1
|
Kehinde BO, Xie L, Song BK, Zheng X, Fan L. African Cultivated, Wild and Weedy Rice ( Oryza spp.): Anticipating Further Genomic Studies. BIOLOGY 2024; 13:697. [PMID: 39336124 PMCID: PMC11428565 DOI: 10.3390/biology13090697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Rice is a staple crop in sub-Saharan Africa, and it is mostly produced by Asian cultivars of Oryza sativa that were introduced to the continent around the fifteenth or sixteenth century. O. glaberrima, the native African rice, has also been planted due to its valuable traits of insect and drought tolerance. Due to competition and resistance evolution, weedy rice has evolved from O. sativa and O. glaberrima, posing an increasing threat to rice production. This paper provides an overview of current knowledge on the introduction and domestication history of cultivated rice in Africa, as well as the genetic properties of African weedy rice that invades paddy fields. Recent developments in genome sequencing have made it possible to uncover findings about O. glaberrima's population structure, stress resilience genes, and domestication bottleneck. Future rice genomic research in Africa should prioritize producing more high-quality reference genomes, quantifying the impact of crop-wild hybridization, elucidating weed adaptation mechanisms through resequencing, and establishing a connection between genomic variation and stress tolerance phenotypes to accelerate breeding efforts.
Collapse
Affiliation(s)
- Babatunde O Kehinde
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Department of Zoology, University of Lagos, Akoka-Yaba, Lagos 101245, Nigeria
| | - Lingjuan Xie
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Beng-Kah Song
- School of Science, Monash University Malaysia, Bandar Sunway 46150, Selangor, Malaysia
| | - Xiaoming Zheng
- Yazhouwan National Laboratory, Yazhou District, Sanya 572024, China
| | - Longjiang Fan
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Yazhouwan National Laboratory, Yazhou District, Sanya 572024, China
| |
Collapse
|
2
|
Tanveer M, Abidin ZU, Alawadi HFN, Shahzad AN, Mahmood A, Khan BA, Qari S, Oraby HF. Recent advances in genome editing strategies for balancing growth and defence in sugarcane ( Saccharum officinarum). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24036. [PMID: 38696670 DOI: 10.1071/fp24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/14/2024] [Indexed: 05/04/2024]
Abstract
Sugarcane (Saccharum officinarum ) has gained more attention worldwide in recent decades because of its importance as a bioenergy resource and in producing table sugar. However, the production capabilities of conventional varieties are being challenged by the changing climates, which struggle to meet the escalating demands of the growing global population. Genome editing has emerged as a pivotal field that offers groundbreaking solutions in agriculture and beyond. It includes inserting, removing or replacing DNA in an organism's genome. Various approaches are employed to enhance crop yields and resilience in harsh climates. These techniques include zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas). Among these, CRISPR/Cas is one of the most promising and rapidly advancing fields. With the help of these techniques, several crops like rice (Oryza sativa ), tomato (Solanum lycopersicum ), maize (Zea mays ), barley (Hordeum vulgare ) and sugarcane have been improved to be resistant to viral diseases. This review describes recent advances in genome editing with a particular focus on sugarcane and focuses on the advantages and limitations of these approaches while also considering the regulatory and ethical implications across different countries. It also offers insights into future prospects and the application of these approaches in agriculture.
Collapse
Affiliation(s)
- Maira Tanveer
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zain Ul Abidin
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | | | - Ahmad Naeem Shahzad
- Department of Agronomy, Bahauddin Zakarriya University, Multan 60650, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Sameer Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hesham Farouk Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; and Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
3
|
Afzal A, Mukhtar T. Revolutionizing nematode management to achieve global food security goals - An overview. Heliyon 2024; 10:e25325. [PMID: 38356601 PMCID: PMC10865254 DOI: 10.1016/j.heliyon.2024.e25325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Nematodes are soil-dwelling organisms that inflict substantial damage to crops, resulting in significant declines in agricultural productivity. Consequently, they are recognized as one of the primary contributors to global crop damage, with profound implications for food security. Nematology research assumes a pivotal role in tackling this issue and safeguarding food security. The pursuit of nematology research focused on mitigating nematode-induced crop damage and promoting sustainable agriculture represents a fundamental strategy for enhancing food security. Investment in nematology research is crucial to advance food security objectives by identifying and managing nematode species, developing novel technologies, comprehending nematode ecology, and strengthening the capabilities of researchers and farmers. This endeavor constitutes an indispensable step toward addressing one of the most pressing challenges in achieving global food security and promoting sustainable agricultural practices. Primarily, research endeavors facilitate the identification of nematode species responsible for crop damage, leading to the development of effective management strategies. These strategies encompass the utilization of resistant crop varieties, implementation of cultural practices, biological control, and chemical interventions. Secondly, research efforts contribute to the development of innovative technologies aimed at managing nematode populations, such as gene editing techniques that confer resistance to nematode infestations in crops. Additionally, the exploration of beneficial microbes, such as certain fungi and bacteria, as potential biocontrol agents against nematodes, holds promise. The study of nematode ecology represents a foundational research domain that fosters a deeper comprehension of nematode biology and ecological interactions. This knowledge is instrumental in devising precise and efficacious management strategies.
