1
|
Dürrmann A, Hörner G, Baabe D, Heinemann FW, de Melo MAC, Weber B. Cooperative spin crossover leading to bistable and multi-inert system states in an iron(III) complex. Nat Commun 2024; 15:7321. [PMID: 39183211 PMCID: PMC11345420 DOI: 10.1038/s41467-024-51675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Cooperativity among spin centres has long been the royal road in spin crossover (SCO) research to impose magnetic bistability in terms of thermal hysteresis. In this work we access magnetic multi-inert states of the iron(III) compound {FeL2[B(Ph)4]} ≡ FeB at low temperature, in addition to thermal bistability. The packing of the low-spin and high-spin forms of crystalline FeB differs only marginally what ultimately leads to structural conservatism. This indicates that the SCO-immanent breathing of the complex cation is almost fully compensated by the anion matrix. The unique cooling rate dependence of the residual low-temperature magnetisation in FeB unveils continuous switching between the trapped high-spin (ON) and the relaxed low-spin state (OFF). The macroscopic ratio of the spin states (ON:OFF) can be adjusted as a simple function of the cooling rate. That is, cooperative spin crossover can be the source of bistable and multi-inert system states in the very same material.
Collapse
Affiliation(s)
- Andreas Dürrmann
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Gerald Hörner
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig, Germany
| | - Frank W Heinemann
- Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, Erlangen, Germany
| | | | - Birgit Weber
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany.
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany.
| |
Collapse
|
2
|
Endraß SMJ, Klapötke TM, Lommel M, Stierstorfer J, Weidemann ML, Werner M. 1- and 2-Tetrazolylacetonitrile as Versatile Ligands for Laser Ignitable Energetic Coordination Compounds. Chempluschem 2024; 89:e202400031. [PMID: 38436519 DOI: 10.1002/cplu.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
1- and 2-Tetrazolylacetonitrile (1- and 2-TAN) have been synthesized by the reaction of chloroacetonitrile with 1H-tetrazole under basic conditions. They further were reacted with sodium azide in the presence of zinc(II) chloride to form 5-((1H-tetrazol-1-yl)methyl)-1H-tetrazole (1-HTMT) and 5-((2H-tetrazol-2-yl)methyl)-1H-tetrazole (2-HTMT). The nitrogen-rich compounds have been applied as ligands for Energetic Coordination Compounds (ECCs) and show interesting coordinative behavior due to different bridging modes. The structural variability of the compounds has been proved by low-temperature X-ray analysis. The ECCs were analyzed for their sensitivities to provide information about the safety of handling and their capability to serve as primary explosives in detonator setups to replace the commonly used lead styphnate and azide. All colored ECCs were evaluated for their ignitability by laser initiation in translucent polycarbonate primer caps. In addition, the spin-crossover characteristics of [Fe(1-TAN)6](ClO4)2 were highlighted by the measurement of the temperature-dependent susceptibility curve.
Collapse
Affiliation(s)
- Simon M J Endraß
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- EMTO GmbH, Energetic Materials Technology, 81477, Munich, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- EMTO GmbH, Energetic Materials Technology, 81477, Munich, Germany
| | - Marcus Lommel
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- EMTO GmbH, Energetic Materials Technology, 81477, Munich, Germany
| | - Jörg Stierstorfer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- EMTO GmbH, Energetic Materials Technology, 81477, Munich, Germany
| | - Martin L Weidemann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Melanie Werner
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| |
Collapse
|
3
|
Reinhard M, Kunnus K, Ledbetter K, Biasin E, Zederkof DB, Alonso-Mori R, van Driel TB, Nelson S, Kozina M, Borkiewicz OJ, Lorenc M, Cammarata M, Collet E, Sokaras D, Cordones AA, Gaffney KJ. Observation of a Picosecond Light-Induced Spin Transition in Polymeric Nanorods. ACS NANO 2024; 18:15468-15476. [PMID: 38833689 DOI: 10.1021/acsnano.3c10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Spin transition (ST) materials are attractive for developing photoswitchable devices, but their slow material transformations limit device applications. Size reduction could enable faster switching, but the photoinduced dynamics at the nanoscale remains poorly understood. Here, we report a femtosecond optical pump multimodal X-ray probe study of polymeric nanorods. Simultaneously tracking the ST order parameter with X-ray emission spectroscopy and structure with X-ray diffraction, we observe photodoping of the low-spin-lattice within ∼150 fs. Above a ∼16% photodoping threshold, the transition to the high-spin phase occurs following an incubation period assigned to vibrational energy redistribution within the nanorods activating the molecular spin switching. Above ∼60% photodoping, the incubation period disappears, and the transition completes within ∼50 ps, preceded by the elastic nanorod expansion in response to the photodoping. These results support the feasibility of ST material-based GHz optical switching applications.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristjan Kunnus
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kathryn Ledbetter
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Elisa Biasin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tim Brandt van Driel
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Silke Nelson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Olaf J Borkiewicz
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Maciej Lorenc
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Marco Cammarata
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Amy A Cordones
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kelly J Gaffney
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
Torres Ramírez RG, Trzop E, Collet E. Magnetoelectric and MIESST effects in spin crossover materials exhibiting symmetry-breaking. Dalton Trans 2024; 53:10159-10167. [PMID: 38819197 DOI: 10.1039/d4dt00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Giant magnetoelectric coupling and magnetic-field-induced spin state trapping (MIESST) were recently reported in spin crossover materials with polar phases. We discuss these phenomena considering the distinct contributions of the change of the molecular spin state, driven by the magnetic field, and the coupled structural symmetry-breaking during the stepwise change of electric polarisation or MIESST.
Collapse
Affiliation(s)
- Ricardo G Torres Ramírez
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
- Institut universitaire de France (IUF), France
| |
Collapse
|
5
|
Trommer C, Kuhlemann E, Engesser TA, Walter M, Thakur S, Kuch W, Tuczek F. Spin crossover in dinuclear iron(II) complexes bridged by bis-bipyridine ligands: dimer effects on electronic structure, spectroscopic properties and spin-state switching. Dalton Trans 2024; 53:9909-9920. [PMID: 38808483 DOI: 10.1039/d4dt00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Inspired by the well-studied mononuclear spin crossover compound [Fe(H2B(pz)2)2(bipy)], the bipyridine-based bisbidentate ligands 1,2-di(2,2'-bipyridin-5-yl)ethyne (ac(bipy)2) and 1,4-di(2,2'-bipyridine-5-yl)-3,5-dimethoxybenzene (Ph(OMe)2(bipy)2) are used to bridge two [Fe(H2B(pz)2)2] units, leading to the charge-neutral dinuclear iron(II) compounds [{Fe(H2B(pz)2)2}2 μ-(ac(bipy)2)] (1) and [{Fe(H2B(pz)2)2}2 μ-(Ph(OMe)2(bipy)2)] (2), respectively. The spin-crossover properties of these molecules are investigated by temperature-dependent PPMS measurements, Mössbauer, vibrational and UV/Vis spectroscopy as well as X-ray absorption spectroscopy. While compound 1 undergoes complete SCO with T1/2 = 125 K, an incomplete spin transition is observed for 2 with an inflection point at 152 K and a remaining high-spin fraction of 40% below 65 K. The spin transitions of the dinuclear compounds are also more gradual than for the parent compound [Fe(H2B(pz)2)2(bipy)]. This is attributed to steric hindrance between the molecules, limiting intermolecular interactions such as π-π-stacking.
Collapse
Affiliation(s)
- Clara Trommer
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany.
| | - Eike Kuhlemann
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany.
| | - Tobias A Engesser
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany.
| | - Marcel Walter
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | - Sangeeta Thakur
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | - Wolfgang Kuch
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany.
| |
Collapse
|
6
|
Kamel SM, Daróczi L, Tóth LZ, Beke DL, Juárez GG, Cobo S, Salmon L, Molnár G, Bousseksou A. Acoustic emissions from spin crossover complexes. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:5757-5765. [PMID: 38680543 PMCID: PMC11044199 DOI: 10.1039/d4tc00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Acoustic emission from the compounds [Fe(HB(tz)3)2] and [Fe(Htrz)(trz)2]BF4 was detected during the thermally induced spin transition and is correlated with simultaneously recorded calorimetric signals. We ascribe this phenomenon to elastic waves produced by microstructural and volume changes accompanying the spin transition. Despite the perfect reversibility of the spin state switching (seen by the calorimeter), the acoustic emission activity decreases for successive thermal cycles, revealing thus irreversible microstructural evolution of the samples. The acoustic emission signal amplitude and energy probability distribution functions followed power-law behavior and the characteristic exponents were found to be similar for the two samples both on heating and cooling, indicating the universal character, which is further substantiated by the well scaled average temporal shapes of the avalanches.
