1
|
Nick C. Streamlining biosimilar development based on 20 years' experience. Expert Opin Biol Ther 2024; 24:571-581. [PMID: 38315062 DOI: 10.1080/14712598.2024.2314612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Biosimilar clinical programs could be streamlined by prudent application of improved methodologies and knowledge accumulated over the past 20 years. This review focuses on whether complex comparative efficacy trials are routinely needed and how to achieve a more tailored approach to biosimilar development. AREAS COVERED Key learnings over the past 20 years are summarized. It is noted that a one size fits all approach to biosimilar development is not appropriate: biological medicines fall within a wide spectrum of complexity, with blurring at the interface between biological products and small molecules. The interrelationship between quality, potency, pharmacokinetics, pharmacology, immunogenicity, efficacy, and safety are reviewed. Current regulatory thinking is reviewed with a look into what future challenges lie ahead. EXPERT OPINION To tailor regulatory requirements for marketing approval of biosimilars, it is proposed that a biosimilarity report be introduced. This report would integrate quality, pharmacology, immunogenicity, efficacy and safety findings and address how the clinical program could be tailored based on the totality of evidence.
Collapse
Affiliation(s)
- Cecil Nick
- Parexel International, Uxbridge, Middlesex, England
| |
Collapse
|
2
|
Hsu YP, Nourzaie O, Tocher AE, Nerella K, Ermakov G, Jung J, Fowler A, Wu P, Ayesa U, Willingham A, Beaumont M, Ingale S. Site-Specific Antibody Conjugation Using Modified Bisected N-Glycans: Method Development and Potential toward Tunable Effector Function. Bioconjug Chem 2023; 34:1633-1644. [PMID: 37620302 PMCID: PMC10516122 DOI: 10.1021/acs.bioconjchem.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Antibody-drug conjugates (ADCs) have garnered worldwide attention for disease treatment, as they possess high target specificity, a long half-life, and outstanding potency to kill or modulate the functions of targets. FDA approval of multiple ADCs for cancer therapy has generated a strong desire for novel conjugation strategies with high biocompatibility and controllable bioproperties. Herein, we present a bisecting glycan-bridged conjugation strategy that enables site-specific conjugation without the need for the oligosaccharide synthesis and genetic engineering of antibodies. Application of this method is demonstrated by conjugation of anti-HER2 human and mouse IgGs with a cytotoxic drug, monomethyl auristatin E. The glycan bridge showed outstanding stability, and the resulting ADCs eliminated HER2-expressing cancer cells effectively. Moreover, our strategy preserves the feasibility of glycan structure remodeling to fine-tune the immunogenicity and pharmacokinetic properties of ADCs through glycoengineering.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Omar Nourzaie
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Ariel E. Tocher
- MRL,
Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kavitha Nerella
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Grigori Ermakov
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Jiwon Jung
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Alexandra Fowler
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Peidong Wu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Umme Ayesa
- MRL, Merck
& Co., Inc., 90 E.
