1
|
Carlino N, Blanco-Míguez A, Punčochář M, Mengoni C, Pinto F, Tatti A, Manghi P, Armanini F, Avagliano M, Barcenilla C, Breselge S, Cabrera-Rubio R, Calvete-Torre I, Coakley M, Cobo-Díaz JF, De Filippis F, Dey H, Leech J, Klaassens ES, Knobloch S, O'Neil D, Quijada NM, Sabater C, Skírnisdóttir S, Valentino V, Walsh L, Alvarez-Ordóñez A, Asnicar F, Fackelmann G, Heidrich V, Margolles A, Marteinsson VT, Rota Stabelli O, Wagner M, Ercolini D, Cotter PD, Segata N, Pasolli E. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 2024; 187:5775-5795.e15. [PMID: 39214080 DOI: 10.1016/j.cell.2024.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.
Collapse
Affiliation(s)
- Niccolò Carlino
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Aitor Blanco-Míguez
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michal Punčochář
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Claudia Mengoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessia Tatti
- Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy; Centre for Agriculture Food Environment, University of Trento, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Paolo Manghi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Avagliano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Coral Barcenilla
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Department of Biotechnology, Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Inés Calvete-Torre
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Hrituraj Dey
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - John Leech
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | - Narciso M Quijada
- Austrian Competence Centre for Feed and Food Quality, Safety, and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria; Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria; Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Vincenzo Valentino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Liam Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | | | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gloria Fackelmann
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Vitor Heidrich
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Viggó Thór Marteinsson
- Microbiology Research Group, Matís, Reykjavík, Iceland; University of Iceland, Faculty of Food Science and Nutrition, Reykjavík, Iceland
| | - Omar Rota Stabelli
- Centre for Agriculture Food Environment, University of Trento, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Martin Wagner
- Austrian Competence Centre for Feed and Food Quality, Safety, and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria; Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| | - Edoardo Pasolli
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Kothe CI, Carøe C, Mazel F, Zilber D, Cruz-Morales P, Mohellibi N, Evans JD. Novel misos shape distinct microbial ecologies: opportunities for flavourful sustainable food innovation. Food Res Int 2024; 189:114490. [PMID: 38876584 DOI: 10.1016/j.foodres.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Fermentation is resurgent around the world as people seek healthier, more sustainable, and tasty food options. This study explores the microbial ecology of miso, a traditional Japanese fermented paste, made with novel regional substrates to develop new plant-based foods. Eight novel miso varieties were developed using different protein-rich substrates: yellow peas, Gotland lentils, and fava beans (each with two treatments: standard and nixtamalisation), as well as rye bread and soybeans. The misos were produced at Noma, a restaurant in Copenhagen, Denmark. Samples were analysed with biological and technical triplicates at the beginning and end of fermentation. We also incorporated in this study six samples of novel misos produced following the same recipe at Inua, a former affiliate restaurant of Noma in Tokyo, Japan. To analyse microbial community structure and diversity, metabarcoding (16S and ITS) and shotgun metagenomic analyses were performed. The misos contain a greater range of microbes than is currently described for miso in the literature. The composition of the novel yellow pea misos was notably similar to the traditional soybean ones, suggesting they are a good alternative, which supports our culinary collaborators' sensory conclusions. For bacteria, we found that overall substrate had the strongest effect, followed by time, treatment (nixtamalisation), and geography. For fungi, there was a slightly stronger effect of geography and a mild effect of substrate, and no significant effects for treatment or time. Based on an analysis of metagenome-assembled genomes (MAGs), strains of Staphylococccus epidermidis differentiated according to substrate. Carotenoid biosynthesis genes in these MAGs appeared in strains from Japan but not from Denmark, suggesting a possible gene-level geographical effect. The benign and possibly functional presence of S. epidermidis in these misos, a species typically associated with the human skin microbiome, suggests possible adaptation to the miso niche, and the flow of microbes between bodies and foods in certain fermentation as more common than is currently recognised. This study improves our understanding of miso ecology, highlights the potential for developing novel misos using diverse local ingredients, and suggests how fermentation innovation can contribute to studies of microbial ecology and evolution.
Collapse
Affiliation(s)
- Caroline Isabel Kothe
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | | | - Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - David Zilber
- Novonesis, Hørsholm, Denmark; Restaurant Noma, Copenhagen, Denmark
| | - Pablo Cruz-Morales
- Yeast Natural Products, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Nacer Mohellibi
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, France
| | - Joshua D Evans
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
3
|
Tirado-Kulieva V, Quijano-Jara C, Avila-George H, Castro W. Predicting the evolution of pH and total soluble solids during coffee fermentation using near-infrared spectroscopy coupled with chemometrics. Curr Res Food Sci 2024; 9:100788. [PMID: 39005496 PMCID: PMC11245949 DOI: 10.1016/j.crfs.2024.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Currently, coffee fermentation is visually operated, which results in incomplete or excessive processes and coffees with undesirable characteristics. In front of it, pH and total soluble solids (TSS) have been shown to be good fermentation indicators, although this requires rapid, accurate, and chemical-free measurement techniques such as NIR spectroscopy. However, the complexity of the NIR spectra requires optimization steps in which variable selection techniques simplify profiles and subsequent models. This work tests a new covering array feature selection (CAFS) approach on NIR spectra to optimize prediction models in coffee samples during fermentation. Spectral profiles in the range 1100-2100 nm were extracted from coffee beans (Typica, Caturra, and Catimor varieties) raw and during fermentation (4, 8, 12, 16, 20, and 24 h). Partial least-squares regressions (PLSR) were performed using full spectra using a five-fold cross-validation strategy for training and validation. The relevant wavelengths were then selected using the β coefficients, the important projection of variables (VIP), and the CAFS method. Finally, optimized models were performed using the relevant wavelengths and compared among these using their statistical metrics. The models performed using the selected variables (22-47) of CAFS showed the best performance in predicting pH (R 2 = 0.825-0.903, RMSE = 0.096-0.158, RPD = 6.33-10.38) and TSS (R 2 = 0.865-0.922, RMSE = 0.688-1.059, RPD = 0.94-1.45) compared to the other methods. These findings suggest that simple and efficient models could be performed and implemented in routine analysis due to the maximum coverage and minimum cardinality of CAFS.