Collapse
Affiliation(s)
- Sarah M Kamel
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
- Physics Department, Faculty of Science Ain Shams University, Abbassia 11566 Cairo Egypt
| | - Lajos Daróczi
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - László Z Tóth
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - Dezső L Beke
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - Gerardo Gutiérrez Juárez
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato-Campus León, Loma del Bosque 103, Loma del Campestre 37150 León Gto. Mexico
| | - Saioa Cobo
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Lionel Salmon
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Gábor Molnár
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Azzedine Bousseksou
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| |
Collapse
|
7
|
Sirenko VY, Kucheriv OI, Shova S, Shylin SI, Ksenofontov V, Fritsky IO, Tremel W, Gural'skiy IA. Nature of cyanoargentate bridges defining spin crossover in new 2D Hofmann clathrate analogues. Dalton Trans 2024; 53:4251-4259. [PMID: 38334952 DOI: 10.1039/d3dt04372j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Chemical composition is leading among the numerous factors that determine the spin transition properties of coordination compounds. Classic dicyanometallic bridges {M(CN)2}- are commonly used to build Hofmann-like spin-crossover frameworks, but some extended bridges are also synthetically available. In this paper, we describe a successful synthesis of two very similar spin-crossover frameworks that differ in the cyanometallic bridges involved, namely [Fe(etpz)2{Ag(CN)2}2] (1) and {Fe(etpz)2[Ag2(CN)3][Ag(CN)2]} (2) (where etpz = 2-ethylpyrazine). Magnetic and Mössbauer studies demonstrated the occurrence of abrupt one-step high-spin (HS) ↔ low-spin (LS) transitions for both complexes. The spin transition temperatures are T1/2 ↓ = 233 K and T1/2 ↑ = 243 K for 1 and T1/2 ↓ = 188 K and T1/2 ↑ = 191 K for 2 with thermal hysteresis loops of 10 K for 1 and 3 K for 2. The bridging mononuclear [Ag(CN)2]- units and FeII cations assemble to form infinite 2D layers in the structure of 1. Interestingly, compound 2 forms 2D layers of FeII cations bridged by both binuclear [Ag2(CN)3]- and mononuclear [Ag(CN)2]- units. The structures of 1 and 2 comprise different types of intermolecular interactions including Ag⋯Ag and Ag⋯Netpz, which induce the creation of supramolecular 3D frameworks. The synergy between metallophilic interactions and the spin transition is also confirmed by the variation of Ag⋯Ag distances during spin crossover. The characterization of such analogues allowed us to analyze in detail the effect of the cyanometallic bridge on the structure of new frameworks and on the bistability in Hofmann-like complexes.
Collapse
Affiliation(s)
- Valerii Y Sirenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine.
| | - Olesia I Kucheriv
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine.
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Sergii I Shylin
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Vadim Ksenofontov
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Igor O Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine.
- Innovation development center ABN, 2/37 Pirogov St., 01030 Kyiv, Ukraine
| | - Wolfgang Tremel
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Il'ya A Gural'skiy
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine.
| |
Collapse
|
8
|
Książek M, Weselski M, Kaźmierczak M, Półrolniczak A, Katrusiak A, Paliwoda D, Kusz J, Bronisz R. Extremely Slow Thermally-Induced Spin Crossover in the Two-Dimensional Network [Fe(bbtr) 3 ](BF 4 ) 2. Chemistry 2024; 30:e202302887. [PMID: 37906679 DOI: 10.1002/chem.202302887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Cooling [Fe(bbtr)3 ](BF4 )2 (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) triggers very slow spin crossover below 80 K (T1/2 ↓ =76 K). The spin crossover (SCO) is accompanied by a hysteresis loop (T1/2 ↑ =89 K). In contrast to isostructural perchlorate analogue [Fe(bbtr)3 ](ClO4 )2 in which spin crossover during cooling is preceded by phase transition at TPT =126 K in tetrafluoroborate phase transition does not occur to the beginning of spin crossover (80 K). Studies of mixed crystals [Fe(bbtr)3 ](BF4 )2(1-x) (ClO4 )2x (0.5≤x≤0.9) showed that a phase transition precedes spin crossover, however, for x≅0.46 intersection of T1/2 (x) and TPT (x) dependencies takes place. The application of pressure of 1 GPa shifts the spin crossover in [Fe(bbtr)3 ](BF4 )2 to a temperature above 270 K. High-pressure studies of neat tetrafluoroborate and perchlorate, as well as mixed crystals [Fe(bbtr)3 ](BF4 )2(1-x) (ClO4 )2x (0.1≤x≤0.9), revealed that at 295 K P1/2 value changes linearly with x indicating similar mechanism of spin crossover under elevated pressure in all systems under investigation. Variable pressure single crystal X-ray diffraction studies confirmed that in contrast to thermally induced spin crossover undergoing differently in tetrafluoroborate and perchlorate an application of high pressure removes this differentiation leading to a similar mechanism depending at first on start spin crossover and then P-3→P-1 phase transition occurs. In this report we have shown that 2D coordination polymer [Fe(bbtr)3 ](BF4 )2 (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) treated to date as spin crossover silent shows thermally induced spin crossover phenomenon. Spin crossover in tetrafluoroborate is extremely slow. Determination of the spin crossover curve required carrying measurement in the settle mode-cooling from 85 to 70 K took about 600 h (average velocity of change of temperature ca. 0.0004 K/min).
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Półrolniczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Andrzej Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Damian Paliwoda
- European Spallation Source ERIC, Partikelgatan 2, 224 84, Lund, Sweden
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
9
|
Shahed H, Sharma N, Angst M, Voigt J, Perßon J, Prakash P, Törnroos KW, Chernyshov D, Gildenast H, Ohl M, Saffarini G, Grzechnik A, Friese K. Structural insight into the cooperativity of spin crossover compounds. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2023; 79:354-367. [PMID: 37578185 PMCID: PMC10552598 DOI: 10.1107/s2052520623005814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/02/2023] [Indexed: 08/15/2023]
Abstract
Spin-crossover (SCO) compounds are promising materials for a wide variety of industrial applications. However, the fundamental understanding of their nature of transition and its effect on the physical properties are still being fervently explored; the microscopic knowledge of their transition is essential for tailoring their properties. Here an attempt is made to correlate the changes in macroscopic physical properties with microscopic structural changes in the orthorhombic and monoclinic polymorphs of the SCO compound Fe(PM-Bia)2(NCS)2 (PM = N-2'-pyridylmethylene and Bia = 4-aminobiphenyl) by employing single-crystal X-ray diffraction, magnetization and DSC measurements. The dependence of macroscopic properties on cooperativity, highlighting the role of hydrogen bonding, π-π and van der Waals interactions is discussed. Values of entropy, enthalpy and cooperativity are calculated numerically based on the Slichter-Drickamer model. The particle size dependence of the magnetic properties is probed along with the thermal exchange and the kinetic behavior of the two polymorphs based on the dependence of magnetization on temperature scan rate and a theoretical model is proposed for the calculation of the non-equilibrium spin-phase fraction. Also a scan-rate-dependent two-step behavior observed for the orthorhombic polymorph, which is absent for the monoclinic polymorph, is reported. Moreover, it is found that the radiation dose from synchrotron radiation affects the spin-crossover process and shifts the transition region to lower temperatures, implying that the spin crossover can be tuned with radiation damage.
Collapse
Affiliation(s)
- H. Shahed
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institute (PGI-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066 Aachen, Germany
| | - N. Sharma
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institute (PGI-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - M. Angst
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institute (PGI-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - J. Voigt
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institute (PGI-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - J. Perßon
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institute (PGI-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - P. Prakash
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institute (PGI-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - K. W. Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - D. Chernyshov
- Swiss–Norwegian Beamlines at the European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - H. Gildenast
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - M. Ohl
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - G. Saffarini
- Physics Department, An-Najah National University, Nablus, Palestine
| | - A. Grzechnik
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066 Aachen, Germany
- Jülich Centre for Neutron Science (JCNS-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - K. Friese
- Jülich Centre for Neutron Science (JCNS-2) and Peter Grünberg Institute (PGI-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066 Aachen, Germany
| |
Collapse
|
10
|
Mba H, Picher M, Daro N, Marchivie M, Guionneau P, Chastanet G, Banhart F. Lattice Defects in Sub-Micrometer Spin-Crossover Crystals Studied by Electron Diffraction. J Phys Chem Lett 2023; 14:8100-8106. [PMID: 37657083 DOI: 10.1021/acs.jpclett.3c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Spin-crossover particles of [Fe(Htrz)2trz](BF4) with sizes of some hundred nanometers are studied by in situ electron microscopy. Despite their high radiation sensitivity, it was possible to analyze the particles by imaging and diffraction so that a detailed analysis of crystallographic defects in individual particles became possible. The presence of one or several tilt boundaries, where the tilt axis is the direction of the polymer chains, is detected in each particle. An in situ exposure of the particles to temperature variations or short laser pulses to induce the spin crossover shows that the defect structure only changes after a high number of transformations between the low-spin and high-spin phases. The observations are explained by the anisotropy of the atomic architecture within the crystals, which facilitates defects between weakly linked crystallographic planes.