Scott Ave., Rahway, New Jersey 07065, United States
| | - Aarron Willingham
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Maribel Beaumont
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Sampat Ingale
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| |
Collapse
|
3
|
Lippold S, Mistry K, Lenka S, Whang K, Liu P, Pitschi S, Kuhne F, Reusch D, Cadang L, Knaupp A, Izadi S, Dunkle A, Yang F, Schlothauer T. Function-structure approach reveals novel insights on the interplay of Immunoglobulin G 1 proteoforms and Fc gamma receptor IIa allotypes. Front Immunol 2023; 14:1260446. [PMID: 37790943 PMCID: PMC10544997 DOI: 10.3389/fimmu.2023.1260446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Human Fc gamma receptor IIa (FcγRIIa) or CD32a has two major allotypes with a single amino acid difference at position 131 (histidine or arginine). Differences in FcγRIIa allotypes are known to impact immunological responses such as the clinical outcome of therapeutic monoclonal antibodies (mAbs). FcγRIIa is involved in antibody-dependent cellular phagocytosis (ADCP), which is an important contributor to the mechanism-of-action of mAbs by driving phagocytic clearance of cancer cells. Hence, understanding the impact of individual mAb proteoforms on the binding to FcγRIIa, and its different allotypes, is crucial for defining meaningful critical quality attributes (CQAs). Here, we report a function-structure based approach guided by novel FcγRIIa affinity chromatography-mass spectrometry (AC-MS) assays to assess individual IgG1 proteoforms. This allowed to unravel allotype-specific differences of IgG1 proteoforms on FcγRIIa binding. FcγRIIa AC-MS confirmed and refined structure-function relationships of IgG1 glycoform interactions. For example, the positive impact of afucosylation was higher than galactosylation for FcγRIIa Arg compared to FcγRIIa His. Moreover, we observed FcγRIIa allotype-opposing and IgG1 proteoform integrity-dependent differences in the binding response of stress-induced IgG1 proteoforms comprising asparagine 325 deamidation. The FcγRIIa-allotype dependent binding differences resolved by AC-MS were in line with functional ADCP-surrogate bioassay models. The molecular basis of the observed allotype specificity and proteoform selectivity upon asparagine 325 deamidation was elucidated using molecular dynamics. The observed differences were attributed to the contributions of an inter-molecular salt bridge between IgG1 and FcγRIIa Arg and the contribution of an intra-molecular hydrophobic pocket in IgG1. Our work highlights the unprecedented structural and functional resolution of AC-MS approaches along with predictive biological significance of observed affinity differences within relevant cell-based methods. This makes FcγRIIa AC-MS an invaluable tool to streamline the CQA assessment of therapeutic mAbs.
Collapse
Affiliation(s)
- Steffen Lippold
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Karishma Mistry
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Sunidhi Lenka
- Pharmaceutical Development, Genentech, A Member of The Roche Group, South San Francisco, CA, United States
| | - Kevin Whang
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Peilu Liu
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Sebastian Pitschi
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Felix Kuhne
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Saeed Izadi
- Pharmaceutical Development, Genentech, A Member of The Roche Group, South San Francisco, CA, United States
| | - Alexis Dunkle
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
St. Germain R, Bossard EL, Corey L, Sholukh AM. Serum concentration of antigen-specific IgG can substantially bias interpretation of antibody-dependent phagocytosis assay readout. iScience 2023; 26:107527. [PMID: 37664583 PMCID: PMC10469534 DOI: 10.1016/j.isci.2023.107527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/21/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Because virus neutralization cannot solely explain vaccine-induced, antibody-mediated protection, antibody effector functions are being considered as a potential correlate of protection (CoP). However, measuring effector functions at a fixed serum dilution for high throughput purposes makes it difficult to distinguish between the effect of serum antibody concentration and antibody properties such as epitopes, subclass, and glycosylation. To address this issue, we evaluated antibody-dependent cellular phagocytosis (ADCP) assay against SARS-CoV-2 spike. Adjustment of serum samples to the same concentration of antigen-specific IgG prior to the ADCP assay revealed concentration-independent differences in ADCP after mRNA vaccination in subjects with and without prior SARS-CoV-2 infection not detectable in assay performed with fixed serum dilution. Phagocytosis measured at different concentrations of spike-specific IgG strongly correlated with the area under the curve (AUC) indicating that ADCP assay can be performed at a standardized antibody concentration for the high throughput necessary for vaccine trial analyses.