Collapse
Affiliation(s)
- Amir Afzal
- Barani Agricultural Research Institute, Chakwal, Pakistan
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
4
|
Macall DM, Madrigal-Pana J, Smyth SJ, Gatica Arias A. Costa Rican consumer perceptions of gene-editing. Heliyon 2023; 9:e19173. [PMID: 37664745 PMCID: PMC10468379 DOI: 10.1016/j.heliyon.2023.e19173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Costa Rica's rice production, a large determinant of the country's food security, is being negatively impacted by frequently increasing periods of intense drought. Costa Rican scientists have applied CRISPR/Cas9 to develop drought resistant rice varieties they believe the country's rice producers could benefit from. However, would Costa Ricans consume gene edited rice or products derived from this crop? A three-part, 26-question survey administered in-person to 1096 Costa Ricans uncovers their attitudes, knowledge, and perceptions of gene editing technology and crops. Multiple regressions were built where the independent variables were age, gender, education level, and subjective economic situation. No statistically significant relationships were found in the regression coefficients. Moreover, the k-means procedure (cluster analysis) was used to categorize respondents according to their attitudes on the consumption of gene-edited foods: negative, neutral, and positive. Results show that overall, Costa Rican consumers are open to the application of gene editing in agriculture and would consider consuming products derived from the application of the technology. They are also open to gene editing technology being used to address human and animal health issues. However, Costa Rican consumers are not open to gene editing being used to "design" human traits. This study adds evidence to the emerging literature on the acceptance of gene-edited food. It also highlights the importance of informing societies of just how vulnerable agriculture, and therefore food security, is to the increasingly adverse effects of climate change.
Collapse
Affiliation(s)
- Diego Maximiliano Macall
- Sostenipra 2021SGR 00734, Institut Ciència i Tecnologia Ambientals (ICTA-UAB), MdM Unit of Excellence (CEX2019-000940-M), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | - Stuart J. Smyth
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive Saskatoon, Saskatchewan S7N 5A8, Canada
| | | |
Collapse
|
5
|
Aman Mohammadi M, Maximiano MR, Hosseini SM, Franco OL. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess Biosyst Eng 2023; 46:483-497. [PMID: 36707422 DOI: 10.1007/s00449-022-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/29/2023]
Abstract
The developments in the food supply chain to support the growing population of the world is one of today's most pressing issues, and to achieve this goal improvements should be performed in both crops and microbes. For this purpose, novel approaches such as genome editing (GE) methods have upgraded the biological sciences for genome manipulation and, among such methods, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are the main exciting innovations since the Green Revolution. CRISPR/Cas systems can be a potent tool for the food industry, improvement of agricultural crops and even for protecting food-grade bacteria from foreign genetic invasive elements. This review introduces the history and mechanism of the CRISPR-Cas system as a genome editing tool and its applications in the vaccination of starter cultures, production of antimicrobials and bioactive compounds, and genome editing of microorganisms.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariana Rocha Maximiano
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Octavio Luiz Franco
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
6
|
Ewa WG, Agata T, Milica P, Anna B, Dennis E, Nick V, Godelieve G, Selim C, Naghmeh A, Tomasz T. Public perception of plant gene technologies worldwide in the light of food security. GM CROPS & FOOD 2022; 13:218-241. [PMID: 35996854 PMCID: PMC9415543 DOI: 10.1080/21645698.2022.2111946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022]
Abstract
Achieving global food security is becoming increasingly challenging and many stakeholders around the world are searching for new ways to reach this demanding goal. Here we demonstrate examples of genetically modified and genome edited plants introduced to the market in different world regions. Transgenic crops are regulated based on the characteristics of the product in many countries including the United States and Canada, while the European Union, India, China and others regulate process-based i.e. on how the product was made. We also present the public perception of state-of-the-art plant gene technologies in different regions of the world in the past 20 years. The results of literature analysis show that the public in Europe and North America is more familiar with the notion of genome editing and genetically modified organisms than the public in other world regions.
