Mechanistically, GW0742 significantly decreased the expression of TXNIP, NLRP3, IL‐6 and TNF‐α. Either PPAR‐β/δ antagonist GSK3787, miR‐17‐5p inhibitor, or TXNIP CRISPR activation abolished the anti‐inflammatory effects of GW0742. Activation of PPAR‐β/δ by GW0742 activated miR‐17‐5p expression in PC12 cells and increased cell viability after OGD, which was accompanied by decreased expression of TXNIP and reduced secretion of IL‐1β and TNF‐α. In conclusion, GW0742 may be a promising neurotherapeutic for the management of HI patients.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ruiqing Kang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Zackary D Travis
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
12
|
Bustelo M, Barkhuizen M, van den Hove DLA, Steinbusch HWM, Bruno MA, Loidl CF, Gavilanes AWD. Clinical Implications of Epigenetic Dysregulation in Perinatal Hypoxic-Ischemic Brain Damage. Front Neurol 2020; 11:483. [PMID: 32582011 PMCID: PMC7296108 DOI: 10.3389/fneur.2020.00483] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Placental and fetal hypoxia caused by perinatal hypoxic-ischemic events are major causes of stillbirth, neonatal morbidity, and long-term neurological sequelae among surviving neonates. Brain hypoxia and associated pathological processes such as excitotoxicity, apoptosis, necrosis, and inflammation, are associated with lasting disruptions in epigenetic control of gene expression contributing to neurological dysfunction. Recent studies have pointed to DNA (de)methylation, histone modifications, and non-coding RNAs as crucial components of hypoxic-ischemic encephalopathy (HIE). The understanding of epigenetic dysregulation in HIE is essential in the development of new clinical interventions for perinatal HIE. Here, we summarize our current understanding of epigenetic mechanisms underlying the molecular pathology of HI brain damage and its clinical implications in terms of new diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Martín Bustelo
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Melinda Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Harry Wilhelm M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Martín A Bruno
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - C Fabián Loidl
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonio W Danilo Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Facultad de Ciencias Médicas, Instituto de Investigación e Innovación de Salud Integral, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| |
Collapse
|
13
|
The Role of Circular RNAs in Brain Injury. Neuroscience 2020; 428:50-59. [PMID: 31917349 DOI: 10.1016/j.neuroscience.2019.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
Circular RNAs are an increasingly important topic in non-coding RNA biology, drawing considerable attention in recent years. Accumulating evidence suggests a critical role for circular RNAs in both early and latent stages of disease pathogenesis. Circular RNAs are abundantly expressed in brain tissue, with significant implications for neural development and disease progression. Disruption of these processes, including those seen in response to brain injury, can have serious consequences such as hemiplegia, aphasia, coma, and death. In this review, we describe the role of circular RNAs in the context of brain injury and explore the potential connection between circular RNAs, brain hypoxic ischemic injury, ischemia-reperfusion injury, and traumatic injury.
Collapse
|
14
|
Xue LL, Wang F, Niu RZ, Tan YX, Liu J, Jin Y, Ma Z, Zhang ZB, Jiang Y, Chen L, Xia QJ, Chen JJ, Wang TH, Xiong LL. Offspring of rats with cerebral hypoxia-ischemia manifest cognitive dysfunction in learning and memory abilities. Neural Regen Res 2020; 15:1662-1670. [PMID: 32209770 PMCID: PMC7437586 DOI: 10.4103/1673-5374.276359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a serious neurological disease, often resulting in long-term neurodevelopmental disorders among surviving children. However, whether these neurodevelopmental issues can be passed to offspring remains unclear. The right common carotid artery of 7-day-old parental-generation rats was subjected to permanent ligation using a vessel electrocoagulator. Neonatal hypoxic-ischemic rat models were established by subjecting the rats to 8% O2–92% N2 for 2 hours. The results showed that 24 hours after hypoxia and ischemia, pathological damage, cerebral atrophy, liquefaction, and impairment were found, and Zea-Longa scores were significantly increased. The parental-generation rats were propagated at 3 months old, and offspring were obtained. No changes in the overall brain structures of these offspring rats were identified by magnetic resonance imaging. However, the escape latency was longer and the number of platform crossings was reduced among these offspring compared with normal rats. These results indicated that the offspring of hypoxic-ischemic encephalopathy model rats displayed cognitive impairments in learning and memory. This study was approved by the Animal Care & Welfare Committee of Kunming Medical University, China in 2018 (approval No. kmmu2019072).