Collapse
Affiliation(s)
- Russell St. Germain
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Emily L. Bossard
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Anton M. Sholukh
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Dégardin M, Gaudreault J, Oliverio R, Serafin B, Forest-Nault C, Liberelle B, De Crescenzo G. Grafting Strategies of Oxidation-Prone Coiled-Coil Peptides for Protein Capture in Bioassays: Impact of Orientation and the Oxidation State. ACS OMEGA 2023; 8:28301-28313. [PMID: 37576632 PMCID: PMC10413464 DOI: 10.1021/acsomega.3c02172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Many biomedical and biosensing applications require functionalization of surfaces with proteins. To this end, the E/K coiled-coil peptide heterodimeric system has been shown to be advantageous. First, Kcoil peptides are covalently grafted onto a given surface. Ecoil-tagged proteins can then be non-covalently captured via a specific interaction with their Kcoil partners. Previously, oriented Kcoil grafting was achieved via thiol coupling, using a unique Kcoil with a terminal cysteine residue. However, cysteine-terminated Kcoil peptides are hard to produce, purify, and oxidize during storage. Indeed, they tend to homodimerize and form disulfide bonds via oxidation of their terminal thiol group, making it impossible to later graft them on thiol-reactive surfaces. Kcoil peptides also contain multiple free amine groups, available for covalent coupling through carbodiimide chemistry. Grafting Kcoil peptides on surfaces via amine coupling would thus guarantee their immobilization regardless of their terminal cysteine's oxidation state, at the expense of the control over their orientation. In this work, we compare Kcoil grafting strategies for the subsequent capture of Ecoil-tagged proteins, for applications such as surface plasmon resonance (SPR) biosensing and cell culture onto protein-decorated substrates. We compare the "classic" thiol coupling of cysteine-terminated Kcoil peptides to the amine coupling of (i) monomeric Kcoil and (ii) dimeric Kcoil-Kcoil linked by a disulfide bond. We have observed that SPR biosensing performances relying on captured Ecoil-tagged proteins were similar for amine-coupled dimeric Kcoil-Kcoil and thiol-coupled Kcoil peptides, at the expense of higher Ecoil-tagged protein consumption. For cell culture applications, Ecoil-tagged growth factors captured on amine-coupled monomeric Kcoil signaled through cell receptors similarly to those captured on thiol-coupled Kcoil peptides. Altogether, while oriented thiol coupling of cysteine-terminated Kcoil peptides remains the most reliable and versatile platform for Ecoil-tagged protein capture, amine coupling of Kcoil peptides, either monomeric or dimerized through a cysteine bond, can offer a good alternative when the challenges and costs associated with the production of monomeric cysteine-tagged Kcoil are too dissuasive for the application.
Collapse
Affiliation(s)
- Médéric Dégardin
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benjamin Serafin
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Catherine Forest-Nault
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| |
Collapse
|
6
|
Harwardt J, Carrara SC, Bogen JP, Schoenfeld K, Grzeschik J, Hock B, Kolmar H. Generation of a symmetrical trispecific NK cell engager based on a two-in-one antibody. Front Immunol 2023; 14:1170042. [PMID: 37081888 PMCID: PMC10110854 DOI: 10.3389/fimmu.2023.1170042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
To construct a trispecific IgG-like antibody at least three different binding moieties need to be combined, which results in a complex architecture and challenging production of these molecules. Here we report for the first time the construction of trispecific natural killer cell engagers based on a previously reported two-in-one antibody combined with a novel anti-CD16a common light chain module identified by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibodies simultaneously target epidermal growth factor receptor (EGFR), programmed death-ligand 1 (PD-L1) and CD16a with two Fab fragments, resulting in specific cellular binding properties on EGFR/PD-L1 double positive tumor cells and a potent ADCC effect. This study paves the way for further development of multispecific therapeutic antibodies derived from avian immunization with desired target combinations, valencies, molecular symmetries and architectures.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Biologics Technology and Development, Ferring Darmstadt Laboratory, Darmstadt, Germany
| | - Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Biologics Technology and Development, Ferring Darmstadt Laboratory, Darmstadt, Germany
| | - Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Julius Grzeschik
- Biologics Technology and Development, Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Björn Hock
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Harald Kolmar,
| |
Collapse
|
7
|
Capkin E, Kurt H, Gurel B, Bicak D, Akgun Bas S, Daglikoca DE, Yuce M. Characterization of FcγRIa (CD64) as a Ligand Molecule for Site-Specific IgG1 Capture: A Side-By-Side Comparison with Protein A. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14623-14634. [PMID: 36416530 PMCID: PMC9730901 DOI: 10.1021/acs.langmuir.2c02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Fc γ receptors (FcγRs) are one of the structures that can initiate effector function for monoclonal antibodies. FcγRIa has the highest affinity toward IgG1-type monoclonal antibodies among all FcγRs. In this study, a comprehensive characterization was performed for FcγRIa as a potential affinity ligand for IgG1-type monoclonal antibody binding. The binding interactions were assessed with the SPR technique using different immobilization techniques such as EDC-NHS coupling, streptavidin-biotin interaction, and His-tagged FcγRIa capture. The His-tagged FcγRIa capture was the most convenient method based on assay repeatability. Next, a crude IgG1 sample and its fractions with different monomer contents obtained from protein A affinity chromatography were used to evaluate FcγRIa protein in terms of monoclonal antibody binding capacity. The samples were also compared with a protein A-immobilized chip (a frequently used affinity ligand) for IgG1 binding responses. The antibody binding capacity of the protein A-immobilized chip surface was significantly better than that of the FcγRIa-immobilized chip surface due to its 5 Ig binding domains. The antibody binding responses changed similarly with protein A depending on the monomer content of the sample. Finally, a different configuration was used to assess the binding affinity of free FcγRs (FcγRIa, FcγRIIa, and FcγRIIIa) to three different immobilized IgGs by immobilizing protein L to the chip surface. Unlike previous immobilization techniques tested where the FcγRIa was utilized as a ligand, nonimmobilized or free FcγRIa resulted in a significantly higher antibody binding response than free protein A. In this configuration, kinetics data of FcγRI revealed that the association rate (ka 50-80 × 105 M-1 s-1) increased in comparison to His capture method (1.9-2.4 × 105 M-1 s-1). In addition, the dissociation rate (kd 10-5 s-1) seemed slower over the His capture method (10-4 s-1) and provided stability on the chip surface during the dissociation phase. The KD values for FcγRIa were found in the picomolar range (2.1-10.33 pM from steady-state affinity analysis and 37.5-46.2 pM from kinetic analysis) for IgG1-type antibodies. FcγRIa possesses comparable ligand potential as well as protein A. Even though the protein A-immobilized surface bound more antibodies than the FcγRIa-captured surface, FcγRIa presented a significant antibody binding capacity in protein L configuration. The results suggest FcγRIa protein as a potential ligand for site-oriented immobilization of IgG1-type monoclonal antibodies, and it needs further performance investigation on different surfaces and interfaces for applications such as sensing and antibody purification.
Collapse
Affiliation(s)
- Eda Capkin
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Hasan Kurt
- School
of Engineering and Natural Sciences, Istanbul
Medipol University, Beykoz 34810, Istanbul, Turkey
- SABITA
Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Beykoz 34810, Istanbul, Turkey
- Nanosolar
Plasmonics Ltd., Gebze 41400, Kocaeli, Turkey
| | - Busra Gurel
- SUNUM
Nanotechnology Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Dilan Bicak
- ILKO ARGEM
Biotechnology R&D Center, Pendik 34906, Istanbul, Turkey
| | - Sibel Akgun Bas
- ILKO ARGEM
Biotechnology R&D Center, Pendik 34906, Istanbul, Turkey
| | | | - Meral Yuce
- SUNUM
Nanotechnology Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
| |
Collapse
|
8
|
Matveeva O, Nechipurenko Y, Lagutkin D, Yegorov YE, Kzhyshkowska J. SARS-CoV-2 infection of phagocytic immune cells and COVID-19 pathology: Antibody-dependent as well as independent cell entry. Front Immunol 2022; 13:1050478. [PMID: 36532011 PMCID: PMC9751203 DOI: 10.3389/fimmu.2022.1050478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either.