Collapse
Affiliation(s)
| | - Tyczewska Agata
- Laboratory of Animal Model Organisms, Institute of Biorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Beniermann Anna
- Biology Education, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eriksson Dennis
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Department of Biotechnology, INN University, 2318 Hamar, Norway
| | - Vangheluwe Nick
- Euroseeds, 1000 Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), Ghent, Belgium
| | | | - Cetiner Selim
- The Faculty of Arts and Social Sciences, Sabanci University, Turkey
| | - Abiri Naghmeh
- The Faculty of Arts and Social Sciences, Sabanci University, Turkey
| | | |
Collapse
|
7
|
Increasing disease resistance in host plants through genome editing. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Singh J, Sharma D, Brar GS, Sandhu KS, Wani SH, Kashyap R, Kour A, Singh S. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Mol Biol Rep 2022; 49:11443-11467. [PMID: 36002653 DOI: 10.1007/s11033-022-07741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
Crop plants are prone to several yield-reducing biotic and abiotic stresses. The crop yield reductions due to these stresses need addressing to maintain an adequate balance between the increasing world population and food production to avoid food scarcities in the future. It is impossible to increase the area under food crops proportionately to meet the rising food demand. In such an adverse scenario overcoming the biotic and abiotic stresses through biotechnological interventions may serve as a boon to help meet the globe's food requirements. Under the current genomic era, the wide availability of genomic resources and genome editing technologies such as Transcription Activator-Like Effector Nucleases (TALENs), Zinc Finger Nucleases (ZFNs), and Clustered-Regularly Interspaced Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas) has widened the scope of overcoming these stresses for several food crops. These techniques have made gene editing more manageable and accessible with changes at the embryo level by adding or deleting DNA sequences of the target gene(s) from the genome. The CRISPR construct consists of a single guide RNA having complementarity with the nucleotide fragments of the target gene sequence, accompanied by a protospacer adjacent motif. The target sequence in the organism's genome is then cleaved by the Cas9 endonuclease for obtaining a desired trait of interest. The current review describes the components, mechanisms, and types of CRISPR/Cas techniques and how this technology has helped to functionally characterize genes associated with various biotic and abiotic stresses in a target organism. This review also summarizes the application of CRISPR/Cas technology targeting these stresses in crops through knocking down/out of associated genes.
Collapse
Affiliation(s)
- Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, 110012, New Delhi, India.,Guru Angad Dev Veterinary and Animal Science University, KVK, Barnala, India
| | - Dimple Sharma
- Department of Food Science and Human Nutrition, Michigan State University, 48824, East Lansing, MI, USA
| | - Gagandeep Singh Brar
- Department of Biological Sciences, North Dakota State University, 58102, Fargo, ND, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, 99163, Pullman, WA, USA
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu, Kashmir, India
| | - Ruchika Kashyap
- Department of Agronomy, Horticulture, and Plant Sciences, South Dakota State University, 57007, Brookings, SD, USA
| | - Amardeep Kour
- Regional Research Station, Punjab Agricultural University, 151001, Bathinda, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, 151203, Faridkot, Punjab, India.
