1
|
Samudio Oggero A, Valdez Borda M, Félix Pablos CM, Leguizamón G, Morínigo FM, González Caballero V, Farías A, Nakayama H, de los Santos Villalobos S. Draft genome sequence of Agrobacterium pusense strain CMT1: A promising growth-promoting bacterium isolated from nodules of soybean ( Glycine max L. Merrill) crops for the One Health approach in Paraguay. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100259. [PMID: 39076833 PMCID: PMC11284674 DOI: 10.1016/j.crmicr.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Strain CMT1 was isolated from nodules of non-inoculated Roundup Ready (RR) soybean plants (Glycine max L. Merrill), which were collected in fields in Itauguá, Paraguay. The genome of this strain had 338,984,909 bp; 59.2 % G + C content; 377648 bp N50; 5 L50; 55 contigs; 51 RNAs and 5,272 predicted coding DNA sequences (CDS) distributed in 327 subsystems. Based on overall genome-relatedness indices (OGRIs), this strain was taxonomically affiliated with Agrobacterium pusense. Based on genome mining, strain CMT1 is a promising plant growth-promoting bacterium that could be validated in agricultural fields for increasing soybean yield and quality, diminishing the economic, environmental, and health costs of non-sustainable food production.
Collapse
Affiliation(s)
- Antonio Samudio Oggero
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | - Magalí Valdez Borda
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | | | - Gladis Leguizamón
- Universidad Columbia del Paraguay. Carrera de Ingeniería Agronómica. Asunción, Central, Paraguay
| | - Fernando Mathías Morínigo
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | | | - Ariel Farías
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | - Héctor Nakayama
- Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Tecnológicas. Campus Universitario, San Lorenzo, Central, Paraguay
| | | |
Collapse
|
2
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Khan W, Zhu Y, Khan A, Zhao L, Yang YM, Wang N, Hao M, Ma Y, Nepal J, Ullah F, Rehman MMU, Abrar M, Xiong YC. Above-and below-ground feedback loop of maize is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170417. [PMID: 38280611 DOI: 10.1016/j.scitotenv.2024.170417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Drought is a potent abiotic stressor that arrests crop growth, significantly affecting crop health and yields. The arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR) can offer to protect plants from stressful environments through improving water, and nutrient use efficiency by strengthening plant root structure and harnessing favorable rhizosphere environments. When Acaulospora laevis (AMF) and Bacillus subtilus (PGPR) are introduced in combination, enhanced root growth and beneficial microbial colonization can mitigate drought stress. To assess this potential, a pot experiment was done with maize (Zea mays L.) to explore the effects of A. laevis and B. subtilus under different water levels (well-watered = 80 %; moderate water stress = 55 %; and severe water stress = 35 %) on maize yield, soil microbial activities, nutrients contents, root, and leaf functioning. Plants exposed to severe drought stress hampered their root and leaf functioning, and reduced grain yield compared with control plants. Combined use of AMF and PGPR increased root colonization (104.6 %-113.2 %) and microbial biomass carbon (36.38 %-40.23 %) under moderate to severe drought conditions over control. Higher root colonization was strongly linked with elevated ACC (aminocyclopropane-1-carboxylic acid) production, subsequently enhancing water use efficiency (21.62 %-12.77 %), root hydraulic conductivity (1.9 %-1.4 %) and root nutrient uptake under moderate to severe drought conditions. Enhanced nutrient uptake further promoted leaf photosynthetic rate by 27.3 %-29.8 % under moderate and severe drought stress. Improving leaf and root physiological functioning enhanced maize grain yield under stressful environments. Furthermore, co-inoculation with AMF-PGPR reduced cellular damage by lowering oxidative enzyme levels and increasing antioxidative enzyme activities, improving plant performance and grain yield under stressful environments. Conclusively, the synergistic interaction of AMF with PGPR ensured plant stress tolerance by reducing cellular injury, facilitating root-leaf functioning, enhancing nutrient-water-use-efficiencies, and increasing yield under drought stress.
Collapse
Affiliation(s)
- Wasim Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application, Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China.