Collapse
Affiliation(s)
- Hilaire Mba
- Institut de Physique et Chimie des Matériaux, UMR 7504, Université de Strasbourg, CNRS, 67034 Strasbourg, France
| | - Matthieu Picher
- Institut de Physique et Chimie des Matériaux, UMR 7504, Université de Strasbourg, CNRS, 67034 Strasbourg, France
| | - Nathalie Daro
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Mathieu Marchivie
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Philippe Guionneau
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Guillaume Chastanet
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux, UMR 7504, Université de Strasbourg, CNRS, 67034 Strasbourg, France
| |
Collapse
|
11
|
Gudyma I, Yarema V. On the role of random bond in spin-crossover compounds. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Velazquez-Garcia JDJ, Basuroy K, Storozhuk D, Wong J, Demeshko S, Meyer F, Henning R, Techert S. Short- vs. long-range elastic distortion: structural dynamics of a [2 × 2] tetrairon(II) spin crossover grid complex observed by time-resolved X-Ray crystallography. Dalton Trans 2022; 51:17558-17566. [PMID: 36315244 PMCID: PMC9749069 DOI: 10.1039/d2dt02638d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spin crossover complexes (SCO) are among the most studied molecular switches due to their potential use in displays, sensors, actuators and memory components. A prerequisite to using these materials is the understanding of the structural changes following the spin transition at out-of-equilibrium conditions. So far, out-of-equilibrium studies in SCO solids have been focused on mononuclear complexes, though a growing number of oligonuclear SCO complexes showing cooperative effects are being reported. Here, we use time-resolved pink Laue crystallography to study the out-of-equilibrium dynamics of a [2 × 2] tetranuclear metallogrid of the form [FeII4LMe4](BF4)4·2MeCN ([LMe]- = 4-methyl-3,5-bis{6-(2,2'-bipyridyl)}pyrazolate). The out-of-equilibrium spin state switching induced by a ps laser pulse demonstrates that the metallogrid exhibits a multi-step response similar to that reported for mononuclear complexes. Contrary to the mononuclear complexes, the metallogrid shows two types of elastic distortions at different time scales. The first is a short-range distortion that propagates over the entire Fe4 grid complex during the ps time scale, and it is caused by the rearrangement of the coordination sphere of the photo-switching ion and the constant feedback between strongly linked metal ions. The second is a long-range distortion caused by the anisotropic expansion of the lattice during the ns time scale, observed in mononuclear materials. The structural analysis demonstrates that the long-range prevails over the short-range distortion, inducing the largest deformation of both the entire grid and the coordination sphere of each metal ion. The present study sheds light on the out-of -equilibrium dynamics of a non-cooperative oligonuclear complex.
Collapse
Affiliation(s)
- Jose de Jesus Velazquez-Garcia
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Krishnayan Basuroy
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Darina Storozhuk
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, Illinois, 90439, USA
| | - Simone Techert
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| |
Collapse
|
13
|
Kelly CT, Griffin M, Esien K, Felton S, Müller-Bunz H, Morgan GG. Crystallographic Detection of the Spin State in Fe III Complexes. CRYSTAL GROWTH & DESIGN 2022; 22:6429-6439. [PMID: 36345384 PMCID: PMC9634697 DOI: 10.1021/acs.cgd.2c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/22/2022] [Indexed: 06/16/2023]
Abstract
We report a single example of thermal spin crossover in a series of FeIII complexes, [FeIII(R-sal2323)]+, which typically stabilize the low-spin (S = 1/2) state. Single-crystal X-ray diffraction analysis of 53 such complexes with varying "R" groups, charge-balancing anions, and/or lattice solvation confirms bond lengths in line with an S = 1/2 ground state, with only the [FeIII(4-OMe-sal2323)]NO3 complex (1a) exhibiting longer bond lengths associated with a percentage of the spin sextet form at room temperature. Structural distortion parameters are investigated for the series. A magnetic susceptibility measurement of 1a reveals a gradual, incomplete transition, with T 1/2 = 265 K in the solid state, while Evans method NMR reveals that the sample persists in the low-spin form in solution at room temperature. Computational analysis of the spin state preferences for the cations [FeIII(4-OMe-sal2323)]+ and [FeIII(sal2323)]+ confirmed the energetic preference for the spin doublet form in both, and the thermal spin crossover in complex 1a is therefore attributed to perturbation of the crystal packing on warming.
Collapse
Affiliation(s)
- Conor T. Kelly
- School
of Chemistry, University College Dublin, Belfield, Dublin 4D04 N2E5, Ireland
| | - Michael Griffin
- School
of Chemistry, University College Dublin, Belfield, Dublin 4D04 N2E5, Ireland
| | - Kane Esien
- School
of Mathematics and Physics, Queen’s
University Belfast, BelfastBT7 1NN, United Kingdom
| | - Solveig Felton
- School
of Mathematics and Physics, Queen’s
University Belfast, BelfastBT7 1NN, United Kingdom
| | - Helge Müller-Bunz
- School
of Chemistry, University College Dublin, Belfield, Dublin 4D04 N2E5, Ireland
| | - Grace G. Morgan
- School
of Chemistry, University College Dublin, Belfield, Dublin 4D04 N2E5, Ireland
| |
Collapse
|
14
|
Qin CY, Zhou HW, Zhao SZ, Li YH, Wang S. Spin crossover mediated by hydrogen bonds in iodine-substituted manganese complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Paliwoda D, Vendier L, Nicolazzi W, Molnár G, Bousseksou A. Pressure Tuning of Coupled Structural and Spin State Transitions in the Molecular Complex [Fe(H 2B(pz) 2) 2(phen)]. Inorg Chem 2022; 61:15991-16002. [PMID: 36162137 DOI: 10.1021/acs.inorgchem.2c02286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The large volume change, which accompanies the molecular spin crossover (SCO) phenomenon in some transition metal complexes, prompts frequently the coupling of the SCO with other instabilities. Understanding the driving mechanism(s) of such coupled phase transitions is not only important for fundamental reasons but also provides scope for the development of multifunctional materials. The general theoretical expectation is that the coupling has elastic origin, and the sequence of transitions can be tuned by an externally applied pressure, but dedicated experiments remain scarce. Here, we used high-pressure and low-temperature single-crystal X-ray diffraction to investigate the high-spin (HS) to low-spin (LS) transitions in the molecular complexes [FeII(H2B(pz)2)2(bipy)] and [FeII(H2B(pz)2)2(phen)]. In the bipyridine complex, the SCO is continuous and isostructural over the whole T, P-range (100-300 K, 0-2 GPa). In the phenanthroline derivative, however, the SCO is concomitant with a symmetry-breaking transition (C2/c to P1̅). Structural analysis reveals that the coupling between the two phenomena can be tuned by external pressure from a virtually simultaneous HSC2/c-LSP1̅ transition to the sequence of HSC2/c-LSC2/c-LSP1̅ transitions. The correlation of spontaneous strain and order parameter behaviors highlights that the "separated" transitions remain still connected via strain coupling, whereas the "simultaneous" transitions are partially split.
Collapse
Affiliation(s)
- Damian Paliwoda
- LCC, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France
| | - Laure Vendier
- LCC, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France
| | - William Nicolazzi
- LCC, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France
| | - Gábor Molnár
- LCC, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France
| | | |
Collapse
|
16
|
Al Shehimy S, Baydoun O, Denis-Quanquin S, Mulatier JC, Khrouz L, Frath D, Dumont É, Murugesu M, Chevallier F, Bucher C. Ni-Centered Coordination-Induced Spin-State Switching Triggered by Electrical Stimulation. J Am Chem Soc 2022; 144:17955-17965. [PMID: 36154166 DOI: 10.1021/jacs.2c07196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report the synthesis and magnetic properties of a Ni(II)-porphyrin tethered to an imidazole ligand through a flexible electron-responsive mechanical hinge. The latter is capable of undergoing a large amplitude and fully reversible folding motion under the effect of electrical stimulation. This redox-triggered movement is exploited to force the axial coordination of the appended imidazole ligand onto the square-planar Ni(II) center, resulting in a change in its spin state from low spin (S = 0) to high spin (S = 1) proceeding with an 80% switching efficiency. The driving force of this reversible folding motion is the π-dimerization between two electrogenerated viologen cation radicals. The folding motion and the associated spin state switching are demonstrated on the grounds of NMR, (spectro)electrochemical, and magnetic data supported by quantum calculations.