Collapse
Affiliation(s)
- Lu-Lu Xue
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province; Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Fang Wang
- Department of Science and Technology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui-Ze Niu
- Department of Laboratory Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ya-Xin Tan
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jia Liu
- Department of Laboratory Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuan Jin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zheng Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Jiang
- Department of Laboratory Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Chen
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jun-Jie Chen
- Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province; Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
15
|
Abstract
Hypoxic-ischemic encephalopathy is a subtype of neonatal encephalopathy and a major contributor to global neonatal morbidity and mortality. Despite advances in obstetric and neonatal care there are still challenges in accurate determination of etiology of neonatal encephalopathy. Thus, identification of intrapartum risk factors and comprehensive evaluation of the neonate is important to determine the etiology and severity of neonatal encephalopathy. In developed countries, therapeutic hypothermia as a standard of care therapy for neonates with hypoxic-ischemic encephalopathy has proven to decrease incidence of death and neurodevelopmental disabilities, including cerebral palsy in surviving children. Advances in neuroimaging, brain monitoring modalities, and biomarkers of brain injury have improved the ability to diagnose, monitor, and treat newborns with encephalopathy. However, challenges remain in early identification of neonates at risk for hypoxic-ischemic brain injury, and determination of the timing and extent of brain injury. Using imaging studies such as Neonatal MRI and MR spectroscopy have proven to be most useful in predicting outcomes in infants with encephalopathy within the first week of life, although comprehensive neurodevelopmental assessments still remains the gold standard for determining long term outcomes. Future studies are needed to identify other newborns with encephalopathy that might benefit from therapeutic hypothermia and to determine the efficacy of other adjunctive neuroprotective strategies. This review focuses on newer evidence and advances in diagnoses and management of infants with neonatal encephalopathy, including novel therapies, as well as prognostication of outcomes to childhood.
Collapse
|
16
|
Fierman AH. Foreword: Update on the current management of newborns with neonatal encephalopathy. Curr Probl Pediatr Adolesc Health Care 2019; 49:100648. [PMID: 31439416 DOI: 10.1016/j.cppeds.2019.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Jiang L, Li H, Fan Z, Zhao R, Xia Z. Circular RNA expression profiles in neonatal rats following hypoxic-ischemic brain damage. Int J Mol Med 2019; 43:1699-1708. [PMID: 30816430 PMCID: PMC6414165 DOI: 10.3892/ijmm.2019.4111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) have been studied in a number of diseases. However, the roles of circRNAs in hypoxic‑ischemic brain damage (HIBD) remains unknown. In the present study, high throughput sequencing was used to profile altered circRNAs in HIBD rats. A total of 66 circRNAs were identified to be differentially expressed (fold‑change >2 and P‑value <0.05) in HIBD rats compared with the control group, including 20 upregulated and 46 downregulated circRNAs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that numerous mRNAs transcribed from the host genes of altered circRNAs were involved in brain damage and neural regeneration. The interaction of circRNA/microRNA was predicted based on TargetScan and miRanda. The results of this study demonstrated an altered circRNA expression pattern in HIBD rats and suggests important roles in HIBD physiological and pathological processes. These findings suggest a novel focus for future studies investigating the molecular mechanism underlying HIBD and possibilities for the treatment of HIBD through modulating circRNAs.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210097, P.R. China
| | - Huijuan Li
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210097, P.R. China
| | - Zhongmin Fan
- Department of Pediatrics, The BenQ Hospital, Nanjing Medical University, Nanjing, Jiangsu 210019, P.R. China
| | - Ruibin Zhao
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
18
|
Role of PPAR-β/δ/miR-17/TXNIP pathway in neuronal apoptosis after neonatal hypoxic-ischemic injury in rats. Neuropharmacology 2018; 140:150-161. [PMID: 30086290 DOI: 10.1016/j.neuropharm.2018.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
Activation of peroxisome proliferator-activated receptor beta/delta (PPAR-β/δ), a nuclear receptor acting as a transcription factor, was shown to be protective in various models of neurological diseases. However, there is no information about the role of PPAR-β/δ as well as its molecular mechanisms in neonatal hypoxia-ischemia (HI). In the present study, we hypothesized that PPAR-β/δ agonist GW0742 can activate miR-17-5p, consequently inhibiting TXNIP and ASK1/p38 pathway leading to attenuation of apoptosis. Ten-day-old rat pups were subjected to right common carotid artery ligation followed by 2.5 h hypoxia. GW0742 was administered intranasally 1 and 24 h post HI. PPAR-β/δ receptor antagonist GSK3787 was administered intranasally 1 h before and 24 h after HI, antimir-17-5p and TXNIP CRISPR activation plasmid were administered intracerebroventricularly 24 and 48 h before HI, respectively. Brain infarct area measurement, neurological function tests, western blot, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), Fluoro-Jade C and immunofluorescence staining were conducted. GW0742 reduced brain infarct area, brain atrophy, apoptosis, and improved neurological function at 72 h and 4 weeks post HI. Furthermore, GW0742 treatment increased PPAR-β/δ nuclear expression and miR-17-5p level and reduced TXNIP in ipsilateral hemisphere after HI, resulting in inhibition of ASK1/p38 pathway and attenuation of apoptosis. Inhibition of PPAR-β/δ receptor and miR-17-5p and activation of TXNIP reversed the protective effects. For the first time, we provide evidence that intranasal administration of PPAR-β/δ agonist GW0742 attenuated neuronal apoptosis at least in part via PPAR-β/δ/miR-17/TXNIP pathway. GW0742 could represent a therapeutic target for treatment of neonatal hypoxic ischemic encephalopathy (HIE).