Collapse
Affiliation(s)
- Vicente Tirado-Kulieva
- Instituto de Investigación para el Desarrollo Sostenible y Cambio Climático, Universidad Nacional de Frontera, Sullana, 20100, Piura, Peru
- Escuela de Posgrado, Universidad Nacional de Trujillo, Trujillo, Peru
| | - Carlos Quijano-Jara
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Trujillo, Peru
| | - Himer Avila-George
- Departamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Ameca, 46600, Jalisco, Mexico
| | - Wilson Castro
- Facultad de Ingeniería de Industrias Alimentarias y Biotecnología, Universidad Nacional de Frontera, Sullana, 20100, Piura, Peru
| |
Collapse
|
4
|
Vale ADS, Pereira CMT, De Dea Lindner J, Rodrigues LRS, Kadri NKE, Pagnoncelli MGB, Kaur Brar S, Soccol CR, Pereira GVDM. Exploring Microbial Influence on Flavor Development during Coffee Processing in Humid Subtropical Climate through Metagenetic-Metabolomics Analysis. Foods 2024; 13:1871. [PMID: 38928813 PMCID: PMC11203001 DOI: 10.3390/foods13121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Research into microbial interactions during coffee processing is essential for developing new methods that adapt to climate change and improve flavor, thus enhancing the resilience and quality of global coffee production. This study aimed to investigate how microbial communities interact and contribute to flavor development in coffee processing within humid subtropical climates. Employing Illumina sequencing for microbial dynamics analysis, and high-performance liquid chromatography (HPLC) integrated with gas chromatography-mass spectrometry (GC-MS) for metabolite assessment, the study revealed intricate microbial diversity and associated metabolic activities. Throughout the fermentation process, dominant microbial species included Enterobacter, Erwinia, Kluyvera, and Pantoea from the prokaryotic group, and Fusarium, Cladosporium, Kurtzmaniella, Leptosphaerulina, Neonectria, and Penicillium from the eukaryotic group. The key metabolites identified were ethanol, and lactic, acetic, and citric acids. Notably, the bacterial community plays a crucial role in flavor development by utilizing metabolic versatility to produce esters and alcohols, while plant-derived metabolites such as caffeine and linalool remain stable throughout the fermentation process. The undirected network analysis revealed 321 interactions among microbial species and key substances during the fermentation process, with Enterobacter, Kluyvera, and Serratia showing strong connections with sugar and various volatile compounds, such as hexanal, benzaldehyde, 3-methylbenzaldehyde, 2-butenal, and 4-heptenal. These interactions, including inhibitory effects by Fusarium and Cladosporium, suggest microbial adaptability to subtropical conditions, potentially influencing fermentation and coffee quality. The sensory analysis showed that the final beverage obtained a score of 80.83 ± 0.39, being classified as a specialty coffee by the Specialty Coffee Association (SCA) metrics. Nonetheless, further enhancements in acidity, body, and aftertaste could lead to a more balanced flavor profile. The findings of this research hold substantial implications for the coffee industry in humid subtropical regions, offering potential strategies to enhance flavor quality and consistency through controlled fermentation practices. Furthermore, this study contributes to the broader understanding of how microbial ecology interplays with environmental factors to influence food and beverage fermentation, a topic of growing interest in the context of climate change and sustainable agriculture.
Collapse
Affiliation(s)
- Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Cecília Marques Tenório Pereira
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, SC, Brazil; (C.M.T.P.); (J.D.D.L.)
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, SC, Brazil; (C.M.T.P.); (J.D.D.L.)
| | - Luiz Roberto Saldanha Rodrigues
- Graduate Program in Biotechnology, Federal Technological University of Paraná (UTFPR), Dois Vizinhos 85660-000, PR, Brazil; (L.R.S.R.); (M.G.B.P.)
| | - Nájua Kêmil El Kadri
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Maria Giovana Binder Pagnoncelli
- Graduate Program in Biotechnology, Federal Technological University of Paraná (UTFPR), Dois Vizinhos 85660-000, PR, Brazil; (L.R.S.R.); (M.G.B.P.)
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3, Canada;
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Gilberto Vinícius de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| |
Collapse
|
5
|
Junker R, Valence F, Mistou MY, Chaillou S, Chiapello H. Integration of metataxonomic data sets into microbial association networks highlights shared bacterial community dynamics in fermented vegetables. Microbiol Spectr 2024; 12:e0031224. [PMID: 38747598 PMCID: PMC11237590 DOI: 10.1128/spectrum.00312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024] Open
Abstract
The management of food fermentation is still largely based on empirical knowledge, as the dynamics of microbial communities and the underlying metabolic networks that produce safe and nutritious products remain beyond our understanding. Although these closed ecosystems contain relatively few taxa, they have not yet been thoroughly characterized with respect to how their microbial communities interact and dynamically evolve. However, with the increased availability of metataxonomic data sets on different fermented vegetables, it is now possible to gain a comprehensive understanding of the microbial relationships that structure plant fermentation. In this study, we applied a network-based approach to the integration of public metataxonomic 16S data sets targeting different fermented vegetables throughout time. Specifically, we aimed to explore, compare, and combine public 16S data sets to identify shared associations between amplicon sequence variants (ASVs) obtained from independent studies. The workflow includes steps for searching and selecting public time-series data sets and constructing association networks of ASVs based on co-abundance metrics. Networks for individual data sets are then integrated into a core network, highlighting significant associations. Microbial communities are identified based on the comparison and clustering of ASV networks using the "stochastic block model" method. When we applied this method to 10 public data sets (including a total of 931 samples) targeting five varieties of vegetables with different sampling times, we found that it was able to shed light on the dynamics of vegetable fermentation by characterizing the processes of community succession among different bacterial assemblages. IMPORTANCE Within the growing body of research on the bacterial communities involved in the fermentation of vegetables, there is particular interest in discovering the species or consortia that drive different fermentation steps. This integrative analysis demonstrates that the reuse and integration of public microbiome data sets can provide new insights into a little-known biotope. Our most important finding is the recurrent but transient appearance, at the beginning of vegetable fermentation, of amplicon sequence variants (ASVs) belonging to Enterobacterales and their associations with ASVs belonging to Lactobacillales. These findings could be applied to the design of new fermented products.
Collapse
Affiliation(s)
- Romane Junker
- MaIAGE, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
6
|
Aswathi KN, Shirke A, Praveen A, Murthy PS. Functioning of Saccharomyces cerevisiae in honey coffee (Coffea canephora) and their effect on metabolites, volatiles and flavor profiles. Food Res Int 2024; 180:114092. [PMID: 38395561 DOI: 10.1016/j.foodres.2024.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Post-harvesting and microbial activity of coffee play a critical role in the metabolites and the sensory quality of the brew. The pulped natural/honey coffee process is an improvised semi-dry technique consisting of prolonged fermentation of depulped coffee beans excluding washing steps. The starter culture application in coffee industry plays an important role to enhance the cup quality. This work focuses on the fermentation of pulped natural/honey Robusta coffee with a starter culture (Saccharomyces cerevisiae MTCC 173) and the identification of fermentation patterns through 1H NMR, microbial ecology, volatomics and organoleptics of brew. Fermentation was accelerated by yeast populace (10 cfu log/mL) for 192 h. Principal compound analysis performed on 1H NMR led to the investigation of metabolites such as sugars, alkaloids, alcohols, organic acids and amino acids. Detection of some sugars and organic acids represented that the starter cultures imparted few metabolic changes during the process. A major activity of sugars in fermentation with 83.3 % variance in PC 1 and 16.7 % in PC 2 was observed. The chemical characteristics such as carbohydrates (41.88 ± 0.77 mg/g), polyphenols (34.16 ± 0.79 mg/g), proteins (58.54 ± 0.66 mg/g), caffeine (26.54 ± 0.06 mg/g), and CGA (21.83 ± 0.04 mg/g) were also evaluated. The heatmap-based visualization of GC-MS accorded characterization of additional 5 compounds in treated (T) coffee contributing to sweet, fruity and caramelly odor notes compared to untreated (UT). The sensory outlines 72.5 in T and 70.5 in UT scores. Preparation of honey coffee with Saccharomyces cerevisiae is the first report, which modulated the flavor and quality of coffee.