Collapse
Affiliation(s)
- Olga Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Denis Lagutkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| |
Collapse
|
9
|
Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H. Design of a Trispecific Checkpoint Inhibitor and Natural Killer Cell Engager Based on a 2 + 1 Common Light Chain Antibody Architecture. Front Immunol 2021; 12:669496. [PMID: 34040611 PMCID: PMC8141644 DOI: 10.3389/fimmu.2021.669496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Natural killer cell engagers gained enormous interest in recent years due to their potent anti-tumor activity and favorable safety profile. Simultaneously, chicken-derived antibodies entered clinical studies paving the way for avian-derived therapeutics. In this study, we describe the affinity maturation of a common light chain (cLC)-based, chicken-derived antibody targeting EGFR, followed by utilization of the same light chain for the isolation of CD16a- and PD-L1-specific monoclonal antibodies. The resulting binders target their respective antigen with single-digit nanomolar affinity while blocking the ligand binding of all three respective receptors. Following library-based humanization, bispecific and trispecific variants in a standard 1 + 1 or a 2 + 1 common light chain format were generated, simultaneously targeting EGFR, CD16a, and PD-L1. The trispecific antibody mediated an elevated antibody-dependent cellular cytotoxicity (ADCC) in comparison to the EGFR×CD16a bispecific variant by effectively bridging EGFR/PD-L1 double-positive cancer cells with CD16a-positive effector cells. These findings represent, to our knowledge, the first detailed report on the generation of a trispecific 2 + 1 antibodies exhibiting a common light chain and illustrate synergistic effects of trispecific antigen binding. Overall, this generic procedure paves the way for the engineering of tri- and oligospecific therapeutic antibodies derived from avian immunizations.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibody Specificity
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- Cell Line, Tumor
- Chickens
- Cytotoxicity, Immunologic/drug effects
- Drug Design
- Epitopes
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Immune Checkpoint Inhibitors/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immunization
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Light Chains/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Björn Hock
- Global Pharmaceutical Research and Development, Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
10
|
Ladel S, Maigler F, Flamm J, Schlossbauer P, Handl A, Hermann R, Herzog H, Hummel T, Mizaikoff B, Schindowski K. Impact of Glycosylation and Species Origin on the Uptake and Permeation of IgGs through the Nasal Airway Mucosa. Pharmaceutics 2020; 12:E1014. [PMID: 33114132 PMCID: PMC7690786 DOI: 10.3390/pharmaceutics12111014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Although we have recently reported the involvement of neonatal Fc receptor (FcRn) in intranasal transport, the transport mechanisms are far from being elucidated. Ex vivo porcine olfactory tissue, primary cells from porcine olfactory epithelium (OEPC) and the human cell line RPMI 2650 were used to evaluate the permeation of porcine and human IgG antibodies through the nasal mucosa. IgGs were used in their wild type and deglycosylated form to investigate the impact of glycosylation. Further, the expression of FcRn and Fc-gamma receptor (FCGR) and their interaction with IgG were analyzed. Comparable permeation rates for human and porcine IgG were observed in OEPC, which display the highest expression of FcRn. Only traces of porcine IgGs could be recovered at the basolateral compartment in ex vivo olfactory tissue, while human IgGs reached far higher levels. Deglycosylated human IgG showed significantly higher permeation in comparison to the wild type in RPMI 2650 and OEPC, but insignificantly elevated in the ex vivo model. An immunoprecipitation with porcine primary cells and tissue identified FCGR2 as a potential interaction partner in the nasal mucosa. Glycosylation sensitive receptors appear to be involved in the uptake, transport, but also degradation of therapeutic IgGs in the airway epithelial layer.
Collapse
Affiliation(s)
- Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Maigler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| | - Alina Handl
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Hermann
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| | - Helena Herzog
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| |
Collapse
|