Collapse
|
19
|
Zhu H, Qiao L, Sun Y, Yin L, Huang L, Jiang L, Li J. Basic fibroblast growth factor enhances cell proliferation in the dentate gyrus of neonatal rats following hypoxic–ischemic brain damage. Neurosci Lett 2018; 673:67-72. [DOI: 10.1016/j.neulet.2018.01.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 01/08/2023]
|
20
|
Wang H, Chen Z, Li Y, Ji Q. NG25, an inhibitor of transforming growth factor‑β‑activated kinase 1, ameliorates neuronal apoptosis in neonatal hypoxic‑ischemic rats. Mol Med Rep 2017; 17:1710-1716. [PMID: 29138854 PMCID: PMC5780114 DOI: 10.3892/mmr.2017.8024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/29/2017] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) was found to be activated by TGF-β and acts as a central regulator of cell death in various types of disease. However, the expression and function of TAK1 in the neonatal brain following hypoxia-ischemia (HI) remains unclear. In the present study, western blotting and immunofluorescence were employed to determine the expression and distribution of TAK1 in the brain cortex of a perinatal HI rat model. In addition, the specific inhibitor of TAK1, NG25 was administered via intracerebroventricular injection, prior to insult of the neonatal rat brains, for neuroprotection. Western blotting and double immunofluorescence indicated that an increased expression level of phosphorylated-TAK1 was observed, and was localized with neurons and astrocytes, compared with the sham group. Further study demonstrated that injection of NG25 prior to insult significantly inhibited TAK1/c-Jun N-terminal kinases activity and dramatically ameliorated acute hypoxic-ischemic cerebral injury by inhibiting cell apoptosis in perinatal rats. Thus, NG25 ameliorates neuronal apoptosis in neonatal HI rats by inhibiting TAK1 expression and cell apoptosis. In addition, NG25 may serve as a promising novel neuroprotective inhibitor for perinatal cerebral injury.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhong Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Li
- Department of Ophthalmology, Fourth Affiliated Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiaoyun Ji
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Goren B, Cakir A, Ocalan B, Serter Kocoglu S, Alkan T, Cansev M, Kahveci N. Long-term cognitive effects of uridine treatment in a neonatal rat model of hypoxic-ischemic encephalopathy. Brain Res 2017; 1659:81-87. [DOI: 10.1016/j.brainres.2017.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/19/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023]
|
22
|
Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD. 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 2017; 75:166-182. [PMID: 28161509 DOI: 10.1016/j.neubiorev.2017.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.
Collapse
Affiliation(s)
- M Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - D L A van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Child Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H W M Steinbusch
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Ecuador.
| |
Collapse
|
23
|
Hao H, Li S, Tang H, Liu B, Cai Y, Shi C, Xiao X. NQDI-1, an inhibitor of ASK1 attenuates acute perinatal hypoxic-ischemic cerebral injury by modulating cell death. Mol Med Rep 2016; 13:4585-92. [PMID: 27081917 PMCID: PMC4878550 DOI: 10.3892/mmr.2016.5123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed protein kinase, which regulates cell fate in numerous injury conditions. Therefore, ASK1 may be a promising novel therapeutic target for injury. However, the expression and distribution of ASK1 in the perinatal brain following hypoxia-ischemia (HI) remains to be elucidated. In the present study, western blotting and immunofluorescence were used to determine the expression and distribution of ASK1 and any associated downstream targets in the perinatal rat brain following HI. NQDI‑1, a specific inhibitor of ASK1 was intracerebroventricularly injected following neonatal rats brain insult for neuroprotection. The results revealed an increased expression of ASK1 and this expression was localized to the neurons and astrocytes, compared with the sham controls. Additionally, it was demonstrated that the ASK1/ c‑Jun N‑terminal kinases (JNK) pathway was involved in the brain damage following HI in neonatal rats. Notably, NQDI‑1 significantly inhibited the in vivo expression levels of ASK1, phosphorylated (p‑)JNK, p‑c‑Jun, p53 and caspase 3. Reduced acute hypoxic‑ischemic cerebral injury and cell apoptosis was observed following the injection of NQDI‑1. Collectively, NQDI-1 attenuated acute perinatal hypoxic‑ischemic cerebral injury by inhibiting the expression of ASK1 and cell apoptosis. This may be a promising novel neuroprotective inhibitor for perinatal cerebra injury.