Collapse
Affiliation(s)
- K N Aswathi
- Department of Plantation Products, Spices and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ayusha Shirke
- Department of Plantation Products, Spices and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Aishwarya Praveen
- Department of Plantation Products, Spices and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpa S Murthy
- Department of Plantation Products, Spices and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Decadt H, Vermote L, Díaz-Muñoz C, Weckx S, De Vuyst L. Decarboxylase activity of the non-starter lactic acid bacterium Loigolactobacillus rennini gives crack defects in Gouda cheese through the production of γ-aminobutyric acid. Appl Environ Microbiol 2024; 90:e0165523. [PMID: 38231565 PMCID: PMC10880667 DOI: 10.1128/aem.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
Ten Gouda cheese wheels with an age of 31 weeks from six different batch productions were affected by a crack defect and displayed an unpleasant off-flavor. To unravel the causes of these defects, the concentrations of free amino acids, other organic acids, volatile organic compounds, and biogenic amines were quantified in zones around the cracks and in zones without cracks, and compared with those of similar Gouda cheeses without crack defect. The Gouda cheeses with cracks had a significantly different metabolome. The production of the non-proteinogenic amino acid γ-aminobutyric acid (GABA) could be unraveled as the key mechanism leading to crack formation, although the production of the biogenic amines cadaverine and putrescine contributed as well. High-throughput amplicon sequencing of the full-length 16S rRNA gene based on whole-community DNA revealed the presence of Loigolactobacillus rennini and Tetragenococcus halophilus as most abundant non-starter lactic acid bacteria in the zones with cracks. Shotgun metagenomic sequencing allowed to obtain a metagenome-assembled genome of both Loil. rennini and T. halophilus. However, only Loil. rennini contained genes necessary for the production of GABA, cadaverine, and putrescine. Metagenetics further revealed the brine and the rennet used during cheese manufacturing as the most plausible inoculation sources of both Loil. rennini and T. halophilus.IMPORTANCECrack defects in Gouda cheeses are still poorly understood, although they can lead to major economic losses in cheese companies. In this study, the bacterial cause of a crack defect in Gouda cheeses was identified, and the pathways involved in the crack formation were unraveled. Moreover, possible contamination sources were identified. The brine bath might be a major source of bacteria with the potential to deteriorate cheese quality, which suggests that cheese producers should regularly investigate the quality and microbial composition of their brines. This study illustrated how a multiphasic approach can understand and mitigate problems in a cheese company.
Collapse
Affiliation(s)
- Hannes Decadt
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Louise Vermote
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Xiang Y, Zhou B, Jiang C, Tang Z, Liu P, Ding W, Lin H, Tang J. Revealing the formation mechanisms of key flavors in fermented broad bean paste. Food Res Int 2024; 177:113880. [PMID: 38225117 DOI: 10.1016/j.foodres.2023.113880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Pixian Douban (PXDB) is a popular Chinese condiment for its distinctive flavor. Broad bean fermentation (Meju) is the most important process in the formation of flavor substances. Key flavors were analyzed qualitatively and quantitatively, and metagenomic technology was applied to study the microbial diversity during broad bean fermentation. In addition, the main metabolic pathways of key flavors were explored. Results indicated that Staphylococcus_gallinarum was the main microorganism in the microbial community, accounting for 39.13%, followed by Lactobacillus_agilis, accounting for 13.76%. Aspergillus_flavus was the fungus with the highest species abundance, accounting for 3.02%. The KEGG Pathway enrichment analysis showed that carbohydrate metabolism and amino acid metabolism were the main metabolic pathways. Glycoside hydrolase and glycosyltransferase genes were the most abundant, accounting for more than 70% of the total number of active enzyme genes. A total of 113 enzymes related to key flavors and 39 microorganisms corresponding to enzymes were annotated. And Staphylococcus_gallinarum, Lactobacillus_agilis, Weissella_confusa, Pediococcus_acidilactici, Staphylococcus_kloosii, Aspergillus_oryzae, and Aspergillus_flavus played a key role in the metabolic pathway. This study reveals the formation mechanism of key flavors in fermented broad bean, it is important for guiding the industrial production of PXDB and improving product quality.
Collapse
Affiliation(s)
- Yue Xiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China.
| | - Binbin Zhou
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Chunyan Jiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Zhirui Tang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Ping Liu
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Wenwu Ding
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Hongbin Lin
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| | - Jie Tang
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China.
| |
Collapse
|
9
|
Janne Carvalho Ferreira L, de Souza Gomes M, Maciel de Oliveira L, Diniz Santos L. Coffee fermentation process: A review. Food Res Int 2023; 169:112793. [PMID: 37254380 DOI: 10.1016/j.foodres.2023.112793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the importance of controlling coffee fermentation in the final quality of the beverage has been recognized. The literature review was conducted in the Science Direct and Springer databases, considering studies published in the last ten years, 74 references were selected. Several studies have been developed to evaluate and propose fermentation conditions that result in sensory improvements in coffee. So, this review aims to describe detailed the different protocols for conducting the coffee fermentation step and how they could influence the sensory quality of coffee based on the Specialty Coffee Association protocol. We propose a new way to identify coffee post-harvest processing not based on the already known wet, dry and semi-dry processing. The new identification is focused on considering fermentation as a step influenced by the coffee fruit treatment, availability of oxygen, water addition, and starter culture utilization. The findings of this survey showed that each type of coffee fermentation protocol can influence the microbiota development and consequently the coffee beverage. There is a migration from the use of processes in open environments to closed environments with controlled anaerobic conditions. However, it is not possible yet to define a single process capable of increasing coffee quality or developing a specific sensory pattern in any environmental condition. The use of starter cultures plays an important role in the sensory differentiation of coffee and can be influenced by the fermentation protocol applied. The application of fermentation protocols well defined is essential in order to have a good product also in terms of food safety. More research is needed to develop and implement environmental control conditions, such as temperature and aeration, to guarantee the reproducibility of the results.