Collapse
Affiliation(s)
- Shaymaa Al Shehimy
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | - Orsola Baydoun
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | | | | | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | - Denis Frath
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | - Élise Dumont
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France.,Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Floris Chevallier
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | - Christophe Bucher
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| |
Collapse
|
17
|
Ahmed M, Arachchige KSA, Xie Z, Price JR, Cruddas J, Clegg JK, Powell BJ, Kepert CJ, Neville SM. Guest-Induced Multistep to Single-Step Spin-Crossover Switching in a 2-D Hofmann-Like Framework with an Amide-Appended Ligand. Inorg Chem 2022; 61:11667-11674. [PMID: 35862437 DOI: 10.1021/acs.inorgchem.2c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A detailed study of the two-dimensional (2-D) Hofmann-like framework [Fe(furpy)2Pd(CN)4]·nG (furpy: N-(pyridin-4-yl)furan-2-carboxamide, G = H2O,EtOH (A·H2O,Et), and H2O (A·H2O)) is presented, including the structural and spin-crossover (SCO) implications of subtle guest modification. This 2-D framework is characterized by undulating Hofmann layers and an array of interlayer spacing environments─this is a strategic approach that we achieve by the inclusion of a ligand with multiple host-host and host-guest interaction sites. Variable-temperature magnetic susceptibility studies reveal an asymmetric multistep SCO for A·H2O,Et and an abrupt single-step SCO for A·H2O with an upshift in transition temperature of ∼75 K. Single-crystal analyses show a primitive orthorhombic symmetry for A·H2O,Et characterized by a unique FeII center─the multistep SCO character is attributed to local ligand orientation. Counterintuitively, A·H2O shows a triclinic symmetry with two inequivalent FeII centers that undergo a cooperative single-step high-spin (HS)-to-low-spin (LS) transition. We conduct detailed structure-function analyses to understand how the guest ethanol influences the delicate balance between framework communication and, therefore, the local structure and spin-state transition mechanism.
Collapse
Affiliation(s)
- Manan Ahmed
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zixi Xie
- The School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Jason R Price
- Australian Synchrotron, ANSTO Clayton, Victoria 3800, Australia
| | - Jace Cruddas
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Cameron J Kepert
- The School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Suzanne M Neville
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
18
|
Kumar B, Paul A, Mondal DJ, Paliwal P, Konar S. Spin-State Modulation in Fe II -Based Hofmann-Type Coordination Polymers: From Molecules to Materials. CHEM REC 2022; 22:e202200135. [PMID: 35815939 DOI: 10.1002/tcr.202200135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.
Collapse
Affiliation(s)
- Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Abhik Paul
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Piyush Paliwal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
19
|
Chernyshov D, Dyadkin V, Törnroos KW. Preliminary observations of the interplay of radiation damage with spin crossover. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:392-396. [PMID: 35695113 DOI: 10.1107/s205252062200467x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Intense synchrotron radiation makes time-resolved structural experiments with increasingly finer time sampling possible. On the other hand, radiation heating, radiation-induced volume change and structural disorder become more frequent. Temperature, volume change and disorder are known to be coupled with equilibrium in molecular spin complexes, balancing between two or more spin state configurations. Combining single-crystal diffraction and synchrotron radiation it is illustrated how the radiation damage and associated effects can affect the spin crossover process and may serve as yet another tool to further manipulate the spin crossover properties.
Collapse
Affiliation(s)
- Dmitry Chernyshov
- Swiss-Norwegian BeamLines at the European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Vadim Dyadkin
- Swiss-Norwegian BeamLines at the European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | |
Collapse
|
20
|
Dynamics of Spin Crossover Molecular Complexes. NANOMATERIALS 2022; 12:nano12101742. [PMID: 35630963 PMCID: PMC9144206 DOI: 10.3390/nano12101742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the “write” speed is an important criterion.
Collapse
|
21
|
Influence of Cooperative Interactions on the Spin Crossover Phenomenon in Iron(II) Complexes: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Ahmed M, Zenere KA, Sciortino NF, Arachchige KSA, Turner GF, Cruddas J, Hua C, Price JR, Clegg JK, Valverde-Muñoz FJ, Real JA, Chastanet G, Moggach SA, Kepert CJ, Powell BJ, Neville SM. Regulation of Multistep Spin Crossover Across Multiple Stimuli in a 2-D Framework Material. Inorg Chem 2022; 61:6641-6649. [PMID: 35442030 DOI: 10.1021/acs.inorgchem.2c00530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the effects of a broad array of external stimuli on the structural, spin-crossover (SCO) properties and nature of the elastic interaction within the two-dimensional Hofmann framework material [Fe(cintrz)2Pd(CN)4]·guest (cintrz = N-cinnamalidene 4-amino-1,2,4-triazole; A·guest; guest = 3H2O, 2H2O, and Ø). This framework exhibits a delicate balance between ferro- and antiferro-elastic interaction characters; we show that manipulation of the pore contents across guests = 3H2O, 2H2O, and Ø can be exploited to regulate this balance. In A·3H2O, the dominant antiferroelastic interaction character between neighboring FeII sites sees the low-temperature persistence of the mixed spin-state species {HS-LS} for {Fe1-Fe2} (HS = high spin, LS = low spin). Elastic interaction strain is responsible for stabilizing the {HS-LS} state and can be overcome by three mechanisms: (1) partial (2H2O) or complete (Ø) guest removal, (2) irradiation via the reverse light-induced excited spin-state trapping (LIESST) effect (λ = 830 nm), and (3) the application of external hydrostatic pressure. Combining experimental data with elastic models presents a clear interpretation that while guest molecules cause a negative chemical pressure, they also have consequences for the elastic interactions between metals beyond the simple chemical pressure picture typically proposed.
Collapse
Affiliation(s)
- Manan Ahmed
- The School of Chemistry, UNSW Sydney, Sydney 2052, New South Wales, Australia
| | - Katrina A Zenere
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Natasha F Sciortino
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Gemma F Turner
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Jace Cruddas
- School of Mathematics and Physics, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Carol Hua
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Jason R Price
- The Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Victoria, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | | | - Jose A Real
- Insitut de Ciencia Molecular, Department de Quimica Inorganica, Universitat de Valéncia, Patterna 46980, Valéncia, Spain
| | - Guillaume Chastanet
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Cameron J Kepert
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Suzanne M Neville
- The School of Chemistry, UNSW Sydney, Sydney 2052, New South Wales, Australia
| |
Collapse
|
23
|
Velazquez-Garcia JDJ, Basuroy K, Storozhuk D, Wong J, Demeshko S, Meyer F, Henning R, Techert S. Metal-to-metal communication during the spin state transition of a [2 × 2] Fe(II) metallogrid at equilibrium and out-of-equilibrium conditions. Dalton Trans 2022; 51:6036-6045. [PMID: 35352719 DOI: 10.1039/d1dt04255f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Spin crossover (SCO) complexes are prototypes of materials with bi- or multi-stability in the solid state. The structural evolution during their spin transition is a key feature to establish the foundations of how to utilize this type of material. So far, ultrafast time-resolved structural investigations of SCO solids have been focused on monometallic complexes, though an increasing number of oligometallic SCO complexes showing cooperativity effects are being reported. Here, we used single crystal X-ray crystallography and time-resolved pink Laue photocrystallography to study the molecular reorganisation during the thermal and photoinduced SCO of a [2 × 2] tetranuclear metallogrid of the form [FeII4LMe4](BF4)4·2MeCN ([LMe]- = 4-methyl-3,5-bis{6-(2,2'-bipyridyl)}pyrazolate). A multitemperature crystallographic investigation on single crystals reveals an effective communication between the metal centres during thermal SCO, observed by the simultaneous transformation of the coordination polyhedra of both crystallographic-symmetry independent metal atoms accompanying the SCO in only one of them. Time-resolved photocrystallography results reveal the different molecular responses between mononuclear and oligonuclear complexes, after light irradiation with a picosecond laser pulse. While mononuclear SCO complexes reorganise once during the first nanosecond after excitation, the tetranuclear metallogrid exhibits a multiple structural rearrangement in the same span of time. Such behaviour is attributed to the elastic communication between metal atoms, which allows the propagation of a short-range elastic distortion over the entire Fe4 grid complex. The present study sheds light on the importance of strong elastic coupling of metal atoms during the correlated spin transition of oligometallic complexes.
Collapse
Affiliation(s)
- Jose de Jesus Velazquez-Garcia
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
| | - Krishnayan Basuroy
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
| | - Darina Storozhuk
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, Illinois, 90439, USA
| | - Simone Techert
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
24
|
Piedrahita-Bello M, Zan Y, Enriquez-Cabrera A, Molnár G, Tondu B, Salmon L, Bousseksou A. Effect of the spin crossover filler concentration on the performance of composite bilayer actuators. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Abstract
Full-potential linearized augmented plane wave (LAPW) and APW plus local orbital (APW+lo) codes differ widely in both their user interfaces and in capabilities for calculations and analysis beyond their common central task of all-electron solution of the Kohn–Sham equations. However, that common central task opens a possible route to performance enhancement, namely to offload the basic LAPW/APW+lo algorithms to a library optimized purely for that purpose. To explore that opportunity, we have interfaced the Exciting-Plus (“EP”) LAPW/APW+lo DFT code with the highly optimized SIRIUS multi-functional DFT package. This simplest realization of the separation of concerns approach yields substantial performance over the base EP code via additional task parallelism without significant change in the EP source code or user interface. We provide benchmarks of the interfaced code against the original EP using small bulk systems, and demonstrate performance on a spin-crossover molecule and magnetic molecule that are of size and complexity at the margins of the capability of the EP code itself.