| |
Collapse
|
9
|
Will S, Vangheluwe N, Krause D, Fischer ARH, Jorasch P, Kohl C, Nair A, Nanda AK, Wilhelm R. Communicating about plant breeding and genome editing in plants: Assessment of European stakeholders, sources, channels and content. Food Energy Secur 2022. [DOI: 10.1002/fes3.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sabine Will
- Federal Research Centre for Cultivated Plants Julius Kühn‐Institut Quedlinburg Germany
| | - Nick Vangheluwe
- Euroseeds Brussels Belgium
- Plants for the Future' European Technology Platform Brussels Belgium
| | - Dörthe Krause
- Federal Research Centre for Cultivated Plants Julius Kühn‐Institut Quedlinburg Germany
| | - Arnout R. H. Fischer
- Marketing and Consumer Behaviour Group Wageningen University Wageningen The Netherlands
| | | | - Christian Kohl
- Federal Research Centre for Cultivated Plants Julius Kühn‐Institut Quedlinburg Germany
| | - Abhishek Nair
- Marketing and Consumer Behaviour Group Wageningen University Wageningen The Netherlands
| | - Amrit K. Nanda
- Plants for the Future' European Technology Platform Brussels Belgium
| | - Ralf Wilhelm
- Federal Research Centre for Cultivated Plants Julius Kühn‐Institut Quedlinburg Germany
| |
Collapse
|
10
|
Yakovleva IV, Kamionskaya AM. State of the art: Russia starts genome-edited plant assessment. Trends Biotechnol 2022; 40:635-638. [PMID: 34998621 DOI: 10.1016/j.tibtech.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
Russia has started the process of correcting its GMO regulation, but it does not use the same approach to regulating genome-edited plant products as other countries. Our assessment here is based not only on science but also on important social and economic factors.
Collapse
Affiliation(s)
- I V Yakovleva
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - A M Kamionskaya
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
11
|
Mushtaq M, Dar AA, Basu U, Bhat BA, Mir RA, Vats S, Dar MS, Tyagi A, Ali S, Bansal M, Rai GK, Wani SH. Integrating CRISPR-Cas and Next Generation Sequencing in Plant Virology. Front Genet 2021; 12:735489. [PMID: 34759957 PMCID: PMC8572880 DOI: 10.3389/fgene.2021.735489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Plant pathology has been revolutionized by the emergence and intervention of next-generation sequencing technologies (NGS) which provide a fast, cost-effective, and reliable diagnostic for any class of pathogens. NGS has made tremendous advancements in the area of research and diagnostics of plant infecting viromes and has bridged plant virology with other advanced research fields like genome editing technologies. NGS in a broader perspective holds the potential for plant health improvement by diagnosing and mitigating the new or unusual symptoms caused by novel/unidentified viruses. CRISPR-based genome editing technologies can enable rapid engineering of efficient viral/viroid resistance by directly targeting specific nucleotide sites of plant viruses and viroids. Critical genes such as eIf (iso) 4E or eIF4E have been targeted via the CRISPR platform to produce plants resistant to single-stranded RNA (ssRNA) viruses. CRISPR/Cas-based multi-target DNA or RNA tests can be used for rapid and accurate diagnostic assays for plant viruses and viroids. Integrating NGS with CRISPR-based genome editing technologies may lead to a paradigm shift in combating deadly disease-causing plant viruses/viroids at the genomic level. Furthermore, the newly discovered CRISPR/Cas13 system has unprecedented potential in plant viroid diagnostics and interference. In this review, we have highlighted the application and importance of sequencing technologies on covering the viral genomes for precise modulations. This review also provides a snapshot vision of emerging developments in NGS technologies for the characterization of plant viruses and their potential utilities, advantages, and limitations in plant viral diagnostics. Furthermore, some of the notable advances like novel virus-inducible CRISPR/Cas9 system that confers virus resistance with no off-target effects have been discussed.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Umer Basu
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | | | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Sanskriti Vats
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - M. S. Dar
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Monika Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| |
Collapse
|
12
|
Herman RA, Storer NP, Anderson JA, Amijee F, Cnudde F, Raybould A. Transparency in risk-disproportionate regulation of modern crop-breeding techniques. GM CROPS & FOOD 2021; 12:376-381. [PMID: 34107854 PMCID: PMC8204963 DOI: 10.1080/21645698.2021.1934353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite over 25 years of safe deployment of genetically engineered crops, the number, complexity, and scope of regulatory studies required for global approvals continue to increase devoid of adequate scientific justification. Recently, there have been calls to further expand the scope of study and data requirements to improve public acceptance. However, increased regulation can actually generate consumer distrust due to the misperception that risks are high. We believe risk-disproportionate regulation as a means to advocate for acceptance of technology is counterproductive, even though some regulatory authorities believe it part of their mandate. To help avoid public distrust, the concept of regulatory transparency to demystify regulatory decision-making should be extended to clearly justifying specific regulatory requirements as: 1) risk-driven (i.e., proportionately addressing increased risk compared with traditional breeding), or 2) advocacy-driven (i.e., primarily addressing consumer concerns and acceptance). Such transparency in the motivation for requiring risk-disproportionate studies would: 1) lessen over-prescriptive regulation, 2) save public and private resources, 3) make beneficial products and technologies available to society sooner, 4) reduce needless animal sacrifice, 5) improve regulatory decision-making regarding safety, and 6) lessen public distrust that is generated by risk-disproportionate regulation.