Collapse
Affiliation(s)
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia, Patos de Minas, Minas Gerais, Brazil.
| | - Liliane Maciel de Oliveira
- Department of Food Engineering, Federal University of São João del-Rei, Sete Lagoas, Minas Gerais, Brazil.
| | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Pino AFS, Espinosa ZYD, Cabrera EVR. Characterization of the Rhizosphere Bacterial Microbiome and Coffee Bean Fermentation in the Castillo-Tambo and Bourbon Varieties in the Popayán-Colombia Plateau. BMC PLANT BIOLOGY 2023; 23:217. [PMID: 37098489 PMCID: PMC10127060 DOI: 10.1186/s12870-023-04182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The microbial biodiversity and the role of microorganisms in the fermentation of washed coffee in Colombia were investigated using the Bourbon and Castillo coffee varieties. DNA sequencing was used to evaluate the soil microbial biota and their contribution to fermentation. The potential benefits of these microorganisms were analyzed, including increased productivity and the need to understand the rhizospheric bacterial species to optimize these benefits. METHODS This study used coffee beans for DNA extraction and 16 S rRNA sequencing. The beans were pulped, samples were stored at 4ºC, and the fermentation process was at 19.5ºC and 24ºC. The fermented mucilage and root-soil samples were collected in duplicate at 0, 12, and 24 h. DNA was extracted from the samples at a concentration of 20 ng/µl per sample, and the data obtained were analyzed using the Mothur platform. RESULTS The study demonstrates that the coffee rhizosphere is a diverse ecosystem composed primarily of microorganisms that cannot be cultured in the laboratory. This suggests that the microbial community may vary depending on the coffee variety and play an essential role in fermentation and overall coffee quality. CONCLUSIONS The study highlights the importance of understanding and optimizing the microbial diversity in coffee production, which could have implications for the sustainability and success of coffee production. DNA sequencing techniques can help characterize the structure of the soil microbial biota and evaluate its contribution to coffee fermentation. Finally, further research is needed to fully understand the biodiversity of coffee rhizospheric bacteria and their role.
Collapse
Affiliation(s)
- Andrés Felipe Solis Pino
- Corporación Universitaria Comfacauca - Unicomfacauca, Cl. 4 N. 8-30, Popayán, Cauca, 190001, Colombia.
| | | | - Efren Venancio Ramos Cabrera
- Corporación Universitaria Comfacauca - Unicomfacauca, Cl. 4 N. 8-30, Popayán, Cauca, 190001, Colombia
- Universidad Nacional Abierta y a Distancia - UNAD, Calle 5 # 46N -67, Popayán, Cauca, 190001, Colombia
| |
Collapse
|
11
|
Peñuela-Martínez AE, Velasquez-Emiliani AV, Angel CA. Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Coffee fermentation is a complex process, mainly involving bacteria and yeasts, whose interaction influences beverage quality. The way this process is conducted affects the interactions between these microorganisms. To identify microbial diversity in fermenting coffee, samples were collected from 20 farms in the Department of Quindío, Colombia. Metataxonomic analyses using high-throughput sequencing and volatile organic compound identification in green coffee beans were performed with HS-SPME and GC-MS. Potential relationships between some families and genera with different fermentation types and coffee quality were evaluated. In our results, samples presented with high richness and diversity were greater for bacteria than for yeast/fungi. The Enterobacteriaceae family dominated at the beginning of fermentation, while Leuconostoc, Lactobacillus, Gluconobacter, and Acetobacter genera dominated at the end, a finding related to pH reduction and final coffee quality. Overall, 167 fungal families were identified, but Saccharomyceaceae dominated from the beginning. Alcohols and esters were the main chemical classes identified in green coffee bean samples from these fermentations. These results will facilitate the identification process conditions that influence the presence and abundance of microorganisms related to quality as well as contributing to the design of strategies to conduct fermentations to improve the final quality of coffee.
Collapse
|
12
|
Braga AVU, Miranda MA, Aoyama H, Schmidt FL. Study on coffee quality improvement by self-induced anaerobic fermentation: Microbial diversity and enzymatic activity. Food Res Int 2023; 165:112528. [PMID: 36869528 DOI: 10.1016/j.foodres.2023.112528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The postharvest fermentation process of coffee has rapidly advanced in the last few years due to the search for quality and diversity of sensorial profiles. A new type of fermentation, named self-induced-anaerobic fermentation (SIAF), is a promising process that has been increasingly used. This study aims to evaluate the sensorial improvement of coffee beverages during SIAF and the influence of microorganism's community and enzymatic activity. The SIAF process was conducted in Brazilian farms for up to 8 days. The sensorial quality of coffee was evaluated by Q-graders; the microbial community was identified by the high-throughput sequencing of 16S rRNA and ITS regions; and the enzymatic activity (invertase, polygalacturonase, and endo-β-mannanase) was also investigated. SIAF increased up to 3.8 points in the total score of sensorial evaluation (compared to the non-fermented sample), in addition to presenting more flavor diversity (especially within the fruity and sweetness descriptors). The high-throughput sequencing identified 655 bacterial and 296 fungal species during the three processes. The bacteria Enterobacter sp., Lactobacillus sp., Pantoea sp., and the fungi Cladosporium sp. and Candida sp. were the predominant genera. Fungi that are potential producers of mycotoxin were identified throughout the process, which indicates a risk of contamination since some of them are not degraded in the roasting process. Thirty-one species of microorganisms were described for the first time in coffee fermentation. The microbial community was influenced by the place where the process was carried out, mainly in relation to the diversity of fungi. Washing the coffee fruits before fermenting led to a fast reduction of pH; a fast development of Lactobacillus sp. and a fast dominance of Candida sp.; a reduction of the fermentation time necessary to achieve the best sensorial score; an increase in the invertase activity in the seed; a more expressive invertase activity in the husk; and a decreasing trend in polygalacturonase activity in the coffee husk. The increase in endo-β-mannanase activity suggests that coffee starts germinating during the process. SIAF has a huge potential to increase the quality and add value to coffee, but further studies must be conducted to access its safety. The study allowed a better knowledge of the spontaneous microbial community and the enzymes that were present in the fermentation process.