Collapse
Affiliation(s)
- Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Hui Tang
- Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630 P.R. China
| | - Bingqing Liu
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Congcong Shi
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
24
|
Yao D, Zhang W, He X, Wang J, Jiang K, Zhao Z. Establishment and identification of a hypoxia-ischemia brain damage model in neonatal rats. Biomed Rep 2016; 4:437-443. [PMID: 27073628 DOI: 10.3892/br.2016.610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/25/2016] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to set up a reliable model of severe hypoxia-ischemia brain damage (HIBD) in neonatal rats and several methods were used to identify whether the model was successful. A total of 40 healthy 7-day-old Sprague-Dawley rats were randomly divided into 2 groups: The sham-surgery group (n=18) and the HIBD model group (n=22). The HIBD model was produced according to the traditional Rice method. The rats were anesthetized with ethyl ether. The left common carotid artery (CCA) was exposed, ligated and cut. Following this, the rats were exposed to hypoxia in a normobaric chamber filled with 8% oxygen and 92% nitrogen for 2 h. In the sham-surgery group, the left CCA was exposed but was not ligated, cut or exposed to hypoxia. The neurobehavioral changes of the rats were observed in the 24 h after HIBD. The brains were collected after 72 h to observe the pathological morphological changes of the brain tissue. The behavioral ability and neurobehavioral changes were studied in each group. The water maze test was used for evaluating the learning-memory ability when the rats were 28 days old. Compared with the sham-surgery group, all the HIBD model rats had a lag of motor development. The rats had evident changes in anatomy and Nissl staining, and cognitive impairment was shown through the result of the water maze. Therefore, the model of HIBD in neonatal rats is feasible and provides a reliable model for subsequent studies.
Collapse
Affiliation(s)
- Dan Yao
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Weiran Zhang
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xue He
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jinhu Wang
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Kewen Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhengyan Zhao
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
25
|
Integrating neurocritical care approaches into neonatology: should all infants be treated equitably? J Perinatol 2015; 35:977-81. [PMID: 26248128 DOI: 10.1038/jp.2015.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
To improve the neurologic outcomes for infants with brain injury, neonatal providers are increasingly implementing neurocritical care approaches into clinical practice. Term infants with brain injury have been principal beneficiaries of neurologically-integrated care models to date, as evidenced by the widespread adoption of therapeutic hypothermia protocols for hypoxic-ischemic encephalopathy. Innovative therapeutic and diagnostic support for very low birth weight infants with brain injury has lagged behind. Given that concern for significant future neurodevelopmental impairment can lead to decisions to withdraw life supportive care at any gestational age, providing families with accurate prognostic information is essential for all infants. Current variable application of multidisciplinary neurocritical care approaches to infants at different gestational ages may be ethically problematic and reflect distinct perceptions of brain injury for infants born extremely premature.
Collapse
|
26
|
Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2015; 16:22368-401. [PMID: 26389893 PMCID: PMC4613313 DOI: 10.3390/ijms160922368] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Medical University Innsbruck, Tyrol 6020, Austria.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
27
|
Microarray Profiling and Co-Expression Network Analysis of LncRNAs and mRNAs in Neonatal Rats Following Hypoxic-ischemic Brain Damage. Sci Rep 2015; 5:13850. [PMID: 26349411 PMCID: PMC4563552 DOI: 10.1038/srep13850] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in cellular homeostasis. However, little is known about their effect in developing rat brains with hypoxic-ischemic brain damage (HIBD). To explore the expression and function of lncRNA in HIBD, we analyzed the expression profiles of lncRNAs in hypoxic-ischemic (HI) brains and sham control using microarray analysis. The results showed a remarkable difference in lncRNA between HI and sham brains. A total of 322 lncRNAs were found to be differentially expressed in HI brains, compared to sham control. Among these, BC088414 was one of the most significantly urpregulated lncRNAs. In addition, 375 coding genes were differentially expressed between HI brains and sham control. Pathway and gene ontology analysis indicated that the upregulated coding genes mostly involved in wounding, inflammation and defense, whereas the downregulated transcripts were largely associated with neurogenesis and repair. Moreover, coding non-coding co-expression network analysis showed that the BC088414 lncRNA expression was correlated with apoptosis-related genes, including Casp6 and Adrb2. Silencing of lncRNA BC088414 in PC12 cells caused reduced mRNA level of Casp6 and Adrb2, decreased cell apoptosis and increased cell proliferation. These results suggested lncRNA might participate in the pathogenesis of HIBD via regulating coding genes.