Collapse
|
26
|
Maalej W, Jaballi R, Rached AB, Guionneau P, Daro N, Elaoud Z. Supramolecular architectures of mononuclear nickel(II) and homobinuclear copper(II) complexes with the 5,5′-dimethyl-2,2′-bipyridine ligand: Syntheses, crystal structures and Hirshfeld surface analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Dobbelaar E, Jakobsen VB, Trzop E, Lee M, Chikara S, Ding X, Müller‐Bunz H, Esien K, Felton S, Carpenter MA, Collet E, Morgan GG, Zapf VS. Thermal and Magnetic Field Switching in a Two‐Step Hysteretic Mn
III
Spin Crossover Compound Coupled to Symmetry Breakings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emiel Dobbelaar
- School of Chemistry University College Dublin Science Centre Belfield Dublin 4 Ireland
- Current address: Technische Universität Kaiserslautern Fachbereich Chemie Erwin-Schrödinger-Strasse 52–54 67655 Kaiserslautern Germany
| | - Vibe B. Jakobsen
- School of Chemistry University College Dublin Science Centre Belfield Dublin 4 Ireland
- Current address: Nature Energy Ørbækvej 260 5220 Odense SØ Denmark
| | - Elzbieta Trzop
- Univ Rennes CNRS, IPR (Institut de Physique de Rennes), UMR 6251 35000 Rennes France
| | - Minseong Lee
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Shalinee Chikara
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
- Current address: National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Xiaxin Ding
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
- Current address: City College of New York New York NY 10010 USA
| | - Helge Müller‐Bunz
- School of Chemistry University College Dublin Science Centre Belfield Dublin 4 Ireland
| | - Kane Esien
- Centre for Nanostructured Media School of Mathematics and Physics Queen's University of Belfast Belfast BT7 1NN, Northern Ireland UK
- Current address: Cardiff University Cardiff CF10 3AT Wales UK
| | - Solveig Felton
- Centre for Nanostructured Media School of Mathematics and Physics Queen's University of Belfast Belfast BT7 1NN, Northern Ireland UK
| | - Michael A. Carpenter
- Department of Earth Sciences University of Cambridge Downing Street Cambridge CB2 3EQ UK
| | - Eric Collet
- Univ Rennes CNRS, IPR (Institut de Physique de Rennes), UMR 6251 35000 Rennes France
| | - Grace G. Morgan
- School of Chemistry University College Dublin Science Centre Belfield Dublin 4 Ireland
| | - Vivien S. Zapf
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
28
|
Abstract
Advances over the past decade have presented new avenues to achieve control over material properties using intense pulses of electromagnetic radiation, with frequencies ranging from optical (approximately 1 PHz, or 1015 Hz) down to below 1 THz (1012 Hz). Some of these new developments have arisen from new experimental methods to drive and observe transient material properties, while others have emerged from new computational techniques that have made nonequilibrium dynamics more tractable to our understanding. One common issue with most attempts to realize control using electromagnetic pulses is the dissipation of energy, which in many cases poses a limit due to uncontrolled heating and has led to strong interest in using lower frequency and/or highly specific excitations to minimize this effect. Emergent developments in experimental tools using shaped X-ray pulses may in the future offer new possibilities for material control, provided that the issue of heat dissipation can be resolved for higher frequency light. The concept of using appropriately shaped pulses of light to control the properties of materials has a range of potential applications, and relies on an understanding of intricate couplings within the material.![]()
Collapse
Affiliation(s)
- Steven L Johnson
- Institute for Quantum Electronics, ETH Zürich, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland.
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
29
|
Xu L, Xie Z, Zenere KA, Clegg JK, Kenny E, Rijs NJ, Jameson GNL, Kepert CJ, Powell BJ, Neville SM. Co-existence of five- and six-coordinate iron( ii) species captured in a geometrically strained spin-crossover Hofmann framework. Dalton Trans 2022; 51:9596-9600. [DOI: 10.1039/d2dt01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of an angular ligand drives the formation of an irregular Hofmann framework whereby 6-coordinate and rare 5-coordinate FeII species co-exist – the 6-coordinate species show a spin-crossover transition.
Collapse
Affiliation(s)
- Luonan Xu
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zixi Xie
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katrina A. Zenere
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Elise Kenny
- School of School of Mathematics and Physics, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Nicole J. Rijs
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Guy N. L. Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Cameron J. Kepert
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Benjamin J. Powell
- School of School of Mathematics and Physics, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Suzanne M. Neville
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
30
|
Gournay L, Chaban I, Mevellec JY, Humbert B, Janod E, Guerin L, Cammarata M, Daro N, Chastanet G, Collet E. Shifting photo-stationary light-induced excited spin state trapping equilibrium towards higher temperature by increasing light fluence. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Jakobsen VB, Trzop E, Dobbelaar E, Gavin LC, Chikara S, Ding X, Lee M, Esien K, Müller-Bunz H, Felton S, Collet E, Carpenter MA, Zapf VS, Morgan GG. Domain Wall Dynamics in a Ferroelastic Spin Crossover Complex with Giant Magnetoelectric Coupling. J Am Chem Soc 2021; 144:195-211. [PMID: 34939802 PMCID: PMC8759087 DOI: 10.1021/jacs.1c08214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Pinned and mobile
ferroelastic domain walls are detected in response
to mechanical stress in a Mn3+ complex with two-step thermal
switching between the spin triplet and spin quintet forms. Single-crystal
X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three
distinct symmetry-breaking phase transitions in the polar space group
series Cc → Pc → P1 → P1(1/2). The transition mechanisms involve coupling between structural and
spin state order parameters, and the three transitions are Landau
tricritical, first order, and first order, respectively. The two first-order
phase transitions also show changes in magnetic properties and spin
state ordering in the Jahn–Teller-active Mn3+ complex.
On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has
been confirmed by resonant ultrasound spectroscopy. Measurements of
magnetoelectric coupling revealed significant changes in electric
polarization at both the Pc → P1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected
when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability
at 90 K. Thus, we showcase here a rare example of multifunctionality
in a spin crossover material where the strain and polarization tensors
and structural and spin state order parameters are strongly coupled.
Collapse
Affiliation(s)
- Vibe Boel Jakobsen
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Emiel Dobbelaar
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laurence C Gavin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shalinee Chikara
- Department of Physics, Auburn University Auburn, Alabama 36849, United States
| | - Xiaxin Ding
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Minseong Lee
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kane Esien
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Solveig Felton
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Michael A Carpenter
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England, United Kingdom
| | - Vivien S Zapf
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Grace G Morgan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
32
|
Dürrmann A, Hörner G, Wagner S, Breuning M, Weber B. Sterically Encumbered Coordination Sites. Iron(II) Complexes of Jäger‐type ligands with a Terphenyl Backbone. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Dürrmann
- Department of Chemistry Inorganic Chemistry University of Bayreuth Universitätsstraße 30, NWI 95440 Bayreuth Germany
| | - Gerald Hörner
- Department of Chemistry Inorganic Chemistry University of Bayreuth Universitätsstraße 30, NWI 95440 Bayreuth Germany
| | - Stefan Wagner
- Department of Chemistry Organic Chemistry University of Bayreuth Universitätsstraße 30, NWII 95440 Bayreuth Germany
| | - Matthias Breuning
- Department of Chemistry Organic Chemistry University of Bayreuth Universitätsstraße 30, NWII 95440 Bayreuth Germany
| | - Birgit Weber
- Department of Chemistry Inorganic Chemistry University of Bayreuth Universitätsstraße 30, NWI 95440 Bayreuth Germany
| |
Collapse
|
33
|
Dobbelaar E, Jakobsen VB, Trzop E, Lee M, Chikara S, Ding X, Müller-Bunz H, Esien K, Felton S, Carpenter MA, Collet E, Morgan GG, Zapf VS. Thermal and Magnetic Field Switching in a Two-Step Hysteretic Mn III Spin Crossover Compound Coupled to Symmetry Breakings. Angew Chem Int Ed Engl 2021; 61:e202114021. [PMID: 34761504 DOI: 10.1002/anie.202114021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/10/2022]
Abstract
A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74 K and 84 K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.