Collapse
Affiliation(s)
- Ana Valéria Ulhano Braga
- Laboratory of Fruits and Vegetables, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°80 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil.
| | - Márcio André Miranda
- Laboratory of Enzymology, Institute of Biology, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°255 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo. Rua Heitor Lacerda Guedes, n °1000 - ZIP Code 13059-581. Cidade Satélite Íris, Campinas, São Paulo, Brazil
| | - Hiroshi Aoyama
- Laboratory of Enzymology, Institute of Biology, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°255 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
| | - Flavio Luís Schmidt
- Laboratory of Fruits and Vegetables, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°80 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Cruz-O’Byrne R, Gamez-Guzman A, Piraneque-Gambasica N, Aguirre-Forero S. Genomic sequencing in Colombian coffee fermentation reveals new records of yeast species. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
FERNANDEZ-GÜIMAC SLJ, PEREZ J, MENDOZA JE, BUSTAMANTE DE, CALDERON MS. Exploring the diversity of microorganisms and potential pectinase activity isolated from wet fermentation of coffee in northeastern Peru. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.81922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Jhordy PEREZ
- Universidad Nacional Toribio Rodríguez de Mendoza, Peru
| | | | - Danilo Edson BUSTAMANTE
- Universidad Nacional Toribio Rodríguez de Mendoza, Peru; Universidad Nacional Toribio Rodríguez de Mendoza, Peru
| | - Martha Steffany CALDERON
- Universidad Nacional Toribio Rodríguez de Mendoza, Peru; Universidad Nacional Toribio Rodríguez de Mendoza, Peru
| |
Collapse
|
15
|
Understanding the Effects of Self-Induced Anaerobic Fermentation on Coffee Beans Quality: Microbiological, Metabolic, and Sensory Studies. Foods 2022; 12:foods12010037. [PMID: 36613253 PMCID: PMC9818356 DOI: 10.3390/foods12010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, an investigation of the microbial community structure and chemical changes in different layers of a static coffee beans fermentation tank (named self-induced anaerobic fermentation-SIAF) was conducted at different times (24, 48, and 72 h). The microbial taxonomic composition comprised a high prevalence of Enterobacteriaceae and Nectriaceae and low prevalence of lactic acid bacteria and yeast, which greatly differs from the traditional process performed in open tanks. No major variation in bacterial and fungal diversity was observed between the bottom, middle, and top layers of the fermentation tank. On the other hand, the metabolism of these microorganisms varied significantly, showing a higher consumption of pulp sugar and production of metabolites in the bottom and middle layers compared to the top part of the fermentation tank. Extended processes (48 and 72 h) allowed a higher production of key-metabolites during fermentation (e.g., 3-octanol, ethyl acetate, and amyl acetate), accumulation in roasted coffee beans (acetic acid, pyrazine, methyl, 2-propanone, 1-hydroxy), and diversification of sensory profiles of coffee beverages compared to 24 h of fermentation process. In summary, this study demonstrated that SIAF harbored radically different dominant microbial groups compared to traditional coffee processing, and diversification of fermentation time could be an important tool to provide coffee beverages with novel and desirable flavor profiles.
Collapse
|
16
|
Barchi Y, Philippe C, Chaïb A, Oviedo-Hernandez F, Claisse O, Le Marrec C. Phage Encounters Recorded in CRISPR Arrays in the Genus Oenococcus. Viruses 2022; 15:15. [PMID: 36680056 PMCID: PMC9867325 DOI: 10.3390/v15010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Oenococcus genus comprises four recognized species, and members have been found in different types of beverages, including wine, kefir, cider and kombucha. In this work, we implemented two complementary strategies to assess whether oenococcal hosts of different species and habitats were connected through their bacteriophages. First, we investigated the diversity of CRISPR-Cas systems using a genome-mining approach, and CRISPR-endowed strains were identified in three species. A census of the spacers from the four identified CRISPR-Cas loci showed that each spacer space was mostly dominated by species-specific sequences. Yet, we characterized a limited records of potentially recent and also ancient infections between O. kitaharae and O. sicerae and phages of O. oeni, suggesting that some related phages have interacted in diverse ways with their Oenococcus hosts over evolutionary time. Second, phage-host interaction analyses were performed experimentally with a diversified panel of phages and strains. None of the tested phages could infect strains across the species barrier. Yet, some infections occurred between phages and hosts from distinct beverages in the O. oeni species.
Collapse
Affiliation(s)
| | | | | | | | | | - Claire Le Marrec
- UMR Oenologie 1366, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33882 Villenave d’Ornon, France
| |
Collapse
|
17
|
Molecular, Chemical, and Sensory Attributes Fingerprinting of Self-Induced Anaerobic Fermented Coffees from Different Altitudes and Processing Methods. Foods 2022; 11:foods11243945. [PMID: 36553686 PMCID: PMC9777685 DOI: 10.3390/foods11243945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Coffee quality is achieved by performing good practices. This study aimed to evaluate coffees from different altitudes fermented with the self-induced anaerobic method (SIAF) and processed via natural (N) and pulped natural (PN). Molecular (PCR-DGGE), chemical (HPLC, ABTS, DPPH, ATR-FTIR, and GC-MS), and sensory analyses were performed. Leuconostoc predominated both processes and all altitudes. Hanseniaspora and Pichia predominated both processes at 800 and 1200 m. Acids were higher in N coffees for all altitudes. Acetic, malic acid and alcohols were the most abundant. Higher sensory scores were obtained in N (mainly at 1400 m-88.13). Floral and spices were perceived in all samples. ABTS capacity in roasted coffee increased with altitude in PN (2685.71, 2724.03, and 3847.14 µM trolox/g); meanwhile, the opposite was observed in N. High sensory scores were obtained in high altitudes. Alcohols and acids in roasted beans increase with altitude. Leuconostoc and Pichia showed potential as future coffee starters.
Collapse
|
18
|
Lima CODC, De Castro GM, Solar R, Vaz ABM, Lobo F, Pereira G, Rodrigues C, Vandenberghe L, Martins Pinto LR, da Costa AM, Koblitz MGB, Benevides RG, Azevedo V, Uetanabaro APT, Soccol CR, Góes-Neto A. Unraveling potential enzymes and their functional role in fine cocoa beans fermentation using temporal shotgun metagenomics. Front Microbiol 2022; 13:994524. [PMID: 36406426 PMCID: PMC9671152 DOI: 10.3389/fmicb.2022.994524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/04/2022] [Indexed: 03/23/2024] Open
Abstract
Cocoa beans fermentation is a spontaneous process, essential for the generation of quality starting material for fine chocolate production. The understanding of this process has been studied by the application of high-throughput sequencing technologies, which grants a better assessment of the different microbial taxa and their genes involved in this microbial succession. The present study used shotgun metagenomics to determine the enzyme-coding genes of the microbiota found in two different groups of cocoa beans varieties during the fermentation process. The statistical evaluation of the most abundant genes in each group and time studied allowed us to identify the potential metabolic pathways involved in the success of the different microorganisms. The results showed that, albeit the distinction between the initial (0 h) microbiota of each varietal group was clear, throughout fermentation (24-144 h) this difference disappeared, indicating the existence of selection pressures. Changes in the microbiota enzyme-coding genes over time pointed to the distinct ordering of fermentation at 24-48 h (T1), 72-96 h (T2), and 120-144 h (T3). At T1, the significantly more abundant enzyme-coding genes were related to threonine metabolism and those genes related to the glycolytic pathway, explained by the abundance of sugars in the medium. At T2, the genes linked to the metabolism of ceramides and hopanoids lipids were clearly dominant, which are associated with the resistance of microbial species to extreme temperatures and pH values. In T3, genes linked to trehalose metabolism, related to the response to heat stress, dominated. The results obtained in this study provided insights into the potential functionality of microbial community succession correlated to gene function, which could improve cocoa processing practices to ensure the production of more stable quality end products.