Collapse
Affiliation(s)
- Rod A Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| | - Nicholas P Storer
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| | | | - Firoz Amijee
- Regulatory and Stewardship, Corteva Agriscience, Brussels, Belgium
| | - Filip Cnudde
- Regulatory and Stewardship, Corteva Agriscience, Brussels, Belgium
| | - Alan Raybould
- Global Academy of Agriculture and Food Security, the University of Edinburgh, Midlothian, UK.,Science, Technology and Innovation Studies, the University of Edinburgh EH1 1LZ, UK
| |
Collapse
|
13
|
Data challenges for future plant gene editing: expert opinion. Transgenic Res 2021; 30:765-780. [PMID: 34106390 PMCID: PMC8580900 DOI: 10.1007/s11248-021-00264-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022]
Abstract
Agricultural data in its multiple forms are ubiquitous. With progress in crop and input monitoring systems and price reductions over the past decade, data are now being captured at an unprecedented rate. Once compiled, organized and analyzed, these data are capable of providing valuable insights into much of the agri-food supply chain. While much of the focus is on precision farming, agricultural data applications coupled with gene editing tools hold the potential to enhance crop performance and global food security. Yet, digitization of agriculture is a double-edged sword as it comes with inherent security and privacy quandaries. Infrastructure, policies, and practices to better harness the value of data are still lacking. This article reports expert opinions about the potential challenges regarding the use of data relevant to the development and approval of new crop traits as well as mechanisms employed to manage and protect data. While data could be of great value, issues of intellectual property and accessibility surround many of its forms. The key finding of this research is that surveyed experts optimistically report that by 2030, the synergy of computing power and genome editing could have profound effects on the global agri-food system, but that the European Union may not participate fully in this transformation.
Collapse
|
14
|
Marsh JI, Hu H, Gill M, Batley J, Edwards D. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1677-1690. [PMID: 33852055 DOI: 10.1007/s00122-021-03820-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Safeguarding crop yields in a changing climate requires bioinformatics advances in harnessing data from vast phenomics and genomics datasets to translate research findings into climate smart crops in the field. Climate change and an additional 3 billion mouths to feed by 2050 raise serious concerns over global food security. Crop breeding and land management strategies will need to evolve to maximize the utilization of finite resources in coming years. High-throughput phenotyping and genomics technologies are providing researchers with the information required to guide and inform the breeding of climate smart crops adapted to the environment. Bioinformatics has a fundamental role to play in integrating and exploiting this fast accumulating wealth of data, through association studies to detect genomic targets underlying key adaptive climate-resilient traits. These data provide tools for breeders to tailor crops to their environment and can be introduced using advanced selection or genome editing methods. To effectively translate research into the field, genomic and phenomic information will need to be integrated into comprehensive clade-specific databases and platforms alongside accessible tools that can be used by breeders to inform the selection of climate adaptive traits. Here we discuss the role of bioinformatics in extracting, analysing, integrating and managing genomic and phenomic data to improve climate resilience in crops, including current, emerging and potential approaches, applications and bottlenecks in the research and breeding pipeline.