Collapse
Affiliation(s)
- Emiel Dobbelaar
- School of Chemistry, University College Dublin, Science Centre Belfield, Dublin, 4, Ireland.,Current address: Technische Universität Kaiserslautern, Fachbereich Chemie, Erwin-Schrödinger-Strasse 52-54, 67655, Kaiserslautern, Germany
| | - Vibe B Jakobsen
- School of Chemistry, University College Dublin, Science Centre Belfield, Dublin, 4, Ireland.,Current address: Nature Energy, Ørbaekvej 260, 5220, Odense SØ, Denmark
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, 35000, Rennes, France
| | - Minseong Lee
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Shalinee Chikara
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Current address: National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Xiaxin Ding
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Current address: City College of New York, New York, NY, 10010, USA
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin, Science Centre Belfield, Dublin, 4, Ireland
| | - Kane Esien
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University of Belfast, Belfast, BT7 1NN, Northern Ireland, UK.,Current address: Cardiff University, Cardiff, CF10 3AT, Wales, UK
| | - Solveig Felton
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University of Belfast, Belfast, BT7 1NN, Northern Ireland, UK
| | - Michael A Carpenter
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, 35000, Rennes, France
| | - Grace G Morgan
- School of Chemistry, University College Dublin, Science Centre Belfield, Dublin, 4, Ireland
| | - Vivien S Zapf
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
34
|
Yu ZM, Zhao SZ, Wang YT, Xu PY, Qin CY, Li YH, Zhou XH, Wang S. Anion-driven supramolecular modulation of spin-crossover properties in mononuclear iron(III) Schiff-base complexes. Dalton Trans 2021; 50:15210-15223. [PMID: 34622889 DOI: 10.1039/d1dt02394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Fe(III) complexes [Fe(5-F-sal-N-1,4,7,10)]Y (Y = PF6- for 1, Y = ClO4- for 2, Y = I- for 3 and Y = NO3- for 4) have been prepared. Single-crystal X-ray crystallographic studies show that complex 1 crystallizes in the orthorhombic Pna21 space group and complexes 2-4 have an isomorphous structure and crystallize in the same monoclinic space group, P21/n. Complexes 2-4 have two independent molecules (Fe1 and Fe2) in the unit cell. Magnetic susceptibility measurements demonstrated that complexes 1 and 3 showed a gradual one-step SCO behavior (T1/2 for 1 = 177 K and for 3 = 227 K) without thermal hysteresis. The magnetic behavior of 2 shows an incomplete two-step SCO process at T1/2 = 114 K and 170 K, respectively, while 4 is in a high-spin state at all measured temperatures. A careful evaluation of the supramolecular structures of these complexes revealed correlation between the supramolecular packing forces and their SCO behavior. The crystal structure of 1 consists of a three-dimensional (3D) extended network constructed from N-H⋯F and C-H⋯F hydrogen bonds, and C-H⋯π and C⋯C short contacts. In compounds 2-4, the crystal packing is governed by C⋯C, C-H⋯π and p-π interactions for the Fe1 centers and by C-H⋯π/O interactions for the Fe2 centers, which form 1D chains. Additional interactions (C-H⋯F and N-H⋯O/I) connect the neighboring chains and planes to form a complex supramolecular network. The anion⋯π interactions in 4 provide a means for preventing SCO occurring at low temperatures. This suggests that the supramolecular connectivity of the anions influences the magnetic properties.
Collapse
Affiliation(s)
- Zong-Mei Yu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Sheng-Ze Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yu-Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Peng-Yu Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chun-Yan Qin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yong-Hua Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xin-Hui Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shi Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
35
|
Investigation of the Effect of Spin Crossover on the Static and Dynamic Properties of MEMS Microcantilevers Coated with Nanocomposite Films of [Fe(Htrz)2(trz)](BF4)@P(VDF-TrFE). MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7080114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We used a spray-coating process to cover silicon microcantilevers with ca. 33 wt% [Fe(Htrz)2(trz)](BF4)@P(VDF70-TrFE30) nanocomposite thin films of 1500 nm thickness. The bilayer cantilevers were then used to investigate the thermomechanical properties of the composites through a combined static and dynamic flexural analysis. The out-of-plane flexural resonance frequencies were used to assess the Young’s modulus of the spray-coated films (3.2 GPa). Then, the quasi-static flexural bending data allowed us to extract the actuation strain (1.3%) and an actuation stress (7.7 MPa) associated with the spin transition in the composite.
Collapse
|
36
|
Jakobsen VB, Chikara S, Yu JX, Dobbelaar E, Kelly CT, Ding X, Weickert F, Trzop E, Collet E, Cheng HP, Morgan GG, Zapf VS. Giant Magnetoelectric Coupling and Magnetic-Field-Induced Permanent Switching in a Spin Crossover Mn(III) Complex. Inorg Chem 2021; 60:6167-6175. [PMID: 33331784 DOI: 10.1021/acs.inorgchem.0c02789] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate giant magnetoelectric coupling at a Mn3+ spin crossover in [MnIIIL]BPh4 (L = (3,5-diBr-sal)2323) with a field-induced permanent switching of the structural, electric, and magnetic properties. An applied magnetic field induces a first-order phase transition from a high spin/low spin (HS-LS) ordered phase to a HS-only phase at 87.5 K that remains after the field is removed. We observe this unusual effect for DC magnetic fields as low as 8.7 T. The spin-state switching driven by the magnetic field in the bistable molecular material is accompanied by a change in electric polarization amplitude and direction due to a symmetry-breaking phase transition between polar space groups. The magnetoelectric coupling occurs due to a γη2 coupling between the order parameter γ related to the spin-state bistability and the symmetry-breaking order parameter η responsible for the change of symmetry between polar structural phases. We also observe conductivity occurring during the spin crossover and evaluate the possibility that it results from conducting phase boundaries. We perform ab initio calculations to understand the origin of the electric polarization change as well as the conductivity during the spin crossover. Thus, we demonstrate a giant magnetoelectric effect with a field-induced electric polarization change that is 1/10 of the record for any material.
Collapse
Affiliation(s)
- Vibe B Jakobsen
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Shalinee Chikara
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jie-Xiang Yu
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Emiel Dobbelaar
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Conor T Kelly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Xiaxin Ding
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Franziska Weickert
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Elzbieta Trzop
- CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Univ. Rennes, F-35000 Rennes, France
| | - Eric Collet
- CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Univ. Rennes, F-35000 Rennes, France
| | - Hai-Ping Cheng
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Grace G Morgan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Vivien S Zapf
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
37
|
Spin-Crossover 2-D Hofmann Frameworks Incorporating an Amide-Functionalized Ligand: N-(pyridin-4-yl)benzamide. CHEMISTRY 2021. [DOI: 10.3390/chemistry3010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two analogous 2-D Hofmann-type frameworks, which incorporate the novel ligand N-(pyridin-4-yl)benzamide (benpy) [FeII(benpy)2M(CN)4]·2H2O (M = Pd (Pd(benpy)) and Pt (Pt(benpy))) are reported. The benpy ligand was explored to facilitate spin-crossover (SCO) cooperativity via amide group hydrogen bonding. Structural analyses of the 2-D Hofmann frameworks revealed benpy-guest hydrogen bonding and benpy-benpy aromatic contacts. Both analogues exhibited single-step hysteretic spin-crossover (SCO) transitions, with the metal-cyanide linker (M = Pd or Pt) impacting the SCO spin-state transition temperature and hysteresis loop width (Pd(benpy): T½↓↑: 201, 218 K, ∆T: 17 K and Pt(benpy): T½↓↑: 206, 226 K, ∆T: 20 K). The parallel structural and SCO changes over the high-spin to low-spin transition were investigated using variable-temperature, single-crystal, and powder X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry. These studies indicated that the ligand–guest interactions facilitated by the amide group acted to support the cooperative spin-state transitions displayed by these two Hofmann-type frameworks, providing further insight into cooperativity and structure–property relationships.
Collapse
|
38
|
Brennan AT, Zenere KA, Kepert CJ, Clegg JK, Neville SM. Three Distinct Spin-Crossover Pathways in Halogen-Appended 2D Hofmann Frameworks. Inorg Chem 2021; 60:3871-3878. [DOI: 10.1021/acs.inorgchem.0c03651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashley T. Brennan
- The School of Chemistry, University of New South Wales—Sydney, Sydney 2052, New South Wales, Australia
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Katrina A. Zenere
- The School of Chemistry, University of New South Wales—Sydney, Sydney 2052, New South Wales, Australia
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Cameron J. Kepert
- The School of Chemistry, University of New South Wales—Sydney, Sydney 2052, New South Wales, Australia
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Jack K. Clegg
- The School of Chemistry, University of New South Wales—Sydney, Sydney 2052, New South Wales, Australia
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Suzanne M. Neville
- The School of Chemistry, University of New South Wales—Sydney, Sydney 2052, New South Wales, Australia
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|
39
|
Ahmed M, Brand HEA, Peterson VK, Clegg JK, Kepert CJ, Price JR, Powell BJ, Neville SM. Dual-supramolecular contacts induce extreme Hofmann framework distortion and multi-stepped spin-crossover. Dalton Trans 2021; 50:1434-1442. [PMID: 33438683 DOI: 10.1039/d0dt04007j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An extended nitro-functionalised 1,2,4-triazole ligand has been used to induce considerable lattice distortion in a 2-D Hofmann framework material via competing supramolecular interactions. Single crystal X-ray diffraction analyses on [Fe3(N-cintrz)6(Pd(CN)4)3]·6H2O (N-cintrz: (E)-3-(2-nitrophenyl)acrylaldehyde) reveal a substantial deviation from a regular Hofmann structure, in particular as the intra- and inter-layer contacts are dominated by hydrogen-bonding interactions rather than the typical π-stacking arrays. Also, the 2-D Hofmann layers show an assortment of ligand conformations and local FeII coordination environments driven by the optimisation of competing supramolecular contacts. Temperature-dependent magnetic susceptibility measurements reveal a two-step spin crossover (SCO) transition. Variable temperature structural analyses show that the two crystallographically distinct FeII centres, which are arranged in stripes (2 : 1 ratio) within each Hofmann layer, undergo a cooperative HS ↔ HS/LS ↔ LS (HS = high spin, LS = low spin) transition without periodic spin-state ordering. The mismatch between crystallographic (2 : 1) and spin-state (1 : 1) periodicity at the HS : LS step provides key insight into the competition (frustration) between elastic interactions and crystallographically driven order.
