1
|
Suñol M, Pascual-Diaz S, Dudley J, Payne MF, Jackson C, Tong H, Ting TV, Kashikar-Zuck S, Coghill RC, López-Solà M. Neurophysiology of resilience in juvenile fibromyalgia. Pain 2025:00006396-990000000-00839. [PMID: 40009353 DOI: 10.1097/j.pain.0000000000003562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025]
Abstract
ABSTRACT Juvenile fibromyalgia (JFM) is a chronic pain syndrome predominantly affecting adolescent girls. Resilience may be a protective factor in coping with pain, reducing affective burden, and promoting positive outlooks. Brain regions affected in JFM overlap with those linked to resilience, particularly in the default-mode network (DMN). We investigate the role of resilience on core somatic and affective symptoms in JFM and assess the neurophysiological substrates for the first time. Forty-one girls with JFM and 40 pain-free adolescents completed a resting-state functional magnetic resonance imaging assessment and self-report questionnaires. We used clustering analyses to group JFM participants based on resilience, and principal component analyses to summarize core somatic and affective symptoms. We estimated whole-brain and within-DMN connectivity and assessed differences between higher and lower resilience JFM groups and compared their connectivity patterns to pain-free participants. The higher resilience JFM group had less affective (T = 4.03; P < 0.001) but similar core somatic symptoms (T = 1.05; P = 0.302) than the lower resilience JFM group. They had increased whole-brain (Ts > 4, false discovery rate cluster-level corrected P-value < 0.03) and within-DMN (T = 2.20, P = 0.03) connectivity strength, and higher connectivity between DMN nodes and self-referential and regulatory regions. Conversely, higher DMN-premotor connectivity was observed in the lower resilience group. Juvenile fibromyalgia participants with higher resilience were protected affectively but not in core somatic symptoms. Greater resilience was accompanied by higher signal integration within the DMN, a network central to internally oriented attention and flexible attention shifting. Crucially, the connectivity pattern in highly resilient patients resembled that of pain-free adolescents, which was not the case for the lower resilience group.
Collapse
Affiliation(s)
- Maria Suñol
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Saül Pascual-Diaz
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jon Dudley
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael F Payne
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Catherine Jackson
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Han Tong
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill, United States
| | - Tracy V Ting
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Susmita Kashikar-Zuck
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert C Coghill
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marina López-Solà
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
2
|
Herrera-Rivero M, Garvert L, Horn K, Löbner M, Weitzel EC, Stoll M, Lichtner P, Teismann H, Teumer A, Van der Auwera S, Völzke H, Völker U, Andlauer TFM, Meinert S, Heilmann-Heimbach S, Forstner AJ, Streit F, Witt SH, Kircher T, Dannlowski U, Scholz M, Riedel-Heller SG, Grabe HJ, Baune BT, Berger K. A meta-analysis of genome-wide studies of resilience in the German population. Mol Psychiatry 2025; 30:497-505. [PMID: 39112778 PMCID: PMC11746137 DOI: 10.1038/s41380-024-02688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 01/22/2025]
Abstract
Resilience is the capacity to adapt to stressful life events. As such, this trait is associated with physical and mental functions and conditions. Here, we aimed to identify the genetic factors contributing to shape resilience. We performed variant- and gene-based meta-analyses of genome-wide association studies from six German cohorts (N = 15822) using the 11-item version of the Resilience Scale (RS-11) as outcome measure. Variant- and gene-level results were combined to explore the biological context using network analysis. In addition, we conducted tests of correlation between RS-11 and the polygenic scores (PGSs) for 12 personality and mental health traits in one of these cohorts (PROCAM-2, N = 3879). The variant-based analysis found no signals associated with resilience at the genome-wide level (p < 5 × 10-8), but suggested five genomic loci (p < 1 × 10-5). The gene-based analysis identified three genes (ROBO1, CIB3 and LYPD4) associated with resilience at genome-wide level (p < 2.48 × 10-6) and 32 potential candidates (p < 1 × 10-4). Network analysis revealed enrichment of biological pathways related to neuronal proliferation and differentiation, synaptic organization, immune responses and vascular homeostasis. We also found significant correlations (FDR < 0.05) between RS-11 and the PGSs for neuroticism and general happiness. Overall, our observations suggest low heritability of resilience. Large, international efforts will be required to uncover the genetic factors that contribute to shape trait resilience. Nevertheless, as the largest investigation of the genetics of resilience in general population to date, our study already offers valuable insights into the biology potentially underlying resilience and resilience's relationship with other personality traits and mental health.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Psychiatry, University of Münster, Münster, Germany.