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Miao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ning Wang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Meng Hao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yue Ma
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jaya Nepal
- Department of Soil, Water & Ecosystem Sciences, Indian River Research Center, University of Florida, Fort Pierce, FL, USA
| | - Fazal Ullah
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Muhammad Maqsood Ur Rehman
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Muhammad Abrar
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
4
|
Badawy AM. Impact of antagonistic endophytic bacteria on productivity of some economically important legumes. Braz J Microbiol 2024; 55:749-757. [PMID: 38183583 PMCID: PMC10920516 DOI: 10.1007/s42770-023-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024] Open
Abstract
Understanding the interactions within and between endophytes and their hosts is still obscure. Investigating endophytic bacterial plant growth-promoting (PGP) traits and co-inoculation effects on legumes' performance is a candidate. Endophytic bacteria were isolated from Vicia sativa root nodules. Such endophytes were screened for their PGP traits, hydrolytic enzymes, and antifungal activities. Sterilized Vicia faba and Pisum sativum seedlings were co-inoculated separately with seven different endophytic bacterial combinations before being planted under sterilized conditions. Later on, several growth-related traits were measured. Eleven endophytes (six rhizobia, two non-rhizobia, and three actinomycetes) could be isolated, and all of them were indole-acetic-acid (IAA) producers, while seven isolates could solubilize phosphorus, whereas three, five, five, and four isolates could produce protease, cellulase, amylase, and chitinase, respectively. Besides, some of these isolates possessed powerful antifungal abilities against six soil-borne pathogenic fungi. Co-inoculation of tested plants with endophytic bacterial mixes (Rhizobiamix+Actinomix+non-Rhizobiamix), (Rhizobiamix+Actinomix), or (Rhizobiamix+non-Rhizobiamix) significantly improved the studied growth parameters (shoot, root fresh and dry weights, length and yield traits) compared to controls, whereas co-inoculated plants with (Rhizobiaalone), (non-Rhizobiamix), or (Actinomix) significantly recorded lower growth parameters. Five efficient endophytes were identified: Rhizobium leguminosarum bv. Viciae, Rhizobium pusense, Brevibacterium frigoritolerans, Streptomyces variabilis, and Streptomyces tendae. Such results suggested that these isolates could be utilized as biocontrols and biofertilizers to improve legumes productivity. Also, co-inoculation with different endophytic mixes is better than single inoculation, a strategy that should be commercially exploited.
Collapse
Affiliation(s)
- Ayat M Badawy
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32513, Egypt.
| |
Collapse
|
5
|
Hata S, Tsuda R, Kojima S, Tanaka A, Kouchi H. Both incompatible and compatible rhizobia inhabit the intercellular spaces of leguminous root nodules. PLANT SIGNALING & BEHAVIOR 2023; 18:2245995. [PMID: 37573516 PMCID: PMC10424618 DOI: 10.1080/15592324.2023.2245995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
In addition to rhizobia, many types of co-existent bacteria are found in leguminous root nodules, but their habitats are unclear. To investigate this phenomenon, we labeled Bradyrhizobium diazoefficiens USDA122 and Bradyrhizobium sp. SSBR45 with Discosoma sp. red fluorescent protein (DsRed) or enhanced green fluorescent protein (eGFP). USDA122 enhances soybean growth by forming effective root nodules, but SSBR45 does not form any nodules. Using low-magnification laser scanning confocal microscopy, we found that infected cells in the central zone of soybean nodules appeared to be occupied by USDA122. Notably, high-magnification microscopy after co-inoculation of non-fluorescent USDA122 and fluorescence-labeled SSBR45 also revealed that SSBR45 inhabits the intercellular spaces of healthy nodules. More unexpectedly, co-inoculation of eGFP-labeled USDA122 and DsRed-labeled SSBR45 (and vice versa) revealed the presence of USDA122 bacteria in both the symbiosomes of infected cells and in the apoplasts of healthy nodules. We then next inspected nodules formed after a mixed inoculation of differently-labeled USDA122, without SSBR45, and confirmed the inhabitation of the both populations of USDA122 in the intercellular spaces. In contrast, infected cells were occupied by single-labeled USDA122. We also observed Mesorhizobium loti in the intercellular spaces of active wild-type nodules of Lotus japonicus using transmission electron microscopy. Compatible intercellular rhizobia have been described during nodule formation of several legume species and in some mutants, but our evidence suggests that this type of colonization may occur much more commonly in leguminous root nodules.