Collapse
|
28
|
Maynard KR, Causey L, Kawaza K, Dube Q, Lufesi N, Maria Oden Z, Richards-Kortum RR, Molyneux EM. New technologies for essential newborn care in under-resourced areas: what is needed and how to deliver it. Paediatr Int Child Health 2015; 35:192-205. [PMID: 26053669 DOI: 10.1179/2046905515y.0000000034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Globally, the largest contributors to neonatal mortality are preterm birth, intrapartum complications and infection. Many of these deaths could be prevented by providing temperature stability, respiratory support, hydration and nutrition; preventing and treating infections; and diagnosing and treating neonatal jaundice and hypoglycaemia. Most neonatal health-care technologies which help to accomplish these tasks are designed for high-income countries and are either unavailable or unsuitable in low-resource settings, preventing many neonates from receiving the gold standard of care. There is an urgent need for neonatal health-care technologies which are low-cost, robust, simple to use and maintain, affordable and able to operate from various power supplies. Several technologies have been designed to meet these requirements or are currently under development; however, unmet technology needs remain. The distribution of an integrated set of technologies, rather than separate components, is essential for effective implementation and a substantial impact on neonatal health. Close collaboration between stakeholders at all stages of the development process and an increased focus on implementation research are necessary for effective and sustainable implementation.
Collapse
|
29
|
Ma SM, Chen LX, Lin YF, Yan H, Lv JW, Xiong M, Li J, Cheng GQ, Yang Y, Qiu ZL, Zhou WH. Periostin Promotes Neural Stem Cell Proliferation and Differentiation following Hypoxic-Ischemic Injury. PLoS One 2015; 10:e0123585. [PMID: 25894199 PMCID: PMC4404137 DOI: 10.1371/journal.pone.0123585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/04/2015] [Indexed: 11/24/2022] Open
Abstract
Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Si-Min Ma
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Long-Xia Chen
- Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi-Feng Lin
- Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Hu Yan
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing-Wen Lv
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Man Xiong
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guo-Qiang Cheng
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Yang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Zi-Long Qiu
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, Barszczyk A, Bae CYJ, Quan Y, Liu B, Pei L, Sun CLF, Deurloo M, Feng ZP. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol 2014; 263:161-71. [PMID: 25448006 DOI: 10.1016/j.expneurol.2014.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/23/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022]
Abstract
Neonatal hypoxic-ischemic brain injury and its related illness hypoxic-ischemic encephalopathy (HIE) are major causes of nervous system damage and neurological morbidity in children. Hypoxic preconditioning (HPC) is known to be neuroprotective in cerebral ischemic brain injury. K(ATP) channels are involved in ischemic preconditioning in the heart; however the involvement of neuronal K(ATP) channels in HPC in the brain has not been fully investigated. In this study, we investigated the role of HPC in hypoxia-ischemia (HI)-induced brain injury in postnatal seven-day-old (P7) CD1 mouse pups. Specifically, TTC (2,3,5-triphenyltetrazolium chloride) staining was used to assess the infarct volume, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling) to detect apoptotic cells, Western blots to evaluate protein level, and patch-clamp recordings to measure K(ATP) channel current activities. Behavioral tests were performed to assess the functional recovery after hypoxic-ischemic insults. We found that hypoxic preconditioning reduced infarct volume, decreased the number of TUNEL-positive cells, and improved neurobehavioral functional recovery in neonatal mice following hypoxic-ischemic insults. Pre-treatment with a K(ATP) channel blocker, tolbutamide, inhibited hypoxic preconditioning-induced neuroprotection and augmented neurodegeneration following hypoxic-ischemic injury. Pre-treatment with a K(ATP) channel opener, diazoxide, reduced infarct volume and mimicked hypoxic preconditioning-induced neuroprotection. Hypoxic preconditioning induced upregulation of the protein level of the Kir6.2 isoform and enhanced current activities of K(ATP) channels. Hypoxic preconditioning restored the HI-reduced PKC and pAkt levels, and reduced caspase-3 level, while tolbutamide inhibited the effects of hypoxic preconditioning. We conclude that K(ATP) channels are involved in hypoxic preconditioning-induced neuroprotection in neonatal hypoxic-ischemic brain injury. K(ATP) channel openers may therefore have therapeutic effects in neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Baofeng Xu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wenliang Chen