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany.
| | - Linda Garvert
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Margrit Löbner
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Elena Caroline Weitzel
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, Maastricht University, Maastricht, Netherlands
| | - Peter Lichtner
- Core Facility Genomics, Helmholtz Centre Munich, Munich, Germany
| | - Henning Teismann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Ulm, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Ulm, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Hyde LW, Bezek JL, Michael C. The future of neuroscience in developmental psychopathology. Dev Psychopathol 2024; 36:2149-2164. [PMID: 38444150 DOI: 10.1017/s0954579424000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Developmental psychopathology started as an intersection of fields and is now a field itself. As we contemplate the future of this field, we consider the ways in which a newer, interdisciplinary field - human developmental neuroscience - can inform, and be informed by, developmental psychopathology. To do so, we outline principles of developmental psychopathology and how they are and/or can be implemented in developmental neuroscience. In turn, we highlight how the collaboration between these fields can lead to richer models and more impactful translation. In doing so, we describe the ways in which models from developmental psychopathology can enrich developmental neuroscience and future directions for developmental psychopathology.
Collapse
Affiliation(s)
- Luke W Hyde
- Department of Psychology, Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jessica L Bezek
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Grigorenko EL. The extraordinary "ordinary magic" of resilience. Dev Psychopathol 2024; 36:2481-2498. [PMID: 39363871 DOI: 10.1017/s0954579424000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the general context of the field, I will zoom in on some of its features, which I consider "low-hanging fruit" and which can be harvested in a systematic way to advance the study of resilience in the context of the future of developmental psychopathology.
Collapse
|
5
|
Elton A, Lewis B, Nixon SJ. The effects of adverse life events on brain development in the ABCD study®: a propensity-weighted analysis. Mol Psychiatry 2024:10.1038/s41380-024-02850-9. [PMID: 39578521 DOI: 10.1038/s41380-024-02850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Longitudinal studies of the effects of adversity on human brain development are complicated by the association of stressful events with confounding variables. To counter this bias, we apply a propensity-weighted analysis of the first two years of The Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data, employing a machine learning analysis weighted by individuals' propensity to experience adversity. Data included 338 resting-state functional connections from 7190 youth (46% female), divided into a training group (80%) and an independent testing group (20%). Propensity scores were computed using 390 variables to balance across two-year adverse life event exposures. Using elastic net regularization with and without inverse propensity weighting, we developed linear models in which changes in functional connectivity of brain connections during the two-year period served as predictors of the number of adverse events experienced during that same period. Haufe's method was applied to forward-transform the backward prediction models. We also tested whether brain changes associated with adverse events correlated with concomitant changes in internalizing or externalizing behaviors or to academic achievement. In the propensity-weighted analysis, brain development significantly predicted the number of adverse events experienced during that period in both the training group (ρ = 0.14, p < 0.001) and the independent testing group (ρ = 0.10, p < 0.001). The predictor indicated a general pattern of decreased functional connectivity between large-scale networks and subcortical brain regions, particularly for cingulo-opercular and sensorimotor networks. These network-to-subcortical functional connectivity decreases inversely associated with the development of internalizing symptoms, suggesting adverse events promoted adaptive brain changes that may buffer against stress-related psychopathology. However, these same functional connections were also associated with poorer grades at the two-year follow-up. Although cortical-subcortical brain developmental responses to adversity potentially shield against stress-induced mood and anxiety disorders, they may be detrimental to other domains such as academic success.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA.