Collapse
Affiliation(s)
- Shingo Hata
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Risa Tsuda
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Serina Kojima
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroshi Kouchi
- Division of Arts and Sciences, International Christian University, Mitaka, Japan
| |
Collapse
|
6
|
Zartdinova R, Nikitin A. Calcium in the Life Cycle of Legume Root Nodules. Indian J Microbiol 2023; 63:410-420. [PMID: 38031601 PMCID: PMC10682328 DOI: 10.1007/s12088-023-01107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
The present review highlights both the fundamental questions of calcium localization, compartmentation, and its participation in symbiosome signaling cascades during nodule formation and functioning. Apparently, the main link of such signaling is the calmodulin…calcium- and calmodulin-dependent protein kinases…CYCLOPS…NIN…target genes cascade. The minimum threshold level of calcium as a signaling agent in the presence of intracellular reserves determines the possibility of oligotrophy and ultraoligotrophy in relation to this element. During the functioning of root nodules, the Ca2+-ATPases activity maintains homeostasis of low calcium concentrations in the cytosol of nodule parenchyma cells. Disturbation of this homeostasis can trigger the root nodule senescence. The same reasons determine the increase in the effectiveness of symbiosis with the help of seed priming with sources of calcium. Examples of calcium response polymorphism in components of nitrogen fixing simbiosis important in practical terms are shown.
Collapse
Affiliation(s)
- Rozaliya Zartdinova
- Nitrogen Exchange Laboratory, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Nikitin
- Nitrogen Exchange Laboratory, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Ali Q, Shabaan M, Ashraf S, Kamran M, Zulfiqar U, Ahmad M, Zahir ZA, Sarwar MJ, Iqbal R, Ali B, Ali MA, Elshikh MS, Arslan M. Comparative efficacy of different salt tolerant rhizobial inoculants in improving growth and productivity of Vigna radiata L. under salt stress. Sci Rep 2023; 13:17442. [PMID: 37838750 PMCID: PMC10576803 DOI: 10.1038/s41598-023-44433-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
Worldwide, salinity severely affects agricultural production of crops such as mung bean in arid and semi-arid regions. In saline conditions, various species of Rhizobium can be used to enhance nodulation and induce salinity tolerance in maize. The present study conducted a pot experiment to determine the efficiency of three rhizobial isolates under different salinity conditions, such as 1.41, 4 and 6 dS m-1, on mung bean growth parameters, antioxidant status and yield. Results revealed that salt stress imparted adverse effects on the growth, antioxidants, yield and nodulation of mung bean. Under high salt stress conditions, fresh weights were reduced for roots (78.24%), shoots (64.52%), pods (58.26%) and height (32.33%) as compared to un-inoculated control plants. However, an increase in proline content (46.14%) was observed in high salt stressed plants. Three Rhizobium isolates (Mg1, Mg2, and Mg3), on the other hand, mitigated the negative effects of salt stress after inoculation. However, effects of Mg3 inoculation were prominent at 6 dS m-1 and it enhanced the plant height (45.10%), fresh weight of shoot (58.68%), root (63.64%), pods fresh weight (34.10%), pods number per plant (92.04%), and grain nitrogen concentration (21%) than un-inoculated control. Rhizobium strains Mg1, and Mg2 expressed splendid results at 1.41 and 4 dS m-1 salinity stress. The growth promotion effects might be due to improvement in mineral uptake and ionic balance that minimized the inhibitory effects caused by salinity stress. Thus, inoculating with these strains may boost mung bean growth and yield under salinity stress.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Shabaan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Sana Ashraf
- College of Earth and Environmental Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Kamran
- Pakistan Council for Science and Technology, Ministry of Science and Technology, Islamabad, 44000, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Junaid Sarwar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
9
|
Jesus JG, Máguas C, Dias R, Nunes M, Pascoal P, Pereira M, Trindade H. What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia. BIOLOGY 2023; 12:1168. [PMID: 37759568 PMCID: PMC10525506 DOI: 10.3390/biology12091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Acacia longifolia is one of the most aggressive invaders worldwide whose invasion is potentiated after a fire, a common perturbation in Mediterranean climates. As a legume, this species establishes symbioses with nitrogen-fixing bacteria inside root nodules; however, the overall microbial diversity is still unclear. In this study, we addressed root nodules' structure and biodiversity through histology and Next-Generation Sequencing, targeting 16S and 25S-28S rDNA genes for bacteria and fungi, respectively. We wanted to evaluate the effect of fire in root nodules from 1-year-old saplings, by comparing unburnt and burnt sites. We found that although having the same general structure, after a fire event, nodules had a higher number of infected cells and greater starch accumulation. Starch accumulated in uninfected cells can be a possible carbon source for the microbiota. Regarding diversity, Bradyrhizobium was dominant in both sites (ca. 77%), suggesting it is the preferential partner, followed by Tardiphaga (ca. 9%), a non-rhizobial Alphaproteobacteria, and Synechococcus, a cyanobacteria (ca. 5%). However, at the burnt site, additional N-fixing bacteria were included in the top 10 genera, highlighting the importance of this process. Major differences were found in the mycobiome, which was diverse in both sites and included genera mostly described as plant endophytes. Coniochaeta was dominant in nodules from the burnt site (69%), suggesting its role as a facilitator of symbiotic associations. We highlight the presence of a large bacterial and fungal community in nodules, suggesting nodulation is not restricted to nitrogen fixation. Thus, this microbiome can be involved in facilitating A. longifolia invasive success.