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Aijiao Xiao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ammar Alibraham
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andrew Barszczyk
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christine Y J Bae
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yi Quan
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Baosong Liu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lin Pei
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher L F Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Marielle Deurloo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
31
|
Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D, Akture E, Song C, Ye K, Sun D, Ferrazzano P, Cengiz P. TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:360-70. [PMID: 23469848 DOI: 10.2174/18715273113129990061] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022]
Abstract
In this study, we investigated the effects of a bioactive high-affinity TrkB receptor agonist 7,8- dihydroxyflavone (7,8 DHF) on neonatal brain injury in female and male mice after hypoxia ischemia (HI). HI was induced by exposure of postnatal day 9 (P9) mice to 10% O2 for 50 minutes at 37°C after unilateral ligation of the left common carotid artery. Animals were randomly assigned to HI-vehicle control group [phosphate buffered saline (PBS), intraperitoneally (i.p.)] or HI + 7,8 DHF-treated groups (5 mg/kg in PBS, i.p at 10 min, 24 h, or with subsequent daily injections up to 7 days after HI). The HI-vehicle control mice exhibited neuronal degeneration in the ipsilateral hippocampus and cortex with increased Fluoro-Jade C positive staining and loss of microtubule associated protein 2 expression. In contrast, the 7,8 DHF-treated mice showed less hippocampal neurodegeneration and astrogliosis, with more profound effects in female than in male mice. Moreover, 7,8 DHF-treated mice improved motor learning and spatial learning at P30-60 compared to the HI-vehicle control mice. Diffusion tensor imaging of ex vivo brain tissues at P90 after HI revealed less reduction of fractional anisotropy values in the ipsilateral corpus callosum of 7,8 DHF-treated brains, which was accompanied with better preserved myelin basic protein expression and CA1 hippocampal structure. Taken together, these findings strongly suggest that TrkB agonist 7,8 DHF is protective against HI-mediated hippocampal neuronal death, white matter injury, and improves neurological function, with a more profound response in female than in male mice.
Collapse
Affiliation(s)
- Kutluay Uluc
- Department of Pediatrics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu S, Zhu S, Zou Y, Wang T, Fu X. Knockdown of IL-1β improves hypoxia-ischemia brain associated with IL-6 up-regulation in cell and animal models. Mol Neurobiol 2014; 51:743-52. [PMID: 24965599 PMCID: PMC4359286 DOI: 10.1007/s12035-014-8764-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
A study was conducted to investigate the effect of interleukin-1β (IL-1β) on hypoxia ischemia (HI) of cultured astrocyte and neonatal rat models and to explore the underlying molecular regulation mechanism. Primary rat astrocyte was exposed to hypoxia (2 % O2, 98 % N2) and cultured in serum-free medium for 6, 12, and 18 h to establish cell model of HI. Morphologic changes of astrocyte were monitored and gene expression change of IL-1β evaluated by real-time polymerase chain reaction (PCR). To establish the HI animal model, 3 days old postnatal Sprague-Dawley (SD) rats were treated with the right carotid artery ligation and were exposed to 8 % oxygen for 8, 16 and 24 h, respectively. Longa score scale, hematoxylin and eosin (HE) staining and water content were examined to assess neurologic function and morphology changes. IL-1β siRNA lentivirus (IL-1β-RNAi-LV) was injected into cerebral cortex motor area 2 days before HI and the interference efficiency examined by real-time PCR and Western blotting, respectively. Immunofluorescence staining of GFAP and IL-1β was performed to identify the location and interference effect of IL-1β, respectively. To further explore the potential mechanisms, the expression of inflammatory factors, including IL-6, IL-10 and tumor necrosis factor-alpha (TNF-α), was examined following IL-1β down-regulation. The size of soma astrocyte was increased greatly after 12 and 18 h of HI with IL-1β up-regulation. IL-1β knockdown by siRNA in vitro or by lentivirus in vivo can reverse cell swelling, brain edema and neurologic function deficiencies induced by HI. Lastly, interference of IL-1β remarkably increased IL-6 expression but not IL-10 and TNF-α. Therefore, down-regulation of IL-1β improves the deficiencies of neurologic function and morphology induced by HI, maybe closely associating with IL-6 regulation.