Collapse
Affiliation(s)
- Manan Ahmed
- School of Chemistry, The University of New South Wales, Sydney, 2052, Australia.
| | - Helen E A Brand
- The Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, Australia
| | | | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Cameron J Kepert
- The School of Chemistry, The University of Sydney, Sydney, 2006, Australia
| | - Jason R Price
- School of Chemistry, The University of New South Wales, Sydney, 2052, Australia. and The Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Suzanne M Neville
- School of Chemistry, The University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
40
|
Guionneau P, Marchivie M, Chastanet G. Multiscale Approach of Spin Crossover Materials: A Concept Mixing Russian Dolls and Domino Effects. Chemistry 2021; 27:1483-1486. [PMID: 32692437 DOI: 10.1002/chem.202002699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/22/2022]
Abstract
The spin crossover (SCO) phenomenon corresponds to a modification that originates at the atomic scale. However, the simple consideration of the transformations that occur following the SCO at this scale or in its close vicinity does not allow anyone to truly understand, anticipate and thus take advantage of what happens at the scale of the material, and even less at the device one. As the fruit of years of work and experience on this phenomenon, we formalize here the concept of the multiscale understanding of SCO. Clearly, the deflagration generated by the initial impressive atomic modification on all the physical scales of the solid must be understood in terms of structure-properties relationships that fit together, like Russian dolls, and propagate according to a kind of domino effect. Each scale can both give different and independent consequences from those of the other scales but at the same time can influence those of a larger or smaller scale, the whole being imperatively to take into account. The concept appears well illustrated by the volume modification, always the same at the atomic level but drastically different and adaptable, in amplitude and sense, at any other physical scale. This approach results in a much wider range of potential applications than the atomic level alone initially suggests, including one serious path to shape memory materials.
Collapse
Affiliation(s)
- Philippe Guionneau
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600, Pessac, France
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600, Pessac, France
| | - Guillaume Chastanet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600, Pessac, France
| |
Collapse
|
41
|
Palluel M, El Khoury L, Daro N, Buffière S, Josse M, Marchivie M, Chastanet G. Rational direct synthesis of [Fe(Htrz)2(trz)](BF4) polymorphs: temperature and concentration effects. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00482d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational design of [Fe(Htrz)2trz](BF4) spin crossover (SCO) polymorphs through the study of the phase diagram and structure refinement.
Collapse
Affiliation(s)
- Marlène Palluel
- CNRS
- University of Bordeaux
- Bordeaux INP
- UMR 5026
- F-33600 Pessac
| | - Liza El Khoury
- CNRS
- University of Bordeaux
- Bordeaux INP
- UMR 5026
- F-33600 Pessac
| | - Nathalie Daro
- CNRS
- University of Bordeaux
- Bordeaux INP
- UMR 5026
- F-33600 Pessac
| | - Sonia Buffière
- CNRS
- University of Bordeaux
- Bordeaux INP
- UMR 5026
- F-33600 Pessac
| | - Michael Josse
- CNRS
- University of Bordeaux
- Bordeaux INP
- UMR 5026
- F-33600 Pessac
| | | | | |
Collapse
|
42
|
Mason HE, Musselle-Sexton JRC, Howard JAK, Probert MR, Sparkes HA. Structural studies into the spin crossover behaviour of Fe(abpt) 2(NCS) 2 polymorphs B and D. NEW J CHEM 2021. [DOI: 10.1039/d1nj02607k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystallographic analysis of the spin-crossover behaviour of [Fe(abpt)2(NCS)2], polymorph B and D, is presented focusing particularly on the high pressure structures.
Collapse
Affiliation(s)
| | | | | | - Michael R. Probert
- Chemistry, School of Natural and Environmental Sciences
- Bedson Building
- Newcastle University
- UK
| | - Hazel A. Sparkes
- Department of Chemistry
- University of Bristol
- Cantock's Close
- Bristol
- UK
| |
Collapse
|
43
|
Ketkaew R, Tantirungrotechai Y, Harding P, Chastanet G, Guionneau P, Marchivie M, Harding DJ. OctaDist: a tool for calculating distortion parameters in spin crossover and coordination complexes. Dalton Trans 2020; 50:1086-1096. [PMID: 33367357 DOI: 10.1039/d0dt03988h] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OctaDist is an interactive and visual program for determination of structural distortion in octahedral coordination complexes such as spin crossover complexes, single-ion magnets, perovskites or metal-organic frameworks. OctaDist computes the octahedral distortion parameters initially designed in the context of the spin-crossover phenomenon and denoted ζ, Σ, and Θ from standard structural files. The program also provides additional tools for molecular analyses and visualization. It emphasizes performance, flexibility, ease of use, application programming interface (API) consistency, and clear documentation. The modules and classes in OctaDist can be easily customized to include new algorithms or analytical tools. OctaDist is cross-platform supported for modern operating systems and is available as open-source distributed under the GNU General Public License version 3.
Collapse
Affiliation(s)
- Rangsiman Ketkaew
- Computational Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120 Thailand
| | - Yuthana Tantirungrotechai
- Computational Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120 Thailand
| | - Phimphaka Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
| | - Guillaume Chastanet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600 Pessac, France.
| | - Philippe Guionneau
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600 Pessac, France.
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600 Pessac, France.
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
44
|
Reeves MG, Tailleur E, Wood PA, Marchivie M, Chastanet G, Guionneau P, Parsons S. Mapping the cooperativity pathways in spin crossover complexes. Chem Sci 2020; 12:1007-1015. [PMID: 34163867 PMCID: PMC8179037 DOI: 10.1039/d0sc05819j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Crystal packing energy calculations are applied to the [Fe(PM-L)2(NCS)2] family of spin crossover (SCO) complexes (PM-L = 4-substituted derivatives of the N-(2-pyridylmethylene)-4-aminobiphenyl ligand) with the aim of relating quantitatively the cooperativity of observed SCO transitions to intermolecular interactions in the crystal structures. This approach reveals a linear variation of the transition abruptness with the sum of the magnitudes of the interaction energy changes within the first molecular coordination sphere in the crystal structure. Abrupt transitions are associated with the presence of significant stabilising and destabilising changes in intermolecular interaction energies. While the numerical trend established for the PM-L family does not directly extend to other classes of SCO complex in which the intermolecular interactions may be very different, a plot of transition abruptness against the range of interaction energy changes normalised by the largest change shows a clustering of complexes with similar transition abruptness. The changes in intermolecular interactions are conveniently visualised using energy difference frameworks, which illustrate the cooperativity pathways of an SCO transition. The abruptness of spin crossover (SCO) is related to intermolecular energy changes occurring over the course of an SCO transition. Crossover is abrupt when SCO-induced strain is accommodated synergistically in a few key interactions.![]()
Collapse
Affiliation(s)
- Matthew G Reeves
- Centre for Science at Extreme Conditions, EaStCHEM School of Chemistry, The University of Edinburgh King's Buildings, West Mains Road Edinburgh Scotland EH9 3FJ UK
| | - Elodie Tailleur
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026 87 av. Dr A. Schweitzer F-33600 Pessac France
| | - Peter A Wood
- Cambridge Crystallographic Data Centre 12 Union Road Cambridge England CB2 1EZ UK
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026 87 av. Dr A. Schweitzer F-33600 Pessac France
| | - Guillaume Chastanet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026 87 av. Dr A. Schweitzer F-33600 Pessac France
| | - Philippe Guionneau
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026 87 av. Dr A. Schweitzer F-33600 Pessac France
| | - Simon Parsons
- Centre for Science at Extreme Conditions, EaStCHEM School of Chemistry, The University of Edinburgh King's Buildings, West Mains Road Edinburgh Scotland EH9 3FJ UK
| |
Collapse
|
45
|