Collapse
Affiliation(s)
- Jacob I Marsh
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Mitchell Gill
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|
15
|
Lassoued R, Phillips PW, Macall DM, Hesseln H, Smyth SJ. Expert opinions on the regulation of plant genome editing. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1104-1109. [PMID: 33834596 PMCID: PMC8196660 DOI: 10.1111/pbi.13597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 05/06/2023]
Abstract
Global food security is largely affected by factors such as environmental (e.g. drought, flooding), social (e.g. gender inequality), socio-economic (e.g. overpopulation, poverty) and health (e.g. diseases). In response, extensive public and private investment in agricultural research has focused on increasing yields of staple food crops and developing new traits for crop improvement. New breeding techniques pioneered by genome editing have gained substantial traction within the last decade, revolutionizing the plant breeding field. Both industry and academia have been investing and working to optimize the potentials of gene editing and to bring derived crops to market. The spectrum of cutting-edge genome editing tools along with their technical differences has led to a growing international regulatory, ethical and societal divide. This article is a summary of a multi-year survey project exploring how experts view the risks of new breeding techniques, including genome editing and their related regulatory requirements. Surveyed experts opine that emerging biotechnologies offer great promise to address social and climate challenges, yet they admit that the market growth of genome-edited crops will be limited by an ambiguous regulatory environment shaped by societal uncertainty.
Collapse
Affiliation(s)
- Rim Lassoued
- Department of Agricultural and Resource EconomicsUniversity of SaskatchewanSaskatoonSKCanada
| | - Peter W.B. Phillips
- The Johnson Shoyama Graduate School of Public PolicyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Hayley Hesseln
- Department of Agricultural and Resource EconomicsUniversity of SaskatchewanSaskatoonSKCanada
| | - Stuart J. Smyth
- Department of Agricultural and Resource EconomicsUniversity of SaskatchewanSaskatoonSKCanada
| |
Collapse
|
16
|
|
17
|
McCouch S, Navabi ZK, Abberton M, Anglin NL, Barbieri RL, Baum M, Bett K, Booker H, Brown GL, Bryan GJ, Cattivelli L, Charest D, Eversole K, Freitas M, Ghamkhar K, Grattapaglia D, Henry R, Valadares Inglis MC, Islam T, Kehel Z, Kersey PJ, King GJ, Kresovich S, Marden E, Mayes S, Ndjiondjop MN, Nguyen HT, Paiva SR, Papa R, Phillips PWB, Rasheed A, Richards C, Rouard M, Amstalden Sampaio MJ, Scholz U, Shaw PD, Sherman B, Staton SE, Stein N, Svensson J, Tester M, Montenegro Valls JF, Varshney R, Visscher S, von Wettberg E, Waugh R, Wenzl P, Rieseberg LH. Mobilizing Crop Biodiversity. MOLECULAR PLANT 2020; 13:1341-1344. [PMID: 32835887 DOI: 10.1016/j.molp.2020.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 05/10/2023]
Affiliation(s)
- Susan McCouch
- Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Zahra Katy Navabi
- DivSeek, Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, SK, S7N 0W9, Canada; Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Michael Abberton
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Rd, Ibadan, Nigeria
| | - Noelle L Anglin
- International Potato Center (CIP) 1895 Avenida La Molina, Lima Peru 12, Lima 15023, Peru
| | - Rosa Lia Barbieri
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Final Av W5 Norte, Caixa Postal 02372, 70770-917 - Brasília DF, Brazil
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Station Exp. INRA-Quich. Rue Hafiane Cherkaoui. Agdal. Rabat - Instituts, 10111, Rabat, Morocco
| | - Kirstin Bett
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada
| | - Helen Booker
- Department of Plant Agriculture, University of Guelph, Rm 316, Crop Science Bldg, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Gerald L Brown
- Genome Prairie, 111 Research Drive, Suite 101, Saskatoon, SK, S7N 3R2, Canada
| | - Glenn J Bryan
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Luigi Cattivelli
- CREA, Research Centre for Genomics and Bioinformatics, via San Protaso 302, Fiorenzuola d'Arda, 29017, Italy
| | - David Charest
- Genome British Columbia, 400-575 West 8th Avenue, Vancouver, BC, V5Z 0C4, Canada
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium, 2841 NE Marywood Ct, Lee's Summit, MO, 64086, USA
| | - Marcelo Freitas