Collapse
Affiliation(s)
- Carolina O. de C. Lima
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Giovanni M. De Castro
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Solar
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Aline B. M. Vaz
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Lobo
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gilberto Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Luciana Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Andréa Miura da Costa
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Gabriela Bello Koblitz
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Guimarães Benevides
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Aristóteles Góes-Neto
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Martinez SJ, Bressani APP, Simão JBP, Pylro VS, Dias DR, Schwan RF. Dominant microbial communities and biochemical profile of pulped natural fermented coffees growing in different altitudes. Food Res Int 2022; 159:111605. [DOI: 10.1016/j.foodres.2022.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
|
20
|
Aswathi K, Shankar S, Seenivasan K, Prakash I, Murthy PS. Metagenomics and metabolomic profiles of Coffea canephora processed by honey/pulped natural technique. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Guerra LS, Cevallos-Cevallos JM, Weckx S, Ruales J. Traditional Fermented Foods from Ecuador: A Review with a Focus on Microbial Diversity. Foods 2022; 11:foods11131854. [PMID: 35804670 PMCID: PMC9265738 DOI: 10.3390/foods11131854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
The development of early civilizations was greatly associated with populations’ ability to exploit natural resources. The development of methods for food preservation was one of the pillars for the economy of early societies. In Ecuador, food fermentation significantly contributed to social advances and fermented foods were considered exclusive to the elite or for religious ceremonies. With the advancement of the scientific research on bioprocesses, together with the implementation of novel sequencing tools for the accurate identification of microorganisms, potential health benefits and the formation of flavor and aroma compounds in fermented foods are progressively being described. This review focuses on describing traditional fermented foods from Ecuador, including cacao and coffee as well as less popular fermented foods. It is important to provide new knowledge associated with nutritional and health benefits of the traditional fermented foods.
Collapse
Affiliation(s)
- Luis Santiago Guerra
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
| | - Juan Manuel Cevallos-Cevallos
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Campus Gustavo Galindo, Escuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090112, Ecuador;
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
- Correspondence:
| |
Collapse
|
22
|
Galarza G, Figueroa JG. Volatile Compound Characterization of Coffee ( Coffea arabica) Processed at Different Fermentation Times Using SPME-GC-MS. Molecules 2022; 27:molecules27062004. [PMID: 35335365 PMCID: PMC8954866 DOI: 10.3390/molecules27062004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Coffee is a beverage that is consumed due to its flavor and fragrance. In this investigation, we demonstrated the relations between different dry fermentation processes of coffee (aerobic, anaerobic, and atmosphere modified with CO2) and fermentation times (0, 24, 48, 72, and 96 h), with pH, acidity, and seven volatile marker compounds of coffee. Volatile compounds were extracted by solid phase microextraction (SPME) and an analysis was performed by gas chromatography−mass spectrometry (GC−MS). A significant effect (p < 0.05) between the fermentation time and a decrease in pH was demonstrated, as well as between the fermentation time and increasing acidity (p < 0.05). Acetic acid was positively correlated with the fermentation time, unlike 2-methylpyrazine, 2-furanmethanol, 2,6-dimethylpyrazine, and 5-methylfurfural, which were negatively correlated with the fermentation time. The aerobic and anaerobic fermentation treatments obtained high affinity with the seven volatile marker compounds analyzed due to the optimal environment for the development of the microorganisms that acted in this process. In contrast, in the fermentation process in an atmosphere modified with CO2, a negative affinity with the seven volatile compounds was evidenced, because this gas inactivated the development of microorganisms and inhibited their activity in the fermentation process.
Collapse
|
23
|
Influence of Environmental Microbiota on the Activity and Metabolism of Starter Cultures Used in Coffee Beans Fermentation. FERMENTATION 2021. [DOI: 10.3390/fermentation7040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microbial activity is an integral part of agricultural ecosystems and can influence the quality of food commodities. During on-farm processing, coffee growers use a traditional method of fermentation to remove the cherry pulp surrounding the beans. Here, we investigated the influence of the coffee farm microbiome and the resulting fermentation process conducted with selected starter cultures (Pichia fermentans YC5.2 and Pediococcus acidilactici LPBC161). The microbiota of the coffee farm (coffee fruits and leaves, over-ripe fruits, cherries before de-pulping, depulped beans, and water used for de-pulping beans) was dominated by Enterobacteriaceae and Saccharomycetales, as determined by llumina-based amplicon sequencing. In addition, 299 prokaryotes and 189 eukaryotes were identified. Following the fermentation process, Pichia and the family Lactobacillaceae (which includes P. acidilactici) represented more than 70% of the total microbial community. The positive interaction between the starters resulted in the formation of primary metabolites (such as ethanol and lactic acid) and important aroma-impacting compounds (ethyl acetate, isoamyl acetate, and ethyl isobutyrate). The success competitiveness of the starters towards the wild microbiota indicated that coffee farm microbiota has little influence on starter culture-added coffee fermentation. However, hygiene requirements in the fermentation process should be indicated to prevent the high microbial loads present in coffee farm soil, leaves, fruits collected on the ground, and over-ripe fruits from having access to the fermentation tank and transferring undesirable aromas to coffee beans.
Collapse
|
24
|
Liu D, Zhang C, Zhang J, Xin X, Liao X. Metagenomics reveals the formation mechanism of flavor metabolites during the spontaneous fermentation of potherb mustard (Brassica juncea var. multiceps). Food Res Int 2021; 148:110622. [PMID: 34507766 DOI: 10.1016/j.foodres.2021.110622] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Fermented vegetable flavors are closely associated with microbial metabolism. Here, shifts in flavor metabolites and their correlations to the structure and function of fermentative microbial communities were explored during the spontaneous fermentation process of potherb mustard (Brassica juncea var. multiceps), a traditionally fermented vegetable from China. Halophilic bacteria (HAB, i.e., Halomonas, Salinivibrio, and Vibrio) and lactic acid bacteria (LAB, i.e., Lactobacillus-related genera and Weissella) became highly abundant after potherb mustard fermentation. Further, HAB and LAB abundances exhibited significant, positive correlations with metabolites important in fermented potherb mustard flavoring (e.g., organic acids, amino acids, alcohols, aldehydes, and nitriles). Metagenomic analysis indicated that Halomonas, Salinivibrio, Weissella, and Lactobacillus-related genera were likely actively engaged in pyruvate metabolism (ko00620) and citrate cycle (TCA cycle, ko00020), leading to higher lactic and acetic acid concentrations, along with lower pH, which would affect levels of volatile isothiocyanates and nitriles that contribute to flavoring of fermented potherb mustard. Further, HAB and LAB were the primary populations inferred to be responsible for amino acid and fatty acid metabolism in addition to the biosynthesis of numerous volatile flavor compounds. This study highlights the predominance and importance of LAB and HAB during spontaneous fermentation of potherb mustard and provides new insights into their roles in this process.
