1
|
Vega-Galvez A, Pasten A, Uribe E, Mejias N, Araya M, Vidal RL, Valenzuela-Barra G, Delporte C. Comprehensive Assessment of Anti-Inflammatory, Antiproliferative and Neuroprotective Properties of Cauliflower after Dehydration by Different Drying Methods. Foods 2024; 13:3162. [PMID: 39410197 PMCID: PMC11482558 DOI: 10.3390/foods13193162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Cauliflower (Brassica oleraceae L. var. Botrytis Linnaeus) has various health benefits due to its rich bioactive compound content. However, this fresh vegetable faces challenges related to its perishability and short shelf life. This study explores the effect of five drying methods, namely vacuum drying (VD), convective drying (CD), infrared drying (IRD), low-temperature vacuum drying (LTVD) and vacuum freeze-drying (VFD), on the bioactive compounds and health-promoting properties of cauliflower. Analyses of amino acids, hydroxycinnamic acid and its derivatives, glucosinolates, and isothiocyanates, as well as evaluations of their anti-inflammatory, antiproliferative, and neuroprotective properties, were conducted based on these five drying methods. The results revealed that samples treated with VFD and IRD had a higher content of amino acids involved in GSL anabolism. Moreover, VFD samples retained hydroxycinnamic acid derivatives and glucosinolates to a greater extent than other methods. Nonetheless, the CD and VD samples exhibited higher antiproliferative and neuroprotective effects, which were correlated with their high sulforaphane content. Overall, considering the retention of most bioactive compounds from cauliflower and the topical inflammation amelioration induced in mice, VFD emerges as a more satisfactory option.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (A.P.); (E.U.); (N.M.)
| | - Alexis Pasten
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (A.P.); (E.U.); (N.M.)
| | - Elsa Uribe
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (A.P.); (E.U.); (N.M.)
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Nicol Mejias
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (A.P.); (E.U.); (N.M.)
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile;
| | - René L. Vidal
- Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Universidad de Chile, Santiago 8380000, Chile;
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago 8380000, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (G.V.-B.); (C.D.)
| | - Carla Delporte
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (G.V.-B.); (C.D.)
| |
Collapse
|
2
|
Chiaraluce G, Bentivoglio D, Del Conte A, Lucas MR, Finco A. The second life of food by-products: Consumers’ intention to purchase and willingness to pay for an upcycled pizza. CLEANER AND RESPONSIBLE CONSUMPTION 2024; 14:100198. [DOI: 10.1016/j.clrc.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Darko HSO, Ismaiel L, Fanesi B, Pacetti D, Lucci P. Current Trends in Food Processing By-Products as Sources of High Value-Added Compounds in Food Fortification. Foods 2024; 13:2658. [PMID: 39272424 PMCID: PMC11394074 DOI: 10.3390/foods13172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Along the food production chain of animal, fish, and vegetable products, a huge amount of by-products are generated every year. Major nutritional, financial, and environmental advantages can be achieved by transforming them into functional ingredients for food formulation and fortification. In this review, we investigated various conventional and emerging treatments recently employed to obtain functional ingredients rich in proteins, fibers, and bioactive compounds from vegetables, fish, meat, and dairy by-products. The optimal enrichment level in food as well as the nutritional, techno-functional, and sensory properties of the final food were also discussed. Novel technologies such as ultrasounds, microwaves, and high pressure have been successfully adopted to enhance the extraction of target compounds. The functional ingredients, added both in liquid or powder form, were able to improve the nutritional quality and antioxidant potential of food, although high levels of fortification may cause undesired changes in texture and flavor. This review provides important considerations for further industrial scale-up.