Collapse
Affiliation(s)
- Sujuan Liu
- Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | | | | | | | | |
Collapse
|
33
|
Hypobaric Hypoxia Postconditioning Reduces Brain Damage and Improves Antioxidative Defense in the Model of Birth Asphyxia in 7-Day-Old Rats. Neurochem Res 2013; 39:68-75. [DOI: 10.1007/s11064-013-1191-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 12/13/2022]
|
34
|
Biselele T, Naulaers G, Bunga Muntu P, Nkidiaka E, Kapepela M, Mavinga L, Tady B. A descriptive study of perinatal asphyxia at the University Hospital of Kinshasa (Democratic Republic of Congo). J Trop Pediatr 2013; 59:274-9. [PMID: 23486392 DOI: 10.1093/tropej/fmt011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Perinatal asphyxia is the third cause of neonatal death after prematurity and infection. OBJECTIVE The purpose of this study was to determine the incidence, the etiology and the HIE score at the first day in term and near-term newborns with perinatal asphyxia at the University Hospital of Kinshasa. METHODS 50 term and near-term neonates with perinatal asphyxia were studied prospectively after they were admitted in neonatal intensive care from November 2009 to January 2011. For each patient admitted the perinatal data were collected. Clinical assessment was performed by the Sarnat grading and the Thompson score within twenty-four hours. Medcalc® was used for statistics. RESULTS 50 babies were scored. The median maternal age was 31 years. In 22% of the mothers preeclampsia was diagnosed. Urogenital infection, IUGR were other prenatal diagnoses. Median Apgar score was 4 after 1 minute, 5 after 5 minutes and 6 after 10 minutes. Sarnat grade 1 was seen in 16 patients, Sarnat grade 2 in 20 patients and grade 3 in 8. Thompson score in the first 24 hours was more than 7 in 60% of the patients. A good correlation was found between the Thompson score and the Sarnat grade (r: 0,77; p < 0,0001). 14 of the 50 babies died. Both Sarnat and Thompson score correlated significantly with mortality. CONCLUSION The incidence of perinatal asphyxia at the University Hospital of Kinshasa remains high and the majority of patients had a severe HIE.
Collapse
Affiliation(s)
- Thérèse Biselele
- Neonatal Unit, Department of Pediatrics, University Hospital of Kinshasa, Kinshasa, DR Congo
| | | | | | | | | | | | | |
Collapse
|
35
|
Ergaz Z, Ornoy A. Perinatal and early postnatal factors underlying developmental delay and disabilities. ACTA ACUST UNITED AC 2013; 17:59-70. [PMID: 23362026 DOI: 10.1002/ddrr.1101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/13/2012] [Indexed: 12/26/2022]
Abstract
A delay in meeting developmental milestones may be secondary to perinatal events, involving complicated interactions between mother and fetus during delivery. Maternal factors including weight, diet, and morbidities can affect neonatal adaptation and later development. Prematurity, low birth weight, and previous intrauterine insults as well as complications during delivery of a previously normal fetus increase the risk for perinatal stress. In this article, the literature on perinatal and early postnatal factors that underlie risks for developmental delay and disabilities is reviewed. Studies that concern neuroprotective therapies and prediction of long-term neurologic outcome by clinical examination, neuroimaging techniques, and electroencephalographic studies are reviewed as well.
Collapse
Affiliation(s)
- Zivanit Ergaz
- Department of Neonatology, Hebrew University Hadassah Medical School, Jerusalem, Israel.
| | | |
Collapse
|
36
|
Galle AA, Jones NM. The neuroprotective actions of hypoxic preconditioning and postconditioning in a neonatal rat model of hypoxic–ischemic brain injury. Brain Res 2013; 1498:1-8. [DOI: 10.1016/j.brainres.2012.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 01/07/2023]
|
37
|
Kontio T, Toet MC, Hellström-Westas L, van Handel M, Groenendaal F, Stjerna S, Vanhatalo S, de Vries LS. Early neurophysiology and MRI in predicting neurological outcome at 9-10 years after birth asphyxia. Clin Neurophysiol 2013; 124:1089-94. [PMID: 23403266 DOI: 10.1016/j.clinph.2012.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/18/2012] [Accepted: 12/22/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess whether early somatosensory evoked potentials (SEP) predict long-term neurodevelopmental outcome in normothermic, full-term infants with mild to moderate neonatal encephalopathy (NE), and to compare their predictive value to already available amplitude integrated EEG (aEEG) and magnetic resonance imaging (MRI). METHODS Fifty-six infants with post-asphyxia NE were prospectively recruited, and their SEP, aEEG and MRI data were acquired during the first five days. Follow-up continued to 9-10 years for assessment of neuromotor and neurocognitive development. We analysed SEP latency (N1 component), normality of aEEG background pattern, as well as patterns of injury on the neonatal MRI. Neurological outcome measures at 9-10 years included conventional MRI, Movement-ABC and the WISC-III NL. RESULTS A SEP latency <50 ms during the first five days was associated with a normal neuromotor outcome (p < 0.03), and a prolonged day 3 latency was associated with lower childhood IQ (p = 0.02). The presence of multiple seizures in aEEG, as well as a moderate or severe injury on the neonatal MRI was associated with a poor neuromotor score (p = 0.03 and p < 0.01, respectively). Combination of multiple techniques improved prediction of long-term outcome compared to single modality. CONCLUSION Early SEPs provide information that is comparable to the already available aEEG and MRI paradigms in the prediction of long-term outcome of full-term infants with mild to moderate neonatal encephalopathy. SIGNIFICANCE The present results call for further studies using early SEP to aid early assessment of infants treated with hypothermia.