Collapse
Affiliation(s)
- Joana G. Jesus
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| | - Ricardo Dias
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
- Biosystems and Integrative Sciences Institute (BioISI), 1749-016 Lisboa, Portugal
| | - Mónica Nunes
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Pedro Pascoal
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Marcelo Pereira
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Helena Trindade
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| |
Collapse
|
10
|
Hossain MS, Frith C, Bhattacharyya SS, DeLaune PB, Gentry TJ. Isolation and Characterization of Bacterial Endophytes from Small Nodules of Field-Grown Peanut. Microorganisms 2023; 11:1941. [PMID: 37630501 PMCID: PMC10458822 DOI: 10.3390/microorganisms11081941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
It is evident that legume root nodules can accommodate rhizobial and non-rhizobial bacterial endophytes. Our recent nodule microbiome study in peanuts described that small nodules can harbor diverse bacterial endophytes. To understand their functional role, we isolated 87 indigenous endophytes from small nodules of field-grown peanut roots and characterized them at molecular, biochemical, and physiological levels. The amplified 16S rRNA genes and phylogenetic analysis of these isolates revealed a wide variety of microorganisms related to the genera Bacillus, Burkholderia, Enterobacter, Herbaspirillum, Mistsuaria, Pantoea, Pseudomonas, and Rhizobia. It was observed that 37% (100% identity) and 56% (>99% identity) of the isolates matched with the amplified sequence variants (ASVs) from our previous microbiome study. All of these isolates were tested for stress tolerance (high temperature, salinity, acidic pH) and phosphate (P) solubilization along with ammonia (NH3), indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate deaminase (ACCD), and siderophore production. The majority (78%) of the isolates were found to be halotolerant, thermotolerant, and acidophilic, and a few of them showed a significant positive response to the production of IAA, NH3, siderophore, ACCD, and P-solubilization. To evaluate the plant growth promotion (PGP) activity, plant and nodulation assays were performed in the growth chamber conditions for the selected isolates from both the non-rhizobial and rhizobial groups. However, these isolates appeared to be non-nodulating in the tested conditions. Nonetheless, the isolates 2 (Pantoea), 17 (Burkholderia), 21 (Herbaspirillum), 33o (Pseudomonas), and 77 (Rhizobium sp.) showed significant PGP activity in terms of biomass production. Our findings indicate that these isolates have potential for future biotechnological applications through the development of biologicals for sustainable crop improvement.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Christine Frith
- Department of Geosciences, Texas A&M University, College Station, TX 77843, USA
| | - Siddhartha Shankar Bhattacharyya
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | | | - Terry J. Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
11
|
Ayangbenro AS, Adem MR, Babalola OO. Bambara Nut Root-Nodules Bacteria from a Semi-Arid Region of South Africa and Their Plant Growth-Promoting Traits. Int J Microbiol 2023; 2023:8218721. [PMID: 37426699 PMCID: PMC10328734 DOI: 10.1155/2023/8218721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Rhizobial nitrogen-fixing bacteria are the main inhabitants of the root nodules of legume plants. Studying the bacterial community of legume nodules is important in understanding plant growth and nutrient requirements. Culture-based technique was used to examine the bacterial community of these underground organs from Vigna subterranea L. Verdc (Bambara nut), an underutilized legume in Africa, for plant growth-promoting traits. In this study, Bambara nuts were planted to trap root-nodule bacteria, and the bacteria were morphologically, biochemically, and molecularly characterized. Five selected isolates were screened in vitro for their plant growth-promoting traits and exhibited differences in their phenotypic traits. The polymerase chain reaction (PCR) products were subjected to partial 16S rRNA gene sequencing for phylogenetic analysis. Based on 16S rRNA gene sequence, the isolates were identified as BA1 (Stenotrophomonas maltophilia), BA2 (Chryseobacterium sp.), BA3 (Pseudomonas alcaligenes), BA4 (Pseudomonas plecoglossicida), and BA5 (Pseudomonas hibiscicola). Results showed that four of the five isolates could produce IAA. The capability to solubilize phosphate in Pikovskaya's agar plates was positively shown by four isolates (BA2, BA3, BA4, and BA5). Three isolates could produce hydrogen cyanide while isolates BA1, BA3, BA4, and BA5 were found to have ammonia-production traits. The results suggest that these plant growth-promoting isolates can be used as inoculants for plant growth and productivity.