Collapse
Affiliation(s)
- Helen Stephanie Ofei Darko
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Lama Ismaiel
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Benedetta Fanesi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
4
|
Gomez-Molina M, Albaladejo-Marico L, Yepes-Molina L, Nicolas-Espinosa J, Navarro-León E, Garcia-Ibañez P, Carvajal M. Exploring Phenolic Compounds in Crop By-Products for Cosmetic Efficacy. Int J Mol Sci 2024; 25:5884. [PMID: 38892070 PMCID: PMC11172794 DOI: 10.3390/ijms25115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Phenolic compounds represent a group of secondary metabolites that serve essential functions in plants. Beyond their positive impact on plants, these phenolic metabolites, often referred to as polyphenols, possess a range of biological properties that can promote skin health. Scientific research indicates that topically using phenolics derived from plants can be advantageous, but their activity and stability highly depend on storage of the source material and the extraction method. These compounds have the ability to relieve symptoms and hinder the progression of different skin diseases. Because they come from natural sources and have minimal toxicity, phenolic compounds show potential in addressing the causes and effects of skin aging, skin diseases, and various types of skin damage, such as wounds and burns. Hence, this review provides extensive information on the particular crops from which by-product phenolic compounds can be sourced, also emphasizing the need to conduct research according to proper plant material storage practices and the choice of the best extracting method, along with an examination of their specific functions and the mechanisms by which they act to protect skin.
Collapse
Affiliation(s)
- Maria Gomez-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lorena Albaladejo-Marico
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lucia Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain;
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| |
Collapse
|
5
|
Tolve R, Simonato B. Fortified Cereal-Based Foodstuffs: Technological, Sensory, and Nutritional Properties. Foods 2024; 13:1182. [PMID: 38672855 PMCID: PMC11049349 DOI: 10.3390/foods13081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In the wake of the United Nations' Agenda 2030, a global commitment to advancing well-being, sustainable living, and waste reduction, the spotlight on cereal-based food products with high added value has intensified [...].
Collapse
Affiliation(s)
- Roberta Tolve
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | |
Collapse
|
6
|
Shinali TS, Zhang Y, Altaf M, Nsabiyeze A, Han Z, Shi S, Shang N. The Valorization of Wastes and Byproducts from Cruciferous Vegetables: A Review on the Potential Utilization of Cabbage, Cauliflower, and Broccoli Byproducts. Foods 2024; 13:1163. [PMID: 38672834 PMCID: PMC11049176 DOI: 10.3390/foods13081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The management of vegetable waste and byproducts is a global challenge in the agricultural industry. As a commonly consumed vegetable crop, cruciferous vegetables marked higher amounts of wastage during their supply chain processes, with a significant contribution from cabbage, cauliflower, and broccoli. Therefore, the sustainable and resource-efficient utilization of discarded materials is crucial. This review explores potential applications of cruciferous vegetable waste and byproducts, spotlighting cabbage, cauliflower, and broccoli in food, medicinal, and other industries. Their significance of being utilized in value-added applications is addressed, emphasizing important biomolecules, technologies involved in the valorization process, and future aspects of practical applications. Cabbage, cauliflower, and broccoli generate waste and low-processing byproducts, including leaves, stems, stalks, and rot. Most of them contain high-value biomolecules, including bioactive proteins and phytochemicals, glucosinolates, flavonoids, anthocyanins, carotenoids, and tocopherols. Interestingly, isothiocyanates, derived from glucosinolates, exhibit strong anti-inflammatory and anticancer activity through various interactions with cellular molecules and the modulation of key signaling pathways in cells. Therefore, these cruciferous-based residues can be valorized efficiently through various innovative extraction and biotransformation techniques, as well as employing different biorefinery approaches. This not only minimizes environmental impact but also contributes to the development of high-value-added products for food, medicinal, and other related industries.
Collapse
Affiliation(s)
- Tharushi S. Shinali
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Yiying Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Moater Altaf
- College of Biological Sciences, China Agricultural University, Beijing 100083, China;
| | - Assa Nsabiyeze
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Zixin Han
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Shuyuan Shi
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Zhang J, Liu D, Zhang C, Niu H, Xin X, Chen J, Yi H, Liu D. The impact of Levilactobacillus brevis YSJ3 and Lactiplantibacillus plantarum JLSC2-6 co-culture on gamma-aminobutyric acid yield, volatile and non-volatile metabolites, antioxidant activity, and bacterial community in fermented cauliflower byproducts. Food Chem 2024; 432:137169. [PMID: 37625302 DOI: 10.1016/j.foodchem.2023.137169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Co-culture fermentation is a novel technology for enhancing fermentation quality and promoting gamma-aminobutyric acid (GABA) yield. The purpose of this study was to evaluate the effects of Levilactobacillus brevis YSJ3 and Lactiplantibacillus plantarum JLSC2-6 co-culture on GABA yield, volatile and non-volatile metabolite profiles, and antioxidant activity in cauliflower byproducts. It was found that co-culture had the highest GABA yield (35.00 ± 1.15 mg/L) in fermented cauliflower stems. In total, 111 and 1264 volatile and non-volatile metabolites, respectively, were identified, of which 59 metabolites were significantly upregulated after co-culture fermentation. The results showed that 24 key upregulated metabolites were positively associated with hydroxyl radical-scavenging activity. Notably, Levilactobacills were positively correlated with the yield of GABA and key upregulated metabolites. Thus, these results suggest that Levilactobacillus brevis and Lactiplantibacillus plantarum can improve in key metabolites, GABA yield, and antioxidant activity following co-culture. This study provide a theoretical basis for developing GABA-rich cauliflower byproducts.