Collapse
Affiliation(s)
- Daqun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
25
|
da Silva Vale A, de Melo Pereira GV, de Carvalho Neto DP, Sorto RD, Goés-Neto A, Kato R, Soccol CR. Facility-specific 'house' microbiome ensures the maintenance of functional microbial communities into coffee beans fermentation: implications for source tracking. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:470-481. [PMID: 33399261 DOI: 10.1111/1758-2229.12921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This work aimed at studying the unconfirmed hypothesis predicting the existence of a connection between coffee farm microbiome and the resulting spontaneous fermentation process. Using Illumina-based amplicon sequencing, 360 prokaryotes and 397 eukaryotes were identified from coffee fruits and leaves, over-ripe fruits, water used for coffee de-pulping, depulped coffee beans, soil, and temporal fermentation samples at an experimental farm in Honduras. Coffee fruits and leaves were mainly associated with high incidence of Enterobacteriaceae, Pseudomonas, Colletotrichum, and Cladosporium. The proportion of Enterobacteriaceae was increased when leaves and fruits were collected on the ground compared to those from the coffee tree. Coffee farm soil showed the richest microbial diversity with marked presence of Bacillus. Following the fermentation process, microorganisms present in depulped coffee beans (Leuconostoc, Gluconobater, Pichia, Hanseniaspora, and Candida) represented more than 90% of the total microbial community, which produced lactic acid, ethanol, and several volatile compounds. The community ecology connections described in this study showed that coffee fruit provides beneficial microorganisms for the fermentation process. Enterobacteria, Colletotrichum, and other microbial groups present in leaves, fruit surface, over-ripe fruits, and soil may transfer unwanted aromas to coffee beans, so they should be avoided from having access to the fermentation tank.
Collapse
Affiliation(s)
- Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, 81531-970, Brazil
| | | | - Dão Pedro de Carvalho Neto
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, 81531-970, Brazil
| | | | - Aristóteles Goés-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Rodrigo Kato
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, 81531-970, Brazil
| |
Collapse
|
26
|
Cruz-O'Byrne R, Piraneque-Gambasica N, Aguirre-Forero S. Microbial diversity associated with spontaneous coffee bean fermentation process and specialty coffee production in northern Colombia. Int J Food Microbiol 2021; 354:109282. [PMID: 34140187 DOI: 10.1016/j.ijfoodmicro.2021.109282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 01/16/2023]
Abstract
Coffee fermentation involves the action of microorganisms, whose metabolism has a significant influence on the composition of the beans and, consequently, on the beverage's sensory characteristics. In this study, the microbial diversity during the wet fermentation of Coffea arabica L. in the Sierra Nevada of Santa Marta (SNSM) in Colombia was explored by high-throughput sequencing and the resulting cup quality through the standards of the Specialty Coffee Association. The taxonomic assignment of sequence reads showed a high microbial diversity comprised of 695 bacterial and 156 fungal genera. The microbial community was dominated by the Lactic Acid Bacteria (LAB) Leuconostoc, the yeast Kazachstania, and the Acetic Acid Bacteria (AAB) Acetobacter. Co-occurrence relationships suggested synergistic patterns between populations of LAB-AAB, yeasts-AAB, Leuconostoc-Prevotella, LAB-ABB-Selenomonas, and yeasts-fungi-nonLAB-nonAAB, which may result in the production of metabolites that positively impact the sensory attributes of coffee. The beverages produced were classified as specialty coffees, and their score was positively influenced by the fungal richness and the abundance of unclassified Lactobacillales, Pichia, and Pseudomonas. The findings show the richness and microbial diversity of the SNSM and serve as input for future research such as the analysis of microbial-derived metabolites and the establishment of starter cultures in coffee processing that guarantee the generation of high-quality beverages, the standardization of processes, the reduction of economic losses, and the production of value-added products that allow taking advantage of specialty coffee market.
Collapse
|
27
|
Martinez SJ, Simão JBP, Pylro VS, Schwan RF. The Altitude of Coffee Cultivation Causes Shifts in the Microbial Community Assembly and Biochemical Compounds in Natural Induced Anaerobic Fermentations. Front Microbiol 2021; 12:671395. [PMID: 34093490 PMCID: PMC8172976 DOI: 10.3389/fmicb.2021.671395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Coffee harvested in the Caparaó region (Minas Gerais, Brazil) is associated with high-quality coffee beans resulting in high-quality beverages. We characterize, microbiologically and chemically, fermented coffees from different altitudes through target NGS, chromatography, and conventional chemical assays. The genera Gluconobacter and Weissella were dominant in coffee’s fruits from altitudes 800 and 1,000 m. Among the Eukaryotic community, yeasts were the most dominant in all altitudes. The most dominant fungal genus was Cystofilobasidium, which inhabits cold environments and resists low temperatures. The content of acetic acid was higher at altitudes 1,200 and 1,400 m. Lactic acid and the genus Leuconostoc (Pearson: 0.93) were positively correlated. The relative concentration of volatile alcohols, especially of 2-heptanol, was high at all altitudes. Bacteria population was higher in coffees from 800 m, while at 1,000 m, fungi richness was favored. The altitude is an important variable that caused shifts in the microbial community and biochemical compounds content, even in coffees belonging to the same variety and cultivated in the same region under SIAF (self-induced anaerobic fermentation) conditions. Coffee from lower altitudes has higher volatile alcohols content, while high altitudes have esters, aldehydes, and total phenolics contents.
Collapse
|
28
|
Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario. Microorganisms 2021; 9:microorganisms9040858. [PMID: 33923588 PMCID: PMC8073662 DOI: 10.3390/microorganisms9040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Brazil holds a series of favorable climatic conditions for agricultural production including the hours and intensity of sunlight, the availability of agricultural land and water resources, as well as diverse climates, soils and biomes. Amidst such diversity, Brazilian coffee producers have obtained various standards of qualities and aromas, between the arabica and robusta species, which each present a wide variety of lineages. However, temperatures in coffee producing municipalities in Brazil have increased by about 0.25 °C per decade and annual precipitation has decreased. Therefore, the agricultural sector may face serious challenges in the upcoming decades due to crop sensitivity to water shortages and thermal stress. Furthermore, higher temperatures may reduce the quality of the culture and increase pressure from pests and diseases, reducing worldwide agricultural production. The impacts of climate change directly affect the coffee microbiota. Within the climate change scenario, aflatoxins, which are more toxic than OTA, may become dominant, promoting greater food insecurity surrounding coffee production. Thus, closer attention on the part of authorities is fundamental to stimulate replacement of areas that are apt for coffee production, in line with changes in climate zoning, in order to avoid scarcity of coffee in the world market.