Collapse
Affiliation(s)
- Ayansina Segun Ayangbenro
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mohomud Rashid Adem
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
12
|
Ayilara MS, Adeleke BS, Babalola OO. Bioprospecting and Challenges of Plant Microbiome Research for Sustainable Agriculture, a Review on Soybean Endophytic Bacteria. MICROBIAL ECOLOGY 2023; 85:1113-1135. [PMID: 36319743 PMCID: PMC10156819 DOI: 10.1007/s00248-022-02136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 05/04/2023]
Abstract
This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. Soybean is one of the most important oilseed crops with about 20-25% protein content and 20% edible oil production. The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabolite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.
Collapse
Affiliation(s)
- Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Bartholomew Saanu Adeleke
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
13
|
da Silva TR, Rodrigues RT, Jovino RS, Carvalho JRDS, Leite J, Hoffman A, Fischer D, Ribeiro PRDA, Rouws LFM, Radl V, Fernandes-Júnior PI. Not just passengers, but co-pilots! Non-rhizobial nodule-associated bacteria promote cowpea growth and symbiosis with (brady)rhizobia. J Appl Microbiol 2023; 134:lxac013. [PMID: 36626727 DOI: 10.1093/jambio/lxac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/15/2022] [Accepted: 10/07/2022] [Indexed: 01/12/2023]
Abstract
AIMS To isolate and characterize non-rhizobial nodule-associated bacteria (NAB) from cowpea root-nodules regarding their performance of plant-growth-promoting mechanisms and their ability to enhance cowpea growth and symbiosis when co-inoculated with bradyrhizobia. METHODS AND RESULTS Sixteen NAB were isolated, identified, and in vitro evaluated for plant growth promotion traits. The ability to promote cowpea growth was analyzed when co-inoculated with Bradyrhizobium pachyrhizi BR 3262 in sterile and non-sterile substrates. The 16S rRNA gene sequences analysis revealed that NAB belonged to the genera Chryseobacterium (4), Bacillus (3), Microbacterium (3), Agrobacterium (1), Escherichia (1), Delftia (1), Pelomonas (1), Sphingomonas (1), and Staphylococcus (1). All strains produced different amounts of auxin siderophores and formed biofilms. Twelve out of the 16 strains carried the nifH, a gene associated with nitrogen fixation. Co-inoculation of NAB (ESA 424 and ESA 29) with Bradyrhizobium pachyrhizi BR 3262 significantly promoted cowpea growth, especially after simultaneous inoculation with the three strains. CONCLUSIONS NAB are efficient cowpea growth promoters and can improve the efficiency of the symbiosis between cowpea and the N2-fixing microsymbiont B. pachyrhizi BR 3262, mainly under a specific triple microbial association.