Książek M, Weselski M, Kaźmierczak M, Tołoczko A, Siczek M, Durlak P, Wolny JA, Schünemann V, Kusz J, Bronisz R. Spatiotemporal Studies of the One-Dimensional Coordination Polymer [Fe(ebtz) 2 (C 2 H 5 CN) 2 ](BF 4 ) 2 : Tug of War between the Nitrile Reorientation Versus Crystal Lattice as a Tool for Tuning the Spin Crossover Properties*. Chemistry 2020; 26:14419-14434. [PMID: 32678463 DOI: 10.1002/chem.202002460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4 )2 ⋅6 H2 O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2 (RCN)2 ](BF4 )2 ⋅nRCN (n=2 for R=CH3 (1) and n=0 for R=C2 H5 (2) C3 H7 (3), C3 H5 (4), CH2 Cl (5)) exhibiting spin crossover (SCO). SCO in 1 and 3-5 is complete and occurs above 160 K. In 2, it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2 ↓ =78 K, T1/2 ↑ =123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2. An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS -VLS ) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe-nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2 (C2 H5 CN/C3 H7 CN)2 ](BF4 )2 mixed crystals (2 a, 2 b), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1-5 suggest a particular possibility of 2 to adopt a low (140-145°) value of its Fe-N-C(propionitrile) angle.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr Durlak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Juliusz A Wolny
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Volker Schünemann
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
46
|
Senthil Kumar K, Del Giudice N, Heinrich B, Douce L, Ruben M. Bistable spin-crossover in a new series of [Fe(BPP-R) 2] 2+ (BPP = 2,6-bis(pyrazol-1-yl)pyridine; R = CN) complexes. Dalton Trans 2020; 49:14258-14267. [PMID: 33026376 DOI: 10.1039/d0dt02214d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-crossover (SCO) active transition metal complexes are a class of switchable molecular materials. Such complexes undergo hysteretic high-spin (HS) to low-spin (LS) transition, and vice versa, rendering them suitable for the development of molecule-based switching and memory elements. Therefore, the search for SCO complexes undergoing abrupt and hysteretic SCO, that is, bistable SCO, is actively carried out by the molecular magnetism community. In this study, we report the bistable SCO characteristics associated with a new series of iron(ii) complexes-[Fe(BPP-CN)2](X)2, X = BF4 (1a-d) or ClO4 (2)-belonging to the [Fe(BPP-R)2]2+ (BPP = 2,6-bis(pyrazol-1-yl)pyridine) family of complexes. Among the complexes, the lattice solvent-free complex 2 showed a stable and complete SCO (T1/2 = 241 K) with a thermal hysteresis width (ΔT) of 28 K-the widest ΔT reported so far for a [Fe(BPP-R)2](X)2 family of complexes, showing abrupt SCO. The reproducible and bistable SCO shown by the relatively simple [Fe(BPP-CN)2](X)2 series of molecular complexes is encouraging to pursue [Fe(BPP-R)2]2+ systems for the realization of technologically relevant SCO complexes.
Collapse
Affiliation(s)
- Kuppusamy Senthil Kumar
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France. and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Nicolas Del Giudice
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Laurent Douce
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Mario Ruben
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France. and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. and Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
47
|
Guo W, Daro N, Pillet S, Marchivie M, Bendeif EE, Tailleur E, Chainok K, Denux D, Chastanet G, Guionneau P. Unprecedented Reverse Volume Expansion in Spin-Transition Crystals. Chemistry 2020; 26:12927-12930. [PMID: 32428382 DOI: 10.1002/chem.202001821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Indexed: 11/09/2022]
Abstract
The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM-pBrA)2 (NCS)2 ] exhibits, on the contrary, an increase of the unit-cell volume from HS to LS. This counter-intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single-crystal and powder X-ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light-induced HS state obtained through the Light-Induced Excited Spin-State Trapping shows a remarkably high relaxation temperature, namely T(LIESST), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials.
Collapse
Affiliation(s)
- Wenbin Guo
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Nathalie Daro
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Sébastien Pillet
- Université de Lorraine, CNRS, CRM2, Nancy, 254506, Vandoeuvre-les-Nancy, France
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - El-Eulmi Bendeif
- Université de Lorraine, CNRS, CRM2, Nancy, 254506, Vandoeuvre-les-Nancy, France
| | - Elodie Tailleur
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Kittipong Chainok
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France.,Materials and Textiles Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
| | - Dominique Denux
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | | | - Philippe Guionneau
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| |
Collapse
|
48
|
Bartual-Murgui C, Pérez-Padilla C, Teat SJ, Roubeau O, Aromí G. Allosteric Spin Crossover Induced by Ligand-Based Molecular Alloying. Inorg Chem 2020; 59:12132-12142. [PMID: 32813507 DOI: 10.1021/acs.inorgchem.0c01061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spin crossover (SCO) phenomenon represents a source of multistability at the molecular level, and dilution into a nonactive host was originally key to understand its cooperative nature and the parameters governing it in the solid state. Here, we devise a molecular alloying approach in which all components are SCO-active, but with significantly different characteristic temperatures. Thus, the molecular material [Fe(Mebpp)2](ClO4)2 (2) has been doped with increasing amounts of the ligand Me2bpp (Mebpp and Me2bpp = methyl- and bis-methyl-substituted bis-pyrazolylpyridine ligands), yielding molecular alloys with the formula [Fe(Mebpp)2-2x(Me2bpp)2x](ClO4)2 (4x; 0.05 < x < 0.5). The effect of the composition on the SCO process is studied through single-crystal X-ray diffraction (SCXRD), magnetometry, and differential scanning calorimetry (DSC). While the attenuation of intermolecular interactions is shown to have a strong effect on the SCO cooperativity, the spin conversion was found to occur at intermediate temperatures and in one sole step for all components of the alloys, thus unveiling an unprecedented allosteric SCO process. This effect provides in turn a means of tuning the SCO temperature within a range of 42 K.
Collapse
Affiliation(s)
- Carlos Bartual-Murgui
- Departament de Quı́mica Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Cristian Pérez-Padilla
- Departament de Quı́mica Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Simon J Teat
- Advanced Light Source, Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC and Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Guillem Aromí
- Departament de Quı́mica Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| |
Collapse
|
49
|
Díaz-Torres R, Phonsri W, Murray KS, Liu L, Ahmed M, Neville SM, Harding P, Harding DJ. Spin Crossover in Iron(III) Quinolylsalicylaldiminates: The Curious Case of [Fe(qsal-F)2](Anion). Inorg Chem 2020; 59:13784-13791. [DOI: 10.1021/acs.inorgchem.0c02201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raúl Díaz-Torres
- Functional Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Wasinee Phonsri
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Keith S. Murray
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Lujia Liu
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North 0632, New Zealand
| | - Manan Ahmed
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Suzanne M. Neville
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Phimphaka Harding
- Functional Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - David J. Harding
- Functional Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
50
|
Jakobsen VB, Trzop E, Gavin LC, Dobbelaar E, Chikara S, Ding X, Esien K, Müller‐Bunz H, Felton S, Zapf VS, Collet E, Carpenter MA, Morgan GG. Stress-Induced Domain Wall Motion in a Ferroelastic Mn 3+ Spin Crossover Complex. Angew Chem Int Ed Engl 2020; 59:13305-13312. [PMID: 32358911 PMCID: PMC7496919 DOI: 10.1002/anie.202003041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 11/17/2022]
Abstract
Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2 (323))]BPh4 , 1. The first at 250 K, involves the space group change Cc→Pc and is thermodynamically continuous, while the second, Pc→P1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition.
Collapse
Affiliation(s)
- Vibe B. Jakobsen
- School of ChemistryUniversity College DublinBelfieldDublin4Ireland
| | - Elzbieta Trzop
- Univ RennesCNRS, IPR (Institut de Physique de Rennes)—UMR 625135000RennesFrance
| | | | - Emiel Dobbelaar
- School of ChemistryUniversity College DublinBelfieldDublin4Ireland
- Current address: Technische Universität KaiserslauternKaiserslauternGermany
| | - Shalinee Chikara
- Department of PhysicsAuburn UniversityAuburnAL36849USA
- Current address: National High Magnetic Field Lab at Florida State UniversityTallahasseeFLUSA
| | - Xiaxin Ding
- National High Magnetic Field LaboratoryLos Alamos National LaboratoryLos AlamosNM87545USA
- Current address: Idaho National LaboratoryIdaho FallsIDUSA
| | - Kane Esien
- Centre for Nanostructured MediaSchool of Mathematics and PhysicsQueen's University of BelfastBelfastBT7 1NN, Northern IrelandUK
| | | | - Solveig Felton
- Centre for Nanostructured MediaSchool of Mathematics and PhysicsQueen's University of BelfastBelfastBT7 1NN, Northern IrelandUK
| | - Vivien S. Zapf
- National High Magnetic Field LaboratoryLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Eric Collet
- Univ RennesCNRS, IPR (Institut de Physique de Rennes)—UMR 625135000RennesFrance
| | - Michael A. Carpenter
- Department of Earth SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EQUK
| | - Grace G. Morgan
- School of ChemistryUniversity College DublinBelfieldDublin4Ireland
| |
Collapse
|