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA.
| | - Ben Lewis
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA
| | - Sara Jo Nixon
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
6
|
Whittle S, Zhang L, Rakesh D. Environmental and neurodevelopmental contributors to youth mental illness. Neuropsychopharmacology 2024; 50:201-210. [PMID: 39030435 PMCID: PMC11526094 DOI: 10.1038/s41386-024-01926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
While a myriad of factors likely contribute to the development of mental illness in young people, the social environment (including early adverse experiences) in concert with neurodevelopmental alterations is undeniably important. A number of influential theories make predictions about how and why neurodevelopmental alterations may mediate or moderate the effects of the social environment on the emergence of mental illness. Here, we discuss current evidence supporting each of these theories. Although this area of research is rapidly growing, the body of evidence is still relatively limited. However, there exist some consistent findings, including increased striatal reactivity during positive affective processing and larger hippocampal volumes being associated with increased vulnerability or susceptibility to the effects of social environments on internalizing symptoms. Limited longitudinal work has investigated neurodevelopmental mechanisms linking the social environment with mental health. Drawing from human research and insights from animal studies, we propose an integrated mediation-moderation model and outline future research directions to advance the field.
Collapse
Affiliation(s)
- Sarah Whittle
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.
- Orygen, Parkville, VIC, Australia.
| | - Lu Zhang
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Divyangana Rakesh
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| |
Collapse
|
7
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
8
|
Suñol M, Pascual-Diaz S, Dudley J, Payne M, Jackson C, Tong H, Ting T, Kashikar-Zuck S, Coghill R, López-Solà M. Neurophysiology of Resilience in Juvenile Fibromyalgia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.05.24308376. [PMID: 38883766 PMCID: PMC11177909 DOI: 10.1101/2024.06.05.24308376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Objective Juvenile fibromyalgia (JFM) is a chronic pain syndrome predominantly affecting adolescent girls. Resilience may be a protective factor in coping with pain, reducing affective burden, and promoting positive outlooks. Brain regions affected in JFM overlap with those linked to resilience, particularly in the default-mode network (DMN). We investigate the role of resilience on core somatic and affective symptoms in JFM and assess the neurophysiological substrates for the first time. Methods Forty-one girls with JFM and 40 pain-free adolescents completed a resting-state fMRI assessment and self-report questionnaires. We used clustering analyses to group JFM participants based on resilience, and principal component analyses to summarize core somatic and affective symptoms. We estimated whole-brain and within-DMN connectivity and assessed differences between higher and lower resilience JFM groups and compared their connectivity patterns to pain-free participants. Results The higher resilience JFM group had less affective (T=4.03; p<.001) but similar core somatic symptoms (T=1.05; p=.302) than the lower resilience JFM group. They had increased whole-brain (T's>3.90, pFDR's<.03) and within-DMN (T=2.20, p=.03) connectivity strength, and higher connectivity between DMN nodes and self-referential, regulatory, and reward-processing regions. Conversely, higher DMN-premotor connectivity was observed in the lower resilience group. Conclusion JFM participants with higher resilience were protected affectively but not in core somatic symptoms. Greater resilience was accompanied by higher signal integration within the DMN, a network central to internally oriented attention and flexible attention shifting. Crucially, the connectivity pattern in highly resilient patients resembled that of pain-free adolescents, which was not the case for the lower resilience group.
Collapse
Affiliation(s)
- Maria Suñol
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- IDIBAPS, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Saül Pascual-Diaz
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- IDIBAPS, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jon Dudley
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Payne
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Catherine Jackson
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Han Tong
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Tracy Ting
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Susmita Kashikar-Zuck
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert Coghill
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marina López-Solà
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- IDIBAPS, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|