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Final Av W5 Norte, Caixa Postal 02372, 70770-917 - Brasília DF, Brazil
| | - Kioumars Ghamkhar
- Forage Science, Grasslands Research Centre, AgResearch, Palmerston North, 4410, New Zealand
| | - Dario Grattapaglia
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Final Av W5 Norte, Caixa Postal 02372, 70770-917 - Brasília DF, Brazil
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria Cleria Valadares Inglis
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Final Av W5 Norte, Caixa Postal 02372, 70770-917 - Brasília DF, Brazil
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA), Station Exp. INRA-Quich. Rue Hafiane Cherkaoui. Agdal. Rabat - Instituts, 10111, Rabat, Morocco
| | - Paul J Kersey
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Graham J King
- Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
| | - Stephen Kresovich
- Feed the Future Innovation Lab for Crop Improvement, 431 Weill Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Emily Marden
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6R 2A5, Canada
| | - Sean Mayes
- Crops For the Future (UK) CIC 76-80 Baddow Road, Chelmsford, Essex, CM2 7PJ, UK
| | - Marie Noelle Ndjiondjop
- Africa Rice Center (AfricaRice), Mbe Research Station, Bouaké, 01 BP 2511 Bouaké, Côte d'Ivoire
| | - Henry T Nguyen
- University of Missouri, Division of Plant Sciences, 25 Agriculture Lab Bldg, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Samuel Rezende Paiva
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Final Av W5 Norte, Caixa Postal 02372, 70770-917 - Brasília DF, Brazil
| | - Roberto Papa
- Università Politecnica delle Marche, D3A-Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Via Brecce Bianche, 60131, Ancona, Italy
| | - Peter W B Phillips
- Johnson Shoyama Graduate School of Public Policy, University of Saskatchewan, 101 Diefenbaker Place, Saskatoon, S7N 5B8, Canada
| | - Awais Rasheed
- CIMMYT-China office, Beijing 100081, Beijing, P.R. China
| | - Christopher Richards
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason St, Fort Collins, CO, 80521, USA
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397, Montpellier, Cedex 5, France
| | - Maria Jose Amstalden Sampaio
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Final Av W5 Norte, Caixa Postal 02372, 70770-917 - Brasília DF, Brazil
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany
| | - Paul D Shaw
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Brad Sherman
- Law School, University of Queensland, St Lucia, QLD, 4072, Australia
| | - S Evan Staton
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6R 2A5, Canada
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; CiBreed - Center for Integrated Breeding Research, Department of Crop Sciences, Georg-August University Göttingen, Von Siebold Straße 8, D-37075 Göttingen, Germany
| | | | - Mark Tester
- King Abdullah University of Science & Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose Francisco Montenegro Valls
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Final Av W5 Norte, Caixa Postal 02372, 70770-917 - Brasília DF, Brazil
| | - Rajeev Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru - 502 324, Telangana State, India
| | - Stephen Visscher
- Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Eric von Wettberg
- University of Vermont, 63 Carrigan Drive, Jeffords Hall, Burlington, VT, 05405, USA
| | - Robbie Waugh
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK; School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Peter Wenzl
- Centro Internacional de Agricultura Tropical (CIAT), Km 17 Recta Cali-Palmira, 763537 Cali, Colombia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6R 2A5, Canada.
| |
Collapse
|
18
|
Vangheluwe N, Swinnen G, de Koning R, Meyer P, Houben M, Huybrechts M, Sajeev N, Rienstra J, Boer D. Give CRISPR a Chance: the GeneSprout Initiative. TRENDS IN PLANT SCIENCE 2020; 25:624-627. [PMID: 32402659 DOI: 10.1016/j.tplants.2020.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
Did you know that a group of early-career researchers launched an initiative enabling open dialog on new plant breeding techniques, such as genome editing? We developed a wide-ranging initiative that aims to facilitate public engagement and provide a platform for young plant scientists to encourage participation in science communication.
Collapse
Affiliation(s)
- Nick Vangheluwe
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium.