Collapse
|
29
|
Microbial diversity and chemical characteristics of Coffea canephora grown in different environments and processed by dry method. World J Microbiol Biotechnol 2021; 37:51. [PMID: 33594606 DOI: 10.1007/s11274-021-03017-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to assess the microbial diversity in Coffea canephora grown in four different environments of Espirito Santo state, Brazil. Coffee cherries of two different altitudes (300 and 600 m) and two terrain aspects (Southeast-facing and Northwest-facing slopes) were processed by the dry method. Samples were collected during the drying/fermentation process. Microorganisms were counted, isolated, and identified by MALDI-TOF, followed by sequencing of the ribosomal region. Sugars and organic acids were quantified by HPLC and volatile compounds of the roasted coffees were evaluated by GC-MS. Bacteria population presented a significant number of isolates as well as higher counts during the drying/fermentation process with respect to the population of yeasts. The principal genera of microorganisms found were Bacillus, Pichia, Candida, and Meyerozyma. Meyerozyma guilliermondii was the most frequent yeast in all environments. On the other hand, Pichia kluyveri was found only in coffee cherries from the 600 m altitude. The highest concentration of acetic and succinic acids observed was 6.06 mg/g and 0.84 mg/g, respectively. Sucrose concentrations ranged from 0.68 to 5.30 mg/g, fructose from 1.30 to 4.60 mg/g, and glucose from 0.24 to 1.25 mg/g. Thirty-six volatile compounds, belonging to the groups of pyrazines, alcohols, aldehydes, ketones, and furans were identified in roasted coffee, with differences between altitude and terrain aspects. Information about microbial diversity is crucial to better understand the coffee quality and distinct characteristics of coffee produced in different environments.
Collapse
|
30
|
Microbial dynamics in rearing trials of Hermetia illucens larvae fed coffee silverskin and microalgae. Food Res Int 2020; 140:110028. [PMID: 33648256 DOI: 10.1016/j.foodres.2020.110028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/01/2023]
Abstract
In the present study, Hermetia illucens larvae were reared on a main rearing substrate composed of a coffee roasting byproduct (coffee silverskin, Cs) enriched with microalgae (Schizochytrium limacinum or Isochrysis galbana) at various substitution levels. The microbial diversity of the rearing substrates, larvae, and frass (excrement from the larvae mixed with the substrate residue) were studied by the combination of microbial culturing on various growth media and metataxonomic analysis (Illumina sequencing). High counts of total mesophilic aerobes, bacterial spores, presumptive lactic acid bacteria, coagulase-positive cocci, and eumycetes were detected. Enterobacteriaceae counts were low in the rearing diets, whereas higher counts of this microbial family were observed in the larvae and frass. The microbiota of the rearing substrates was characterized by the presence of lactic acid bacteria, including the genera Lactobacillus, Leuconostoc and Weissella. The microbiota of the H. illucens larvae fed Cs was characterized by the dominance of Paenibacillus. H. illucens fed diets containing I. galbana were characterized by the presence of Enterococcus, Lysinibacillus, Morganella, and Paenibacillus, depending on the algae inclusion level, while H. illucens fed diets containing S. limacinum were characterized by high relative abundances of Brevundimonas, Enterococcus, Paracoccus, and Paenibacillus, depending on the algae inclusion level. Brevundimonas and Alcaligenes dominated in the frass from larvae fed I. galbana; the predominance of Brevundimonas was also observed in the frass from larvae fed Schyzochitrium-enriched diets. Based on the results of the present study, an effect of algae nutrient bioactive substances (e.g. polysaccharides, high-unsaturated fatty acids, taurine, carotenoids) on the relative abundance of some of the bacterial taxa detected in larvae may be hypothesized, thus opening new intriguing perspectives for the control of the entomopathogenic species and foodborne human pathogens potentially occurring in edible insects. Further studies are needed to support this hypothesis. Finally, new information on the microbial diversity occurring in insect frass was also obtained.
Collapse
|
31
|
Ribeiro LS, da Cruz Pedrozo Miguel MG, Martinez SJ, Bressani APP, Evangelista SR, Silva e Batista CF, Schwan RF. The use of mesophilic and lactic acid bacteria strains as starter cultures for improvement of coffee beans wet fermentation. World J Microbiol Biotechnol 2020; 36:186. [DOI: 10.1007/s11274-020-02963-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022]
|
32
|
De Roos J, Verce M, Weckx S, De Vuyst L. Temporal Shotgun Metagenomics Revealed the Potential Metabolic Capabilities of Specific Microorganisms During Lambic Beer Production. Front Microbiol 2020; 11:1692. [PMID: 32765478 PMCID: PMC7380088 DOI: 10.3389/fmicb.2020.01692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023] Open
Abstract
Lambic beer production processes are characterized by a temporal succession of well-adapted microbial species. Temporal metagenomic analysis of a Belgian, traditional, lambic beer production process, which was examined microbiologically and metabolomically before, confirmed that the microbial diversity is limited. Moreover, it allowed to link the consumption and production of certain compounds to specific microbial groups or species. Fermentation characteristics, such as the conversion of malic acid into lactic acid and acetoin production, were retrieved and could be attributed to specific microorganisms, namely Pediococcus damnosus and Acetobacter species, respectively. Traits previously ascribed to brewery-specific Dekkera bruxellensis strains were confirmed during the lambic beer production process examined multiphasically; in particular, the higher production of 4-ethylguaiacol compared to 4-ethylphenol was further shown by mass spectrometric analysis. Moreover, the absence of phenolic acid decarboxylase in Brettanomyces custersianus was shown culture-independently and could explain its late occurrence during the maturation phase. Furthermore, the potential of maltooligosaccharide degradation could be ascribed metagenomically to not only Brettanomyces species but also Saccharomyces kudriavzevii, possibly explaining their degradation early in the lambic beer production process. Also, acetic acid bacteria (AAB) seemed to be able to consume maltooligosaccharides via their conversion into trehalose. Furthermore, these AAB possessed esterase genes, potentially capable of forming ethyl acetate, which may contribute to the flavor of lambic beer. Improved knowledge on the reasons behind certain community dynamics and the role of the different microorganisms in terms of potential functionality could improve brewery practices to assure to produce more quality-stable end-products.
Collapse
Affiliation(s)
- Jonas De Roos
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|