Collapse
Affiliation(s)
- Jianming Zhang
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Daiyao Liu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Chengcheng Zhang
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Haiyue Niu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Xiaoting Xin
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Juan Chen
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Daqun Liu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
8
|
Fanesi B, Ismaiel L, Nartea A, Orhotohwo OL, Kuhalskaya A, Pacetti D, Lucci P, Falcone PM. Bioactives and Technological Quality of Functional Biscuits Containing Flour and Liquid Extracts from Broccoli By-Products. Antioxidants (Basel) 2023; 12:2115. [PMID: 38136234 PMCID: PMC10740713 DOI: 10.3390/antiox12122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Broccoli by-products are an important source of health-promoting bioactive compounds, although they are generally underutilized. This study aimed to valorize non-compliant broccoli florets by transforming them into functional ingredients for biscuit formulation. A broccoli flour and three water/ethanol extracts (100:0, 75:25, 50:50; v/v) were obtained. The rheological properties and the content of bioactive compounds of the functional ingredients and biscuits were evaluated. The 50:50 hydroalcoholic extract was the richest in glucosinolates (9749 µg·g-1 DW); however, the addition of a small amount strongly affected dough workability. The enrichment with 10% broccoli flour resulted the best formulation in terms of workability and color compared to the other enriched biscuits. The food matrix also contributed to protecting bioactive compounds from thermal degradation, leading to the highest total glucosinolate (33 µg·g-1 DW), carotenoid (46 µg·g-1 DW), and phenol (1.9 mg GAE·g-1 DW) contents being present in the final biscuit. Therefore, broccoli flour is a promising ingredient for innovative healthy bakery goods. Hydroalcoholic extracts could be valuable ingredients for liquid or semi-solid food formulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.F.); (L.I.); (A.N.); (O.L.O.); (A.K.); (D.P.); (P.M.F.)
| | | |
Collapse
|
9
|
Kraouia M, Nartea A, Maoloni A, Osimani A, Garofalo C, Fanesi B, Ismaiel L, Aquilanti L, Pacetti D. Sea Fennel ( Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals. Molecules 2023; 28:4741. [PMID: 37375298 PMCID: PMC10303230 DOI: 10.3390/molecules28124741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Sea fennel (Crithmum maritimum L.) is a perennial, strongly aromatic herb that has been used since ancient times in cuisine and folk medicine due to its renowned properties. Recently described as a "cash" crop, sea fennel is an ideal candidate for the promotion of halophyte agriculture in the Mediterranean basin due to its acknowledged adaptation to the Mediterranean climate, its resilience to risks/shocks related to climate changes, and its exploitability in food and non-food applications, which generates an alternative source of employment in rural areas. The present review provides insight into the nutritional and functional traits of this new crop as well as its exploitation in innovative food and nutraceutical applications. Various previous studies have fully demonstrated the high biological and nutritional potential of sea fennel, highlighting its high content of bioactive compounds, including polyphenols, carotenoids, ω-3 and ω-6 essential fatty acids, minerals, vitamins, and essential oils. Moreover, in previous studies, this aromatic halophyte showed good potential for application in the manufacturing of high-value foods, including both fermented and unfermented preserves, sauces, powders, and spices, herbal infusions and decoctions, and even edible films, as well as nutraceuticals. Further research efforts are needed to fully disclose the potential of this halophyte in view of its full exploitation by the food and nutraceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucia Aquilanti
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche (UNIVPM), 60131 Ancona, Italy; (M.K.); (A.N.); (A.M.); (A.O.); (C.G.); (B.F.); (L.I.); (D.P.)
| | | |
Collapse
|