| | - Gwen Swinnen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ramon de Koning
- Laboratory of Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Prisca Meyer
- KULeuven, Division of Crop Biotechnics, Willem de Croylaan 42 box 2427, 3001 Leuven, Belgium
| | - Maarten Houben
- KULeuven, Division of Crop Biotechnics, Willem de Croylaan 42 box 2427, 3001 Leuven, Belgium
| | - Michiel Huybrechts
- UHasselt, Environmental Biology, Centre for Environmental Sciences, 3590 Diepenbeek, Belgium
| | - Nikita Sajeev
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Laboratory of Biochemistry, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Juriaan Rienstra
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Laboratory of Biochemistry, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Damian Boer
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Laboratory of Biochemistry, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
19
|
Lassoued R, Macall DM, Smyth SJ, Phillips PW, Hesseln H. How should we regulate products of new breeding techniques? Opinion of surveyed experts in plant biotechnology. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00460. [PMID: 32617264 PMCID: PMC7322807 DOI: 10.1016/j.btre.2020.e00460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023]
Abstract
The adoption of genome editing depends among others, on a clear and navigable regulatory framework that renders consistent decisions. Some countries like the United States decided to deregulate specific transgene-free genome edited products that could be created through traditional breeding and are not considered to be plant pests, while others are still challenged to fit emerging technologies in their regulatory system. Here we poll international experts in plant biotechnology on what approach should nations agree upon to accommodate current and future new breeding technologies and derived products. A key finding is product-based models or dual-product/process systems are viewed as potential appropriate frameworks to regulate outcomes of genome editing. As regulation of novel products of biotechnology is expected to impact research and trade, we test the impact of experts' worldviews on these issues. Results show that region influences worldviews of trade but not of agricultural innovation. In contrast, there was no effect of experts' worldviews on how products of novel biotechnologies should be regulated.
Collapse
Affiliation(s)
- Rim Lassoued
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Diego Maximiliano Macall
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Stuart J. Smyth
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Peter W.B. Phillips
- Johnson Shoyama Graduate School of Public Policy, University of Saskatchewan, 101 Diefenbaker Place, Saskatoon, SK, S7N 5B8, Canada
| | - Hayley Hesseln
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
20
|
Erpen-Dalla Corte L, M. Mahmoud L, S. Moraes T, Mou Z, W. Grosser J, Dutt M. Development of Improved Fruit, Vegetable, and Ornamental Crops Using the CRISPR/Cas9 Genome Editing Technique. PLANTS (BASEL, SWITZERLAND) 2019; 8:E601. [PMID: 31847196 PMCID: PMC6963220 DOI: 10.3390/plants8120601] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Horticultural crops, including fruit, vegetable, and ornamental plants are an important component of the agriculture production systems and play an important role in sustaining human life. With a steady growth in the world's population and the consequent need for more food, sustainable and increased fruit and vegetable crop production is a major challenge to guarantee future food security. Although conventional breeding techniques have significantly contributed to the development of important varieties, new approaches are required to further improve horticultural crop production. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has emerged as a valuable genome-editing tool able to change DNA sequences at precisely chosen loci. The CRISPR/Cas9 system was developed based on the bacterial adaptive immune system and comprises of an endonuclease guided by one or more single-guide RNAs to generate double-strand breaks. These breaks can then be repaired by the natural cellular repair mechanisms, during which genetic mutations are introduced. In a short time, the CRISPR/Cas9 system has become a popular genome-editing technique, with numerous examples of gene mutation and transcriptional regulation control in both model and crop plants. In this review, various aspects of the CRISPR/Cas9 system are explored, including a general presentation of the function of the CRISPR/Cas9 system in bacteria and its practical application as a biotechnological tool for editing plant genomes, particularly in horticultural crops.
Collapse
Affiliation(s)
| | - Lamiaa M. Mahmoud
- Pomology Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt;
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| | - Tatiana S. Moraes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba 13416-000, SP, Brazil;
| | - Zhonglin Mou
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32603, USA;
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| |
Collapse
|
21
|
Yeung AWK, Tzvetkov NT, Gupta VK, Gupta SC, Orive G, Bonn GK, Fiebich B, Bishayee A, Efferth T, Xiao J, Silva AS, Russo GL, Daglia M, Battino M, Orhan IE, Nicoletti F, Heinrich M, Aggarwal BB, Diederich M, Banach M, Weckwerth W, Bauer R, Perry G, Bayer EA, Huber LA, Wolfender JL, Verpoorte R, Macias FA, Wink M, Stadler M, Gibbons S, Cifuentes A, Ibanez E, Lizard G, Müller R, Ristow M, Atanasov AG. Current research in biotechnology: Exploring the biotech forefront. CURRENT RESEARCH IN BIOTECHNOLOGY 2019. [DOI: 10.1016/j.crbiot.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
22
|
Atanasov AG. Cardioprotection by black pepper, genome edited crops safety, mobile-based inflammation assay, and other biotech research updates. CURRENT RESEARCH IN BIOTECHNOLOGY 2019. [DOI: 10.1016/j.crbiot.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|