Collapse
Affiliation(s)
- Thaíse Rosa da Silva
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (Univasf), Petrolina, PE 56304-205, Brazil
| | - Ruth Terezinha Rodrigues
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (Univasf), Petrolina, PE 56304-205, Brazil
| | | | | | - Jakson Leite
- Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA), Campus Itaituba, Itaituba, PA 68183-300, Brazil
| | - Andreas Hoffman
- Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Munich 85764, Germany
| | - Doreen Fischer
- Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Munich 85764, Germany
| | - Paula Rose de Almeida Ribeiro
- Fundação de Amparo à Pesquisa do Estado de Pernambuco (Facepe), Recife, PE 50720-001, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF 71605-001, Brazil
- Embrapa Semiárido, Petrolina, PE 56302-970, Brazil
| | | | - Viviane Radl
- Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Munich 85764, Germany
| | | |
Collapse
|
14
|
Patra D, Mandal S. Non-rhizobia are the alternative sustainable solution for growth and development of the nonlegume plants. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36471635 DOI: 10.1080/02648725.2022.2152623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
The major research focus for biological nitrogen fixation (BNF) has mostly been on typical rhizobia with legumes. But the newly identified non-rhizobial bacteria, both individually or in combination could also be an alternative for nitrogen supplementation in both legumes and nonlegume plants. Although about 90% of BNF is derived from a legume - rhizobia symbiosis, the non-legumes specially the cereals lack canonical nitrogen fixation system through root-nodule organogenesis. The non-rhizobia may colonize in the rhizosphere or present in endophytic/associative nature. The non-rhizobia are well known for facilitating plant growth through their potential to alleviate various stresses (salt, drought, and pathogens), acquisition of minerals (P, K, etc.), or by producing phytohormones. Bacterial symbiosis in non-legumes represents by the Gram-positive Frankia having a major contribution in overall fortification of usable nitrogenous material in soil where they are associated with their hosts. This review discusses the recent updates on the diversity and association of the non-rhizobial species and their impact on the growth and productivity of their host plants with particular emphasis on major economically important cereal plants. The future application possibilities of non-rhizobia for soil fertility and plant growth enhancement for sustainable agriculture have been discussed.
Collapse
Affiliation(s)
- Dipanwita Patra
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, Kolkata, India
| |
Collapse
|
15
|
Maheshwari R, Kumar P, Bhutani N, Suneja P. Exploration of plant growth-promoting endophytic bacteria from Pisum sativum and Cicer arietinum from South-West Haryana. J Basic Microbiol 2022; 62:857-874. [PMID: 35655367 DOI: 10.1002/jobm.202100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/07/2022]
Abstract
In the present study, nonrhizobial endophytes were isolated from Pisum sativum and Cicer arietinum from Haryana, India. A total of 355 bacterial endophytes were screened for plant growth promoting traits. Out of all, 96 bacterial endophytes were selected based on morphological characters and multi-PGP traits, and their diversity analyzed by amplified ribosomal DNA restriction analysis. Based on their ARDRA profile, the 25 representative isolates (12 from P. sativum and 13 from C. arietinum), were selected and identified by 16S ribosomal DNA sequencing. Genetic relatedness based on BLAST analysis revealed the similarity of these isolates with members of three prominent phyla, that is, Proteobacteria, Firmicutes, and Actinobacteria. The dominant cluster, Firmicutes, constituted 60% of the isolates, assigned to four different genera, Bacillus, Staphylococcus, Ornithinibacillus, and Lysinibacillus. Phylum α-proteobacteria included two genera, namely Paenochrobactrum and Ochrobactrum and three genera in phylum γ-proteobacteria, namely Pseudomonas, Pantoea and Proteus. The phylum Actinobacteria was constituted of two genera, Microbacterium and Arthrobacter. Bacillus zhangzhouensis, Bacillus safensis, Arthrobacter enclensis from P. sativum and Bacillus haynesii, Paenochrobactrum sp. from C. arietinum are documented as plant growth promoting endophytic bacteria for the first time in the present study. The in vitro and in vivo assessment based on bonitur score revealed that the endophytic isolates Bacillus mojavensis PRN2, Pseudomonas chlororaphis PHN9, B. safensis PRER2, Pseudomonas sp. RCP1, Pseudomonas lini PRN1 and B. haynensii RCP3 from P. sativum and C. arietinum significantly enhanced the plant growth parameters. Therefore, these potential isolates can be further harnessed for preparation of bioformulations to enhance sustainable agriculture.
Collapse
Affiliation(s)
- Rajat Maheshwari
- Department of Microbiology, Plant-Microbe Interaction Laboratory, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pradeep Kumar
- Department of Microbiology, Plant-Microbe Interaction Laboratory, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Namita Bhutani
- Department of Microbiology, Plant-Microbe Interaction Laboratory, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Suneja
- Department of Microbiology, Plant-Microbe Interaction Laboratory, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|