Collapse
Affiliation(s)
- T Kontio
- Department of Children's Clinical Neurophysiology, Helsinki University Hospital, and Department of Neurological Sciences, University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Short and long-term analysis and comparison of neurodegeneration and inflammatory cell response in the ipsilateral and contralateral hemisphere of the neonatal mouse brain after hypoxia/ischemia. Neurol Res Int 2012; 2012:781512. [PMID: 22701792 PMCID: PMC3372286 DOI: 10.1155/2012/781512] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/02/2012] [Indexed: 12/21/2022] Open
Abstract
Understanding the evolution of neonatal hypoxic/ischemic is essential for novel neuroprotective approaches. We describe the neuropathology and glial/inflammatory response, from 3 hours to 100 days, after carotid occlusion and hypoxia (8% O2, 55 minutes) to the C57/BL6 P7 mouse. Massive tissue injury and atrophy in the ipsilateral (IL) hippocampus, corpus callosum, and caudate-putamen are consistently shown. Astrogliosis peaks at 14 days, but glial scar is still evident at day 100. Microgliosis peaks at 3–7 days and decreases by day 14. Both glial responses start at 3 hours in the corpus callosum and hippocampal fissure, to progressively cover the degenerating CA field. Neutrophils increase in the ventricles and hippocampal vasculature, showing also parenchymal extravasation at 7 days. Remarkably, delayed milder atrophy is also seen in the contralateral (CL) hippocampus and corpus callosum, areas showing astrogliosis and microgliosis during the first 72 hours. This detailed and long-term cellular response characterization of the ipsilateral and contralateral hemisphere after H/I may help in the design of better therapeutic strategies.
Collapse
|
39
|
Merrill L. Therapeutic hypothermia to treat hypoxic ischemic encephalopathy in newborns: implications for nurses. Nurs Womens Health 2012; 16:126-134. [PMID: 22900770 DOI: 10.1111/j.1751-486x.2012.01718.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hypoxic ischemic encephalopathy (HIE) in newborns is caused by an injury to the brain following a hypoxic or an ischemic event during the peripartum, intrapartum or postpartum period. HIE may result in death or cause serious impairment in survivors, and remains a significant cause of morbidity and mortality among neonates. Mild hypothermia as a treatment for HIE is commonly used to treat moderate to severe HIE, with promising results. Nurses play an integral role in identifying newborns at risk of developing HIE.
Collapse
|
40
|
Abstract
First released in 1996, the S.T.A.B.L.E.® Program has provided evidence-based education in the postresuscitation and pretransport stabilization care of sick newborns to more than a quarter million multidisciplinary perinatal healthcare team members from around the world. The program, aimed at preventing the leading causes of neonatal mortality, continues to be the subject of published peer-reviewed research and is periodically updated to ensure relevancy and inclusion of current best evidence. S.T.A.B.L.E. is a mnemonic for the 6 essential assessment parameters taught in the program: Sugar and Safe care, Temperature, Airway, Blood pressure, Lab work, and Emotional support. This mnemonic was specifically chosen to serve as a memory tool to remind staff of "what to do" during those infrequent but stressful times when they were expected to assess and stabilize sick newborns. Course completion of the S.T.A.B.L.E. Program is obtained as a result of didactic training and successful completion of content testing. The program's test questions are periodically evaluated and revised on the basis of psychometric analysis. The 6th edition of the S.T.A.B.L.E. Program learner/provider manual is scheduled for release in 2012 and will reflect the latest in stabilization guidelines throughout the program's 6 modules and supplemental content.